Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Gut Microbes ; 16(1): 2390164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39154362

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, lacking specific therapeutic strategies. Time-restricted feeding (TRF) regimen demonstrated beneficial effects in NAFLD; however, the underlying mechanisms remain unclear. In this study, we established a NAFLD mouse model through a high-fat diet (HFD) and implemented the 16:8 TRF regimen for a duration of 6 weeks. We demonstrated that TRF remarkably alleviated hepatic steatosis in HFD mice. Of note, aldehyde oxidase 1 (AOX1), a key enzyme in hepatic nicotinamide (NAM) catabolism, exhibited apparent upregulation in response to HFD, leading to abnormal accumulation of N-Methyl-6-pyridone-3-carboxamide (N-Me-6-PY, also known as 2PY) and N-Methyl-4-pyridone-5-carboxamide (N-Me-4-PY, also known as 4PY), whereas it was almost restored by TRF. Both N-Me-6-PY and N-Me-4-PY promoted de novo lipogenesis and fatty acid uptake capacities in hepatocyte, and aggravated hepatic steatosis in mice either fed chow diet or HFD. In contrast, pharmacological inhibition of AOX1 was sufficient to ameliorate the hepatic steatosis and lipid metabolic dysregulation induced by HFD. Moreover, transplantation of fecal microbiota efficiently mimicked the modulatory effect of TRF on NAM metabolism, thus mitigating hepatic steatosis and lipid metabolic disturbance, suggesting a gut microbiota-dependent manner. In conclusion, our study reveals the intricate relationship between host NAM metabolic modification and gut microbiota remodeling during the amelioration of NAFLD by TRF, providing promising insights into the prevention and treatment of NAFLD.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Niacinamida , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Camundongos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Niacinamida/metabolismo , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Aldeído Oxidase/metabolismo , Lipogênese , Hepatócitos/metabolismo , Humanos
2.
Adv Exp Med Biol ; 1449: 113-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39060734

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health problem worldwide, and the strongest determinant of liver disease in children. The possible influence of high-fat/low-fiber dietary patterns with microbiota (e.g., increased Firmicutes/Bacteroidetes ratio), and ultimately with MASLD occurrence and progression has been elucidated by several association studies. The possible mechanisms through which microbes exert their detrimental effects on MASLD include gut vascular barrier damage, a shift towards non-tolerogenic immunologic environment, and the detrimental metabolic changes, including a relative reduction of propionate and butyrate in favor of acetate, endogenous ethanol production, and impairment of the unconjugated bile acid-driven FXR-mediated gut-liver axis. The impact of nutritional and probiotic interventions in children with MASLD is described.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Probióticos , Simbióticos , Humanos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Simbióticos/administração & dosagem , Criança , Transplante de Microbiota Fecal/métodos , Fígado Gorduroso/terapia , Fígado Gorduroso/microbiologia , Fígado Gorduroso/patologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
BMC Gastroenterol ; 24(1): 244, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085775

RESUMO

BACKGROUND: Although gut microbiota and serum metabolite composition have been observed to be altered in patients with non-alcoholic fatty liver disease (NAFLD), previous observational studies have demonstrated inconsistent results. As this may be influenced by factors such as confounders and reverse causality, we used Mendelian randomization to clarify the causal effect of gut microbiota and blood metabolites on NAFLD. METHODS: In this research, we performed a two-step Mendelian randomization analysis by utilizing genome-wide association study (GWAS) data obtained from MiBioGen and UK Biobank. To mitigate potential errors, we employed False Discovery Rate (FDR) correction and linkage unbalanced regression (LDSC) analysis. Sensitivity analyses including cML-MA and bidirectional Mendelian randomization were performed to ensure the robustness of the results. RESULTS: In this study, a total of nine gut microbiota and seven metabolites were found to be significantly associated with NAFLD. MR analysis of the above findings revealed a causal relationship between Ruminococcus2 and cysteine-glutathione disulfide (OR = 1.17, 95%CI = 1.006-1.369, P = 0.041), as well as 3-indoleglyoxylic acid (OR = 1.18, 95%CI = 1.011-1.370, P = 0.036). For each incremental standard deviation in Ruminococcus2 abundance, there was a corresponding 26% reduction in NAFLD risk (OR = 0.74, 95%CI = 0.61-0.89, P = 0.0012), accompanied by a 17% increase in cysteine-glutathione disulfide levels (OR = 1.17, 95%CI = 1.01-1.37, P = 0.041) and an 18% increase in 3-indoleglyoxylic acid levels (OR = 1.18, 95%CI = 0.81-1.00, P = 0.036). The proportion mediated by cysteine-glutathione disulfide is 11.2%, while the proportion mediated by 3-indoleglyoxylic acid is 7.5%. CONCLUSION: Our study suggests that increased abundance of specific gut microbiota may reduce the risk of developing NAFLD, and this relationship could potentially be mediated through blood metabolites.


Assuntos
Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hepatopatia Gordurosa não Alcoólica , Humanos , Microbioma Gastrointestinal/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/microbiologia , Feminino , Masculino , Pessoa de Meia-Idade
4.
World J Gastroenterol ; 30(23): 2964-2980, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946874

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, ß-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.


Assuntos
Microbioma Gastrointestinal , Receptor do Peptídeo Semelhante ao Glucagon 1 , Fígado , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Incretinas/uso terapêutico , Incretinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
5.
Biomed Pharmacother ; 178: 117156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032286

RESUMO

Gut microbiota acts as a critical regulator in the development of nonalcoholic fatty liver disease (NAFLD), making probiotics a promise therapeutic strategy. Studies are needed to identify beneficial Bacteroides strains against NAFLD. Bacteroides ovatus (B. ovatus) may also exhibit therapy effect on NAFLD. The aim of this work was to evaluate the effect of B. ovatus on NAFLD and examine the mechanism. C57BL/6 J male mice were randomly divided into three groups: a control group (NCD) that received control standard diet, a model group (M) with high-fat and high-cholesterol (HFHC) diet, and M_Bo group that was fed HFFC supplemented with B. ovatus. Treatment with B. ovatus could reduce body weight, prevent hepatic steatohepatitis and liver injury. Mechanistically, B. ovatus induced changes of gut microbial diversity and composition, characterized by a decreased Firmicutes/Bacteroidetes (F/B) ratio in M_Bo group mice, a lower abundance of Proteobacteria, Verrucomicrobiota at phylum level and Ruminococcus_torques_group, Ruminococcus_gauvreauii_group, Erysipelatoclostridium at genus level, simultaneously a remarkablely higher fecal abundance of Lachnospiraceae_NK4A136_group, norank_f__Oscillospiraceae, Colidextribacter. Compared with M group, mice treated with B. ovatus showed an markedly altered fecal short chain fatty acids (SCFAs), a decline in serum levels of lipopolysaccharide (LPS), CD163, IL-1ß, TNF-α, reduced macrophages in livers. Additionally, B. ovatus treatment caused downregulation of genes involved in denovo lipogenesis (such as Srebfl, Acaca, Scd1, Fasn), which was accompanied by the upregulation of genes related with fatty acid oxidation (such as Ppara). In conclusion, this study provides evidence that B. ovatus could ameliorate NAFLD by modulating the gut-liver axis.


Assuntos
Bacteroides , Dieta Hiperlipídica , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Probióticos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Bacteroides/efeitos dos fármacos , Probióticos/farmacologia , Camundongos , Colesterol na Dieta/efeitos adversos
6.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892602

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent type of liver disease worldwide. The exact pathophysiology behind MASLD remains unclear; however, it is thought that a combination of factors or "hits" act as precipitants for disease onset and progression. Abundant evidence supports the roles of diet, genes, metabolic dysregulation, and the intestinal microbiome in influencing the accumulation of lipids in hepatocytes and subsequent progression to inflammation and fibrosis. Currently, there is no cure for MASLD, but lifestyle changes have been the prevailing cornerstones of management. Research is now focusing on the intestinal microbiome as a potential therapeutic target for MASLD, with the spotlight shifting to probiotics, antibiotics, and fecal microbiota transplantation. In this review, we provide an overview of how intestinal microbiota interact with the immune system to contribute to the pathogenesis of MASLD and metabolic dysfunction-associated steatohepatitis (MASH). We also summarize key microbial taxa implicated in the disease and discuss evidence supporting microbial-targeted therapies in its management.


Assuntos
Progressão da Doença , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal , Sistema Imunitário/metabolismo , Probióticos/uso terapêutico , Fígado Gorduroso/microbiologia , Fígado Gorduroso/imunologia , Animais , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Antibacterianos/uso terapêutico , Fígado/metabolismo
7.
Nutrients ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892505

RESUMO

Several studies show that gut microbiotas in patients with nonalcoholic fatty liver disease (NAFLD) differ from those in a healthy population, suggesting that this alteration plays a role in NAFLD pathogenesis. We investigated whether prebiotic administration affects liver fat content and/or liver-related and metabolic parameters. Patients with NAFLD and metabolic syndrome (age: 50 ± 11; 79% men) were randomized to receive either 16 g/day of prebiotic (ITFs-inulin-type fructans) (n = 8) or placebo (maltodextrin) (n = 11) for 12 weeks. Patients were instructed to maintain a stable weight throughout the study. Liver fat content (measured by H1MRS), fecal microbiota, and metabolic, inflammatory, and liver parameters were determined before and after intervention. Fecal samples from patients who received the prebiotic had an increased content of Bifidobacterium (p = 0.025), which was not observed with the placebo. However, the baseline and end-of-study liver fat contents did not change significantly in the prebiotic and placebo groups, neither did the liver function tests' metabolic and inflammatory mediators, including fibroblast growth factor-19 and lipopolysaccharide-binding protein. Body weight remained stable in both groups. These findings suggest that prebiotic treatment without weight reduction is insufficient to improve NAFLD.


Assuntos
Fezes , Microbioma Gastrointestinal , Fígado , Hepatopatia Gordurosa não Alcoólica , Prebióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Prebióticos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Feminino , Projetos Piloto , Adulto , Fígado/metabolismo , Fezes/microbiologia , Bifidobacterium , Método Duplo-Cego , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/terapia
8.
Gut Microbes ; 16(1): 2372881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38940400

RESUMO

Despite the observed decrease in liver fat associated with metabolic-associated fatty liver disease (MAFLD) in mice following fecal microbiota transplantation, the clinical effects and underlying mechanisms of washed microbiota transplantation (WMT), a refined method of fecal microbiota transplantation, for the treatment of MAFLD remain unclear. In this study, both patients and mice with MAFLD exhibit an altered gut microbiota composition. WMT increases the levels of beneficial bacteria, decreases the abundance of pathogenic bacteria, and reduces hepatic steatosis in MAFLD-affected patients and mice. Downregulation of the liver-homing chemokine receptor CXCR6 on ILC3s results in an atypical distribution of ILC3s in patients and mice with MAFLD, characterized by a significant reduction in ILC3s in the liver and an increase in ILC3s outside the liver. Moreover, disease severity is negatively correlated with the proportion of hepatic ILC3s. These hepatic ILC3s demonstrate a mitigating effect on hepatic steatosis through the release of IL-22. Mechanistically, WMT upregulates CXCR6 expression on ILC3s, thereby facilitating their migration to the liver of MAFLD mice via the CXCL16/CXCR6 axis, ultimately contributing to the amelioration of MAFLD. Overall, these findings highlight that WMT and targeting of liver-homing ILC3s could be promising strategies for the treatment of MAFLD.


Assuntos
Quimiocina CXCL16 , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Fígado , Receptores CXCR6 , Animais , Receptores CXCR6/metabolismo , Quimiocina CXCL16/metabolismo , Camundongos , Humanos , Fígado/metabolismo , Fígado/microbiologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Imunidade Inata , Fígado Gorduroso/terapia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Interleucina 22 , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Interleucinas/metabolismo , Feminino
9.
Gene ; 927: 148668, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852695

RESUMO

Evidence has indicated that Enterococcus plays a vital role in non-alcoholic fatty liver disease (NAFLD) development. However, the microbial genetic basis and metabolic potential in the disease are yet unknown. We previously isolated a bacteria Enterococcus faecium B6 (E. faecium B6) from children with NAFLD for the first time. Here, we aim to systematically investigate the potential of strain B6 in lipogenic effects. The lipogenic effects of strain B6 were explored in vitro and in vivo. The genomic and functional characterizations were investigated by whole-genome sequencing and comparative genomic analysis. Moreover, the metabolite profiles were unraveled by an untargeted metabolomic analysis. We demonstrated that strain B6 could effectively induce lipogenic effects in the liver of mice. Strain B6 contained a circular chromosome and two circular plasmids and posed various functions. Compared to the other two probiotic strains of E. faecium, strain B6 exhibited unique functions in pathways of ABC transporters, phosphotransferase system, and amino sugar and nucleotide sugar metabolism. Moreover, strain B6 produced several metabolites, mainly enriched in the protein digestion and absorption pathway. The unique potential of strain B6 in lipogenic effects was probably associated with glycolysis, fatty acid synthesis, and glutamine and choline transport. This study pioneeringly revealed the metabolic characteristics and specific detrimental traits of strain B6. The findings provided new insights into the underlying mechanisms of E. faecium in lipogenic effects, and laid essential foundations for further understanding of E. faecium-related disease.


Assuntos
Enterococcus faecium , Lipogênese , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Animais , Camundongos , Lipogênese/genética , Metabolômica/métodos , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Fígado/metabolismo , Fígado/microbiologia , Masculino , Genoma Bacteriano , Probióticos , Sequenciamento Completo do Genoma , Humanos , Genômica/métodos , Metaboloma , Camundongos Endogâmicos C57BL
10.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830802

RESUMO

AIMS: The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing annually, leading to substantial medical and health burdens. Numerous studies have demonstrated the potential effectiveness of intestinal probiotics as a treatment strategy for NAFLD. Therefore, the objective of this study is to identify a probiotic for the treatment of NAFLD. METHODS AND RESULTS: In this study, blood and fecal samples were collected from 41 healthy volunteers and 44 patients diagnosed with NAFLD. Analysis of the 16S rDNA sequencing data and quantitative real-time PCR (RT-qPCR) revealed a significant reduction in the abundance of Coprococcus in NAFLD patients. Subsequent animal experiments demonstrated that Coprococcus was able to effectively reverse liver lipid accumulation, inflammation, and fibrosis induced by a high-fat diet (HFD) in mice. CONCLUSIONS: This study provides the first in vivo evidence that Coprococcus is a beneficial bacterium capable of preventing NAFLD and has the same probiotic effect in mice as Lactobacillus GG (LGG), a positive control. Therefore, Coprococcus has the potential to serve as a probiotic for the prevention and treatment of NAFLD in humans.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Probióticos , Animais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Fezes/química , Adulto , Feminino , Fígado/metabolismo , Microbioma Gastrointestinal , Pessoa de Meia-Idade , Modelos Animais de Doenças
11.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732547

RESUMO

Synbiotics modulate the gut microbiome and contribute to the prevention of liver diseases such as metabolic-dysfunction-associated fatty liver disease (MAFLD). This study aimed to evaluate the effect of a randomized, placebo-controlled, double-blinded seven-week intervention trial on the liver metabolism in 117 metabolically healthy male participants. Anthropometric data, blood parameters, and stool samples were analyzed using linear mixed models. After seven weeks of intervention, there was a significant reduction in alanine aminotransferase (ALT) in the synbiotic group compared to the placebo group (-14.92%, CI: -26.60--3.23%, p = 0.013). A stratified analysis according to body fat percentage revealed a significant decrease in ALT (-20.70%, CI: -40.88--0.53%, p = 0.045) in participants with an elevated body fat percentage. Further, a significant change in microbiome composition (1.16, CI: 0.06-2.25, p = 0.039) in this group was found, while the microbial composition remained stable upon intervention in the group with physiological body fat. The 7-week synbiotic intervention reduced ALT levels, especially in participants with an elevated body fat percentage, possibly due to modulation of the gut microbiome. Synbiotic intake may be helpful in delaying the progression of MAFLD and could be used in addition to the recommended lifestyle modification therapy.


Assuntos
Alanina Transaminase , Microbioma Gastrointestinal , Fígado , Simbióticos , Humanos , Simbióticos/administração & dosagem , Masculino , Método Duplo-Cego , Adulto , Fígado/metabolismo , Alanina Transaminase/sangue , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Fezes/microbiologia , Fezes/química
12.
Gut Microbes ; 16(1): 2351620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738766

RESUMO

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Assuntos
Enterococcus faecium , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Tiramina , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Enterococcus faecium/metabolismo , Camundongos , Criança , Tiramina/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/microbiologia , Obesidade Infantil/microbiologia , Obesidade Infantil/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
13.
Nutr Diabetes ; 14(1): 25, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729941

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Assuntos
Microbioma Gastrointestinal , Índice Glicêmico , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Prebióticos , Probióticos , Simbióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Prebióticos/administração & dosagem , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Simbióticos/administração & dosagem , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/terapia , Insulina/sangue
14.
Phytomedicine ; 130: 155398, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788390

RESUMO

BACKGROUND: The effective treatment of non-alcoholic fatty liver disease (NAFLD) is an unmet medical need. Qushi Huayu (QSHY) is an empirical herbal formula with promising effects in NAFLD rodent models and a connection to gut microbiota regulation. HYPOTHESIS/PURPOSE: This study aimed to evaluate the effects of QSHY in patients with NAFLD through a multicenter, randomized, double-blind, double-dummy clinical trial. STUDY DESIGN: A total of 246 eligible patients with NAFLD and liver dysfunction were evenly divided to receive either QSHY and Dangfei Liganning capsule (DFLG) simulant or QSHY simulant and DFLG (an approved proprietary Chinese medicine for NAFLD in China) for 24 weeks. The primary outcomes were changes in liver fat content, assessed using vibration-controlled transient elastography, and serum alanine aminotransferase (ALT) levels from baseline to Week 24. RESULTS: Both QSHY and DFLG led to reductions in liver fat content and liver enzyme levels post-intervention (p < 0.05). Compared to DFLG, QSHY treatment improved ALT (ß, -0.128 [95 % CI, -0.25, -0.005], p = 0.041), aspartate transaminase (ß, -0.134 [95 % CI, -0.256 to -0.012], p = 0.032), and fibrosis-4 score (ß, -0.129 [95 % CI, -0.254 to -0.003], p = 0.044) levels. QSHY markedly improved gut dysbiosis compared to DFLG, with changes in Escherichia-Shigella and Bacteroides abundance linked to its therapeutic effect on reducing ALT. Patients with a high ALT response after QSHY treatment showed superior reductions in peripheral levels of phenylalanine and tyrosine, along with an elevation in the related microbial metabolite p-Hydroxyphenylacetic acid. CONCLUSION: Our results demonstrate favorable clinical potential for QSHY in the treatment of NAFLD.


Assuntos
Alanina Transaminase , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/microbiologia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Feminino , Método Duplo-Cego , Alanina Transaminase/sangue , Adulto , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos
15.
Artif Cells Nanomed Biotechnol ; 52(1): 278-290, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38733373

RESUMO

Type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), obesity (OB) and hypertension (HT) are categorized as metabolic disorders (MDs), which develop independently without distinct borders. Herein, we examined the gut microbiota (GM) and Saururus chinensis (SC) to confirm their therapeutic effects via integrated pharmacology. The overlapping targets from the four diseases were determined to be key protein coding genes. The protein-protein interaction (PPI) networks, and the SC, GM, signalling pathway, target and metabolite (SGSTM) networks were analysed via RPackage. Additionally, molecular docking tests (MDTs) and density functional theory (DFT) analysis were conducted to determine the affinity and stability of the conformer(s). TNF was the main target in the PPI analysis, and equol derived from Lactobacillus paracasei JS1 was the most effective agent for the formation of the TNF complex. The SC agonism (PPAR signalling pathway), and antagonism (neurotrophin signalling pathway) by SC were identified as agonistic bioactives (aromadendrane, stigmasta-5,22-dien-3-ol, 3,6,6-trimethyl-3,4,5,7,8,9-hexahydro-1H-2-benzoxepine, 4α-5α-epoxycholestane and kinic acid), and antagonistic bioactives (STK734327 and piclamilast), respectively, via MDT. Finally, STK734327-MAPK1 was the most favourable conformer according to DFT. Overall, the seven bioactives from SC and equol that can be produced by Lactobacillus paracasei JS1 can exert synergistic effects on these four diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipertensão , Hepatopatia Gordurosa não Alcoólica , Obesidade , Saururaceae , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/microbiologia , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipertensão/microbiologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Animais , Saururaceae/química , Saururaceae/metabolismo , Simulação de Acoplamento Molecular , Humanos , Mapas de Interação de Proteínas
16.
Nutrients ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732582

RESUMO

Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and pseudo germ-free mice. The results showed that HEE effectively diminished hepatic lipid accumulation, ameliorated liver function, reduced inflammatory cytokine levels and blood lipid profiles, and regulated blood glucose levels. HEE facilitated triglyceride breakdown, suppressed fatty acid synthesis, and enhanced intestinal health by modulating the diversity of the gut microbiota and the production of short-chain fatty acids in the gut. In addition, HEE apparently helps to increase the presence of beneficial genera of bacteria, thereby influencing the composition of the gut microbiota, and the absence of gut flora affects the efficacy of HEE. These findings reveal the potential of hawthorn for the prevention and treatment of NAFLD and provide new perspectives on the study of functional plants to improve liver health.


Assuntos
Crataegus , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Extratos Vegetais , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/microbiologia , Extratos Vegetais/farmacologia , Animais , Crataegus/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Etanol , Modelos Animais de Doenças , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Citocinas/metabolismo , Ácidos Graxos Voláteis/metabolismo
17.
Nutrients ; 16(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732634

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.


Assuntos
Epigênese Genética , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Materna , Hepatopatia Gordurosa não Alcoólica , Efeitos Tardios da Exposição Pré-Natal , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Humanos , Feminino , Gravidez , Animais , Fatores de Risco
18.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791490

RESUMO

Gut microbiota imbalances have a significant role in the pathogenesis of Inflammatory Bowel Disease (IBD) and Non-Alcoholic Fatty Liver Disease (NAFLD). Herein, we compared gut microbial composition in patients diagnosed with either IBD or NAFLD or a combination of both. Seventy-four participants were stratified into four groups: IBD-NAFLD, IBD-only, NAFLD-only patients, and healthy controls (CTRLs). The 16S rRNA was sequenced by Next-Generation Sequencing. Bioinformatics and statistical analysis were performed. Bacterial α-diversity showed a significant lower value when the IBD-only group was compared to the other groups and particularly against the IBD-NAFLD group. ß-diversity also showed a significant difference among groups. The higher Bacteroidetes/Firmicutes ratio was found only when comparing IBD groups and CTRLs. Comparing the IBD-only group with the IBD-NAFLD group, a decrease in differential abundance of Subdoligranulum, Parabacteroides, and Fusicatenibacter was found. Comparing the NAFLD-only with the IBD-NAFLD groups, there was a higher abundance of Alistipes, Odoribacter, Sutterella, and Lachnospira. An inverse relationship in the comparison between the IBD-only group and the other groups was shown. For the first time, the singularity of the gut microbial composition in IBD and NAFLD patients has been shown, implying a potential microbial signature mainly influenced by gut inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Metagenômica , Hepatopatia Gordurosa não Alcoólica , RNA Ribossômico 16S , Humanos , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/genética , Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/microbiologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Metagenômica/métodos , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenoma
19.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
20.
Clin Nutr ; 43(6): 1224-1239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643738

RESUMO

BACKGROUND: Probiotic administration is a promising therapy for improving conditions in NAFLD patients. This network meta-analysis aimed to compare and estimate the relative effects of probiotic interventions and identify the optimal probiotic species for the treatment of NAFLD (Nonalcoholic fatty liver disease) patients. METHODS: The PubMed, Web of Science, Embase, and Cochrane databases were searched from inception to 29 January 2024 to identify RCTs that were published in English. The GRADE framework was used to assess the quality of evidence contributing to each network estimate. RESULTS: A total of 35 RCTs involving 2212 NAFLD patients were included in the analysis. For primary outcomes, Lactobacillus + Bifidobacterium + Streptococcus exhibited the highest probability of being the finest probiotic combination in terms of enhancing acceptability as well as reducing AST (SMD: -1.95 95% CI: -2.90, -0.99), ALT (SMD = -1.67, 95% CI: -2.48, -0.85), and GGT levels (SMD = -2.17, 95% CI: -3.27, -1.06). In terms of the secondary outcomes, Lactobacillus + Bifidobacterium + Streptococcus was also the best probiotic combination for reducing BMI (SMD = -0.45, 95% CI: -0.86, -0.04), LDL levels (SMD = -0.45, 95% CI: -0.87, -0.02), TC levels (SMD = -1.09, 95% CI: -1.89, -0.29), and TNF-α levels (SMD = -1.73, 95% CI: -2.72, -0.74). CONCLUSION: This network meta-analysis revealed that Lactobacillus + Bifidobacterium + Streptococcus may be the most effective probiotic combination for the treatment of liver enzymes, lipid profiles, and inflammation factors. These findings can be used to guide the development of a probiotics-based treatment guideline for NAFLD since there are few direct comparisons between different therapies.


Assuntos
Lactobacillus , Metanálise em Rede , Hepatopatia Gordurosa não Alcoólica , Probióticos , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Bifidobacterium , Streptococcus , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...