Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.545
Filtrar
1.
PLoS Pathog ; 20(9): e1012509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241103

RESUMO

The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.


Assuntos
Diacilglicerol O-Aciltransferase , Retículo Endoplasmático , Hepacivirus , Triglicerídeos , Replicação Viral , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Humanos , Hepacivirus/fisiologia , Replicação Viral/fisiologia , Triglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Hepatite C/metabolismo , Hepatite C/virologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia
2.
Nat Commun ; 15(1): 7486, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209804

RESUMO

Chronic liver disease and cancer are global health challenges. The role of the circadian clock as a regulator of liver physiology and disease is well established in rodents, however, the identity and epigenetic regulation of rhythmically expressed genes in human disease is less well studied. Here we unravel the rhythmic transcriptome and epigenome of human hepatocytes using male human liver chimeric mice. We identify a large number of rhythmically expressed protein coding genes in human hepatocytes of male chimeric mice, which includes key transcription factors, chromatin modifiers, and critical enzymes. We show that hepatitis C virus (HCV) infection, a major cause of liver disease and cancer, perturbs the transcriptome by altering the rhythmicity of the expression of more than 1000 genes, and affects the epigenome, leading to an activation of critical pathways mediating metabolic alterations, fibrosis, and cancer. HCV-perturbed rhythmic pathways remain dysregulated in patients with advanced liver disease. Collectively, these data support a role for virus-induced perturbation of the hepatic rhythmic transcriptome and pathways in cancer development and may provide opportunities for cancer prevention and biomarkers to predict HCC risk.


Assuntos
Ritmo Circadiano , Hepacivirus , Hepatite C , Hepatócitos , Fígado , Transcriptoma , Humanos , Fígado/metabolismo , Fígado/virologia , Animais , Masculino , Hepatócitos/metabolismo , Hepatócitos/virologia , Camundongos , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Ritmo Circadiano/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Relógios Circadianos/genética , Epigênese Genética
3.
Viruses ; 16(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39205194

RESUMO

The hepatitis C virus (HCV) co-opts many cellular factors-including proteins and microRNAs-to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly.


Assuntos
Genoma Viral , Hepacivirus , RNA Viral , Proteínas de Ligação a RNA , Replicação Viral , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral , Biossíntese de Proteínas , Montagem de Vírus , Linhagem Celular , Hepatite C/virologia , Hepatite C/metabolismo
4.
Viruses ; 16(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205212

RESUMO

Infections with Flaviviridae viruses, such as hepatitis C (HCV), dengue (DENV), and yellow fever (YFV) viruses, are major public health problems worldwide. In the case of HCV, treatment is associated with drug resistance and high costs, while there is no clinically approved therapy for DENV and YFV. Consequently, there is still a need for new chemotherapies with alternative modes of action. We have previously identified novel 2-hydroxypyrazino[1,2-a]indole-1,3(2H,4H)-diones as metal-chelating inhibitors targeting HCV RNA replication. Here, by utilizing a structure-based approach, we rationally designed a second series of compounds by introducing various substituents at the indole core structure and at the imidic nitrogen, to improve specificity against the RNA-dependent RNA polymerase (RdRp). The resulting derivatives were evaluated for their potency against HCV genotype 1b, DENV2, and YFV-17D using stable replicon cell lines. The most favorable substitution was nitro at position 6 of the indole ring (compound 36), conferring EC50 1.6 µM against HCV 1b and 2.57 µΜ against HCV 1a, with a high selectivity index. Compound 52, carrying the acetohydroxamic acid functionality (-CH2CONHOH) on the imidic nitrogen, and compound 78, the methyl-substituted molecule at the position 4 indolediketopiperazine counterpart, were the most effective against DENV and YFV, respectively. Interestingly, compound 36 had a high genetic barrier to resistance and only one resistance mutation was detected, T181I in NS5B, suggesting that the compound target HCV RdRp is in accordance with our predicted model.


Assuntos
Antivirais , Hepacivirus , Indóis , Replicação Viral , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Humanos , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/fisiologia , Indóis/farmacologia , Indóis/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Linhagem Celular , Flaviviridae/efeitos dos fármacos , Flaviviridae/genética , Relação Estrutura-Atividade , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/genética
5.
ACS Chem Biol ; 19(7): 1648-1660, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38954741

RESUMO

Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.


Assuntos
Hepacivirus , RNA Viral , Replicação Viral , Proteína 1 de Ligação a Y-Box , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Proteína 1 de Ligação a Y-Box/metabolismo , Humanos , Replicação Viral/efeitos dos fármacos , RNA Viral/metabolismo , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação do RNA , RNA Polimerase Dependente de RNA
6.
Chaos ; 34(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838106

RESUMO

In this paper, we delve into the intricate local dynamics at equilibria within a two-dimensional model of hepatitis C virus (HCV) alongside hepatocyte homeostasis. The study investigates the existence of bifurcation sets and conducts a comprehensive bifurcation analysis to elucidate the system's behavior under varying conditions. A significant focus lies on understanding how changes in parameters can lead to bifurcations, which are pivotal points where the qualitative behavior of the system undergoes fundamental transformations. Moreover, the paper introduces and employs hybrid control feedback and Ott-Grebogi-Yorke strategies as tools to manage and mitigate chaos inherent within the HCV model. This chaos arises due to the presence of flip and Neimark-Sacker bifurcations, which can induce erratic behavior in the system. Through the implementation of these control strategies, the study aims to stabilize the system and restore it to a more manageable and predictable state. Furthermore, to validate the theoretical findings and the efficacy of the proposed control strategies, extensive numerical simulations are conducted. These simulations serve as a means of confirming the theoretical predictions and provide insight into the practical implications of the proposed control methodologies. By combining theoretical analysis with computational simulations, the paper offers a comprehensive understanding of the dynamics of the HCV model and provides valuable insights into potential strategies for controlling and managing chaos in such complex biological systems.


Assuntos
Hepacivirus , Hepatócitos , Homeostase , Modelos Biológicos , Dinâmica não Linear , Homeostase/fisiologia , Hepacivirus/fisiologia , Hepatócitos/virologia , Humanos , Simulação por Computador , Hepatite C
7.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932132

RESUMO

Despite their small and simple structure compared with their hosts, virus particles can cause severe harm and even mortality in highly evolved species such as humans. A comprehensive quantitative biophysical understanding of intracellular virus replication mechanisms could aid in preparing for future virus pandemics. By elucidating the relationship between the form and function of intracellular structures from the host cell and viral components, it is possible to identify possible targets for direct antiviral agents and potent vaccines. Biophysical investigations into the spatio-temporal dynamics of intracellular virus replication have thus far been limited. This study introduces a framework to enable simulations of these dynamics using partial differential equation (PDE) models, which are evaluated using advanced numerical mathematical methods on leading supercomputers. In particular, this study presents a model of the replication cycle of a specific RNA virus, the hepatitis C virus. The diffusion-reaction model mimics the interplay of the major components of the viral replication cycle, including non structural viral proteins, viral genomic RNA, and a generic host factor. Technically, surface partial differential equations (sufPDEs) are coupled on the 3D embedded 2D endoplasmic reticulum manifold with partial differential equations (PDEs) in the 3D membranous web and cytosol volume. The membranous web serves as a viral replication factory and is formed on the endoplasmic reticulum after infection and in the presence of nonstructural proteins. The coupled sufPDE/PDE model was evaluated using realistic cell geometries based on experimental data. The simulations incorporate the effects of non structural viral proteins, which are restricted to the endoplasmic reticulum surface, with effects appearing in the volume, such as host factor supply from the cytosol and membranous web dynamics. Because the spatial diffusion properties of genomic viral RNA are not yet fully understood, the model allows for viral RNA movement on the endoplasmic reticulum as well as within the cytosol. Visualizing the simulated intracellular viral replication dynamics provides insights similar to those obtained by microscopy, complementing data from in vitro/in vivo viral replication experiments. The output data demonstrate quantitative consistence with the experimental findings, prompting further advanced experimental studies to validate the model and refine our quantitative biophysical understanding.


Assuntos
Simulação por Computador , Replicação Viral , Humanos , Hepacivirus/fisiologia , Hepacivirus/genética , Retículo Endoplasmático/virologia , RNA Viral/genética , RNA Viral/metabolismo , Modelos Biológicos , Análise Espaço-Temporal
8.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920664

RESUMO

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Assuntos
Hepacivirus , Poliaminas , Prolina , Ureia , Replicação Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Poliaminas/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Arginase/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Linhagem Celular Tumoral , Prolina Oxidase/metabolismo
9.
Viruses ; 16(6)2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932284

RESUMO

Previous studies reported that the hepatitis C virus (HCV) could help disseminate the hepatitis D virus (HDV) in vivo through the unrelated hepatitis B virus (HBV), but with essentially inconclusive results. To try to shed light on this still-debated topic, 146 anti-HCV-positive subjects (of whom 91 HCV/HIV co-infected, and 43 with prior HCV eradication) were screened for anti-HDV antibodies (anti-HD), after careful selection for negativity to any serologic or virologic marker of current or past HBV infection. One single HCV/HIV co-infected patient (0.7%) tested highly positive for anti-HD, but with no positive HDV-RNA. Her husband, in turn, was a HCV/HIV co-infected subject with a previous contact with HBV. While conducting a thorough review of the relevant literature, the authors attempted to exhaustively describe the medical history of both the anti-HD-positive patient and her partner, believing it to be the key to dissecting the possible complex mechanisms of HDV transmission from one subject to another, and speculating that in the present case, it may have been HCV itself that behaved as an HDV helper virus. In conclusion, this preliminary research, while needing further validation in large prospective studies, provided some further evidence of a role of HCV in HDV dissemination in humans.


Assuntos
Coinfecção , Hepacivirus , Hepatite C , Hepatite D , Vírus Delta da Hepatite , Humanos , Hepatite D/virologia , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/fisiologia , Hepacivirus/genética , Hepacivirus/fisiologia , Feminino , Hepatite C/virologia , Coinfecção/virologia , Masculino , Vírus Auxiliares/fisiologia , Anticorpos Anti-Hepatite/sangue , Adulto , Pessoa de Meia-Idade , Infecções por HIV/virologia , Infecções por HIV/complicações , RNA Viral , Hepatite B/virologia
10.
Curr Opin Virol ; 67: 101423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925094

RESUMO

Chronic hepatitis C virus (HCV) infection is a major cause of hepatic fibrosis and cirrhosis, with a risk for the development of hepatocellular carcinoma (HCC). Although highly effective direct-acting antivirals (DAAs) are available, the incidence, morbidity, and mortality of HCV-associated HCC are still high. This article reviews the current knowledge of the mechanisms of HCV-induced carcinogenesis with a special focus on those processes that continue after virus clearance and outlines implications for patient surveillance after DAA treatment.


Assuntos
Antivirais , Carcinogênese , Carcinoma Hepatocelular , Hepacivirus , Hepatite C Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/tratamento farmacológico , Antivirais/uso terapêutico , Antivirais/farmacologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/complicações , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Carcinogênese/efeitos dos fármacos , Animais
11.
J Virol ; 98(7): e0052224, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38899899

RESUMO

The 3' untranslated region (3'UTR) of the hepatitis C virus (HCV) RNA genome, which contains a highly conserved 3' region named the 3'X-tail, plays an essential role in RNA replication and promotes viral IRES-dependent translation. Although our previous work has found a cis-acting element for genome encapsidation within 3'X, there is limited information on the involvement of the 3'UTR in particle formation. In this study, proteomic analyses identified host cell proteins that bind to the 3'UTR containing the 3'X region but not to the sequence lacking the 3'X. Further characterization showed that RNA-binding proteins, ribosomal protein L17 (RPL17), and Y-box binding protein 1 (YBX1) facilitate the efficient production of infectious HCV particles in the virus infection cells. Using small interfering RNA (siRNA)-mediated gene silencing in four assays that distinguish between the various stages of the HCV life cycle, RPL17 and YBX1 were found to be most important for particle assembly in the trans-packaging assay with replication-defective subgenomic RNA. In vitro assays showed that RPL17 and YBX1 bind to the 3'UTR RNA and deletion of the 3'X region attenuates their interaction. Knockdown of RPL17 or YBX1 resulted in reducing the amount of HCV RNA co-precipitating with the viral Core protein by RNA immunoprecipitation and increasing the relative distance in space between Core and double-stranded RNA by confocal imaging, suggesting that RPL17 and YBX1 potentially affect HCV RNA-Core interaction, leading to efficient nucleocapsid assembly. These host factors provide new clues to understanding the molecular mechanisms that regulate HCV particle formation. IMPORTANCE: Although basic research on the HCV life cycle has progressed significantly over the past two decades, our understanding of the molecular mechanisms that regulate the process of particle formation, in particular encapsidation of the genome or nucleocapsid assembly, has been limited. We present here, for the first time, that two RNA-binding proteins, RPL17 and YBX1, bind to the 3'X in the 3'UTR of the HCV genome, which potentially acts as a packaging signal, and facilitates the viral particle assembly. Our study revealed that RPL17 and YBX1 exert a positive effect on the interaction between HCV RNA and Core protein, suggesting that the presence of both host factors modulate an RNA structure or conformation suitable for packaging the viral genome. These findings help us to elucidate not only the regulatory mechanism of the particle assembly of HCV but also the function of host RNA-binding proteins during viral infection.


Assuntos
Regiões 3' não Traduzidas , Genoma Viral , Hepacivirus , RNA Viral , Proteínas Ribossômicas , Montagem de Vírus , Proteína 1 de Ligação a Y-Box , Regiões 3' não Traduzidas/genética , Hepacivirus/genética , Hepacivirus/fisiologia , Hepacivirus/metabolismo , Humanos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Montagem de Vírus/genética , RNA Viral/metabolismo , RNA Viral/genética , Replicação Viral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteômica/métodos
12.
PLoS One ; 19(5): e0303265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739590

RESUMO

More than 58 million individuals worldwide are inflicted with chronic HCV. The disease carries a high risk of end stage liver disease, i.e., cirrhosis and hepatocellular carcinoma. Although direct-acting antiviral agents (DAAs) have revolutionized therapy, the emergence of drug-resistant strains has become a growing concern. Conventional cellular models, Huh7 and its derivatives were very permissive to only HCVcc (JFH-1), but not HCV clinical isolates. The lack of suitable host cells had hindered comprehensive research on patient-derived HCV. Here, we established a novel hepatocyte model for HCV culture to host clinically pan-genotype HCV strains. The immortalized hepatocyte-like cell line (imHC) derived from human mesenchymal stem cell carries HCV receptors and essential host factors. The imHC outperformed Huh7 as a host for HCV (JFH-1) and sustained the entire HCV life cycle of pan-genotypic clinical isolates. We analyzed the alteration of host markers (i.e., hepatic markers, cellular innate immune response, and cell apoptosis) in response to HCV infection. The imHC model uncovered the underlying mechanisms governing the action of IFN-α and the activation of sofosbuvir. The insights from HCV-cell culture model hold promise for understanding disease pathogenesis and novel anti-HCV development.


Assuntos
Hepacivirus , Hepatócitos , Humanos , Hepatócitos/virologia , Hepatócitos/patologia , Hepacivirus/genética , Hepacivirus/fisiologia , Antivirais/farmacologia , Sofosbuvir/farmacologia , Linhagem Celular , Replicação Viral , Interferon-alfa/farmacologia , Hepatite C/virologia , Apoptose , Células-Tronco Mesenquimais/virologia , Células-Tronco Mesenquimais/metabolismo
14.
Viruses ; 16(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793620

RESUMO

Hepatitis C virus (HCV) infects the human liver, and its chronic infection is one of the major causes of Hepatocellular carcinoma. Translation of HCV RNA is mediated by an Internal Ribosome Entry Site (IRES) element located in the 5'UTR of viral RNA. Several RNA Binding proteins of the host interact with the HCV IRES and modulate its function. Here, we demonstrate that PSPC1 (Paraspeckle Component 1), an essential paraspeckle component, upon HCV infection is relocalized and interacts with HCV IRES to prevent viral RNA translation. Competition UV-crosslinking experiments showed that PSPC1 interacts explicitly with the SLIV region of the HCV IRES, which is known to play a vital role in ribosomal loading to the HCV IRES via interaction with Ribosomal protein S5 (RPS5). Partial silencing of PSPC1 increased viral RNA translation and, consequently, HCV replication, suggesting a negative regulation by PSPC1. Interestingly, the silencing of PSPC1 protein leads to an increased interaction of RPS5 at the SLIV region, leading to an overall increase in the viral RNA in polysomes. Overall, our results showed how the host counters viral infection by relocalizing nuclear protein to the cytoplasm as a survival strategy.


Assuntos
Hepacivirus , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Viral , Proteínas de Ligação a RNA , Proteínas Ribossômicas , Humanos , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/virologia , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno , Ligação Proteica , Proteínas Ribossômicas/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral
15.
J Immunol Res ; 2024: 6343757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715844

RESUMO

This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.


Assuntos
Efeito Espectador , Técnicas de Cocultura , Coinfecção , Citocinas , Infecções por HIV , Hepacivirus , Células Estreladas do Fígado , Hepatite C , Cirrose Hepática , Humanos , Células Estreladas do Fígado/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatite C/complicações , Hepatite C/imunologia , Células Jurkat , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Cirrose Hepática/etiologia , Citocinas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , HIV/fisiologia , Estresse Oxidativo , Comunicação Celular , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Matriz Extracelular/metabolismo
16.
Viruses ; 16(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675895

RESUMO

Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.


Assuntos
Hepacivirus , Macrófagos , Células-Tronco Pluripotentes , SARS-CoV-2 , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Hepacivirus/imunologia , Hepacivirus/fisiologia , SARS-CoV-2/imunologia , Células-Tronco Pluripotentes/imunologia , Streptococcus pneumoniae/imunologia , COVID-19/imunologia , COVID-19/virologia , Hepatite C/imunologia , Hepatite C/virologia , Fagocitose , Viroses/imunologia , Imunidade Inata
17.
J Biol Chem ; 300(5): 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636657

RESUMO

Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.


Assuntos
Anexina A3 , Hepacivirus , Hepatite C , Antígeno SS-B , Internalização do Vírus , Humanos , Anexina A3/metabolismo , Anexina A3/genética , Autoantígenos/metabolismo , Autoantígenos/genética , Células HEK293 , Hepacivirus/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatite C/genética , Interações Hospedeiro-Patógeno , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética
18.
Arch Virol ; 169(5): 112, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683226

RESUMO

Previously, we reported a neutralizing monoclonal antibody, A8A11, raised against a novel conserved epitope within the hepatitis C virus (HCV) E2 protein, that could significantly reduce HCV replication. Here, we report the nucleotide sequence of A8A11 and demonstrate the efficacy of a single-chain variable fragment (scFv) protein that mimics the antibody, inhibits the binding of an HCV virus-like particle to hepatocytes, and reduces viral RNA replication in a cell culture system. More importantly, scFv A8A11 was found to effectively restrict the increase of viral RNA levels in the serum of HCV-infected chimeric mice harbouring human hepatocytes. These results suggest a promising approach to neutralizing-antibody-based therapeutic interventions against HCV infection.


Assuntos
Epitopos , Hepacivirus , Hepatócitos , Anticorpos de Cadeia Única , Proteínas do Envelope Viral , Internalização do Vírus , Hepacivirus/imunologia , Hepacivirus/genética , Hepacivirus/fisiologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Hepatócitos/virologia , Hepatócitos/imunologia , Animais , Humanos , Epitopos/imunologia , Camundongos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Hepatite C/virologia , Hepatite C/imunologia , Anticorpos Neutralizantes/imunologia , Replicação Viral , Anticorpos Monoclonais/imunologia
19.
PLoS Pathog ; 20(2): e1011976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315728

RESUMO

Viral infections trigger the expression of interferons (IFNs) and interferon stimulated genes (ISGs), which are crucial to modulate an antiviral response. The human guanylate binding protein 1 (GBP1) is an ISG and exhibits antiviral activity against several viruses. In a previous study, GBP1 was described to impair replication of the hepatitis C virus (HCV). However, the impact of GBP1 on the HCV life cycle is still enigmatic. To monitor the expression and subcellular distribution of GBP1 and HCV we performed qPCR, Western blot, CLSM and STED microscopy, virus titration and reporter gene assays. In contrast to previous reports, we observed that HCV induces the expression of GBP1. Further, to induce GBP1 expression, the cells were stimulated with IFNγ. GBP1 modulation was achieved either by overexpression of GBP1-Wt or by siRNA-mediated knockdown. Silencing of GBP1 impaired the release of viral particles and resulted in intracellular HCV core accumulation, while overexpression of GBP1 favored viral replication and release. CLSM and STED analyses revealed a vesicular distribution of GBP1 in the perinuclear region. Here, it colocalizes with HCV core around lipid droplets, where it acts as assembly platform and thereby favors HCV morphogenesis and release. Collectively, our results identify an unprecedented function of GBP1 as a pro-viral factor. As such, it is essential for viral assembly and release acting through tethering factors involved in HCV morphogenesis onto the surface of lipid droplets.


Assuntos
Proteínas de Ligação ao GTP , Hepacivirus , Hepatite C , Humanos , Hepacivirus/fisiologia , Hepatite C/genética , Interferons , Replicação Viral , Proteínas de Ligação ao GTP/genética
20.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319104

RESUMO

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Assuntos
Aptidão Genética , Hepacivirus , Hepatócitos , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Mutação , Humanos , Células Cultivadas , Estresse do Retículo Endoplasmático , Aptidão Genética/genética , Aptidão Genética/imunologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , MicroRNAs/metabolismo , Inoculações Seriadas , Resposta a Proteínas não Dobradas , Tropismo Viral , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...