Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.192
Filtrar
1.
J Med Virol ; 96(10): e29958, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39370884

RESUMO

Kaposi's Sarcoma Herpesvirus (KSHV) is the causative agent of several human diseases. There are no cures for KSHV infection. KSHV establishes biphasic lifelong infections. During the lytic phase, new genomes are replicated by seven viral DNA replication proteins. The processivity factor's (PF-8) functions to tether DNA polymerase to DNA, so new viral genomes are efficiently synthesized. PF-8 self-associates, interacts with KSHV DNA replication proteins and the viral DNA. Inhibition of viral DNA replication would diminish the infection within a host and reduce transmission to new individuals. In this review we summarize PF-8 molecular and structural studies, detail the essential protein-protein and nucleic acid interactions needed for efficient lytic DNA replication, identify future areas for investigation and propose PF-8 as a promising antiviral target. Additionally, we discuss similarities that the processivity factor from Epstein-Barr virus shares with PF-8, which could promote a pan-herpesvirus antiviral therapeutic targeting strategy.


Assuntos
Herpesvirus Humano 8 , Proteínas Virais , Replicação Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Replicação Viral/efeitos dos fármacos , Humanos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação do DNA , Antivirais/farmacologia , DNA Viral/genética
2.
Viruses ; 16(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339966

RESUMO

Primary Effusion Lymphoma (PEL) cells carry Kaposi's sarcoma-associated herpesvirus (KSHV) in a latent state, except for a small number of cells in which the virus replicates to ensure its persistence into the infected host. However, the lytic cycle can be reactivated in vitro by exposing these lymphoma cells to various treatments, leading to cell lysis. To restrict viral antigen expression, KSHV induces repressive epigenetic changes, including DNA methylation and histone modifications. Among the latter, histone deacetylation and tri-methylation of Histone H3 lisyne-27 (H3K27me3) have been reported to play a role. Here, we found that the inhibition of H3K27 tri-methylation by valemetostat DS3201 (DS), a small molecule that inhibits Enhancer of Zeste Homolog 2 (EZH2) methyltransferase, induced the KSHV lytic cycle in PEL cells, and that this effect involved the activation of the wtp53-p21 axis and autophagic dysregulation. DS also potentiated the lytic cycle activation mediated by the Histone deacetylases (HDAC) inhibitor Suberoylanilide hydroxamic acid (SAHA) and reinforced its cytotoxic effect, suggesting that such a combination could be used to unbalance the latent/lytic cycle and further impair the survival of PEL cells.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Herpesvirus Humano 8 , Inibidores de Histona Desacetilases , Linfoma de Efusão Primária , Vorinostat , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Humanos , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Vorinostat/farmacologia , Linhagem Celular Tumoral , Latência Viral/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Histonas/metabolismo
3.
Viruses ; 16(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39339894

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus that establishes life-long infection. KSHV is implicated in the etiology of Kaposi's sarcoma, and a number of rare hematopoietic malignancies. The present study focuses on the KSHV open reading frame 20 (ORF20), a member of the conserved herpesvirus UL24 protein family containing five conserved homology domains and a conserved PD-(D/E)XK putative endonuclease motif, whose nuclease function has not been established to date. ORF20 encodes three co-linear protein isoforms, full length, intermediate, and short, though their differential functions are unknown. In an effort to determine the role of ORF20 during KSHV infection, we generated a recombinant ORF20-Null KSHV genome, which fails to express all three ORF20 isoforms. This genome was reconstituted in iSLK cells to establish a latent infection, which resulted in an accelerated transcription of viral mRNAs, an earlier accumulation of viral lytic proteins, an increase in the quantity of viral DNA copies, and a significant decrease in viral yield upon lytic reactivation. This was accompanied by early cell death of cells infected with the ORF20-Null virus. Functional complementation of the ORF20-Null mutant with the short ORF20 isoform rescued KSHV production, whereas its endonuclease mutant form failed to enhance lytic reactivation. Complementation with the short isoform further revealed a decrease in cell death as compared with ORF20-Null virus. Finally, expression of IL6 and CXCL8, previously shown to be affected by the hCMV UL24 homolog, was relatively low upon reactivation of cells infected with the ORF20-Null virus. These findings suggest that ORF20 protein, with its putative endonuclease motif, promotes coordinated lytic reactivation for increased infectious particle production.


Assuntos
Herpesvirus Humano 8 , Fases de Leitura Aberta , Proteínas Virais , Ativação Viral , Humanos , Linhagem Celular , DNA Viral/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/genética , Latência Viral , Replicação Viral
4.
PLoS Pathog ; 20(9): e1012535, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39255317

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.


Assuntos
Ciclo Celular , Proliferação de Células , Herpesvirus Humano 8 , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Metilação , Antígenos Virais/metabolismo , Antígenos Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ciclina D2/metabolismo , Células HEK293 , Replicação Viral/fisiologia , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Proteínas Nucleares
5.
J Virol ; 98(10): e0088624, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39287387

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.


Assuntos
Fatores de Transcrição Forkhead , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Motivos de Aminoácidos , Ativação Viral , Células HEK293 , Animais , Interações Hospedeiro-Patógeno , Ligação Proteica
6.
J Virol ; 98(9): e0060424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194241

RESUMO

Viruses normally reprogram the host cell metabolic pathways as well as metabolic sensors to facilitate their persistence. The serine-threonine liver kinase B1 (LKB1) is a master upstream kinase of 5'-AMP-activated protein kinase (AMPK) that senses the energy status and therefore regulates the intracellular metabolic homeostasis. Previous studies showed that AMPK restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in endothelial cells during primary infection and promotes primary effusion lymphoma (PEL) cell survival. However, the role of LKB1 in KSHV lytic reactivation and KSHV-associated malignancies is unclear. In this study, we found that LKB1 is phosphorylated or activated in KSHV-positive PEL cells. Mechanistically, KSHV-encoded vCyclin mediated LKB1 activation in PEL cells, as vCyclin knockout ablated, while vCyclin overexpression enhanced LKB1 activation. Furthermore, knockdown of LKB1 inactivated AMPK and induced KSHV reactivation, as indicated by the increased expression of viral lytic genes and the increased virions in supernatants. Accordingly, AMPK inhibition by functional knockdown or a pharmacologic inhibitor, Compound C, promoted KSHV reactivation in PEL cells. Furthermore, inhibition of either LKB1 or AMPKα1 efficiently induced cell death by apoptosis of PEL cells both in vitro and in vivo. Together, these results identify LKB1 as a vulnerable target for PEL, which could be potentially exploited for treating other virus-associated diseases.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human cancers, such as primary effusion lymphoma (PEL). Here, we showed that serine-threonine liver kinase B1 (LKB1), upstream of 5' AMP-activated protein kinase (AMPK), is activated by KSHV-encoded vCyclin and maintains KSHV latency in PEL cells. Inhibition of either LKB1 or AMPK enhances KSHV lytic replication from latency, which at least partially accounts for PEL cell death by apoptosis. Compound C, a potent AMPK inhibitor, induced KSHV reactivation and efficiently inhibited PEL progression in vivo. Thus, our work revealed that LKB1 is a potential therapeutic target for KSHV-associated cancers.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Proteínas Serina-Treonina Quinases , Ativação Viral , Herpesvirus Humano 8/fisiologia , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Camundongos , Linhagem Celular Tumoral , Apoptose , Replicação Viral , Latência Viral , Progressão da Doença , Fosforilação
7.
Antiviral Res ; 230: 105990, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39154751

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD) and Kaposi's sarcoma (KS). KSHV is one of the oncoviruses that contribute to 1.5 million new infection-related cancer cases annually. Currently, there are no targeted therapies for KSHV-associated diseases. Through the development of a medium-throughput phenotype-based ELISA screening platform based on KSHV ORF57 protein detection, we screened the Medicines for Malaria Venture (MMV) Pandemic Response Box for non-cytotoxic inhibitors of KSHV lytic replication. MMV1645152 was identified as a promising inhibitor of KSHV lytic replication, suppressing KSHV immediate-early and late lytic gene expression and blocking the production of infectious KSHV virion particles at non-cytotoxic concentrations in cell line models of KSHV infection with or without EBV coinfection. MMV1645152 is a promising hit compound for the development of future therapeutic agents against KSHV-associated malignancies.


Assuntos
Antivirais , Descoberta de Drogas , Herpesvirus Humano 8 , Replicação Viral , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Humanos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Bibliotecas de Moléculas Pequenas/farmacologia , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/tratamento farmacológico
8.
PLoS Pathog ; 20(8): e1012081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186813

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to colocalize and interact with endogenous STING in HEK293 cells. Endogenous ORF48 and STING interactions were also detected in reactivated iSLK.219 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNß production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.


Assuntos
Herpesvirus Humano 8 , Proteínas Virais , Replicação Viral , Herpesvirus Humano 8/fisiologia , Humanos , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Imunidade Inata , Células HEK293 , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Regulação Viral da Expressão Gênica , Latência Viral/fisiologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia
9.
Virus Res ; 349: 199456, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214388

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101-150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101-150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.


Assuntos
Herpesvirus Humano 8 , Fator de Processamento Associado a PTB , Proteínas Virais , Replicação Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fator de Processamento Associado a PTB/metabolismo , Fator de Processamento Associado a PTB/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteômica , Interações Hospedeiro-Patógeno , Células HEK293 , Linhagem Celular , Ligação Proteica , Proteínas de Ligação a DNA
10.
Nat Commun ; 15(1): 5515, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951495

RESUMO

Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Transativadores , Ubiquitinação , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Células HEK293 , Transativadores/metabolismo , Transativadores/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ativação Viral , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Núcleo Celular/metabolismo
11.
Sci Signal ; 17(845): eadg4124, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012937

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.


Assuntos
Herpesvirus Humano 8 , Canal de Potássio Kv1.3 , Fatores de Transcrição NFATC , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Transativadores/metabolismo , Transativadores/genética , Linfócitos B/virologia , Linfócitos B/metabolismo , Cálcio/metabolismo , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/genética
12.
J Virol ; 98(8): e0078824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38975769

RESUMO

The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Receptor Notch1 , Transativadores , Ativação Viral , Latência Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Humanos , Animais , Transativadores/metabolismo , Transativadores/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Células Vero , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Chlorocebus aethiops , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Viral da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a DNA
13.
Virology ; 597: 110146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38909515

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.


Assuntos
Cromatina , Epigênese Genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Ativação Viral , Latência Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Cromatina/metabolismo , Cromatina/genética , Latência Viral/genética , Genoma Viral , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/genética , Interações Hospedeiro-Patógeno , Antígenos Virais , Proteínas Nucleares
14.
Cell Death Differ ; 31(10): 1362-1374, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38879723

RESUMO

N4-acetylcytidine (ac4C), a conserved but recently rediscovered RNA modification on tRNAs, rRNAs and mRNAs, is catalyzed by N-acetyltransferase 10 (NAT10). Lysine acylation is a ubiquitous protein modification that controls protein functions. Our latest study demonstrates a NAT10-dependent ac4C modification, which occurs on the polyadenylated nuclear RNA (PAN) encoded by oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), can induce KSHV reactivation from latency and activate inflammasome. However, it remains unclear whether a novel lysine acylation occurs in NAT10 during KSHV reactivation and how this acylation of NAT10 regulates tRNAs ac4C modification. Here, we showed that NAT10 was lactylated by α-tubulin acetyltransferase 1 (ATAT1), as a writer at the critical domain, to exert RNA acetyltransferase function and thus increase the ac4C level of tRNASer-CGA-1-1. Mutagenesis at the ac4C site in tRNASer-CGA-1-1 inhibited its ac4C modifications, translation efficiency of viral lytic genes, and virion production. Mechanistically, KSHV PAN orchestrated NAT10 and ATAT1 to enhance NAT10 lactylation, resulting in tRNASer-CGA-1-1 ac4C modification, eventually boosting KSHV reactivation. Our findings reveal a novel post-translational modification in NAT10, as well as expand the understanding about tRNA-related ac4C modification during KSHV replication, which may be exploited to design therapeutic strategies for KSHV-related diseases.


Assuntos
Acetiltransferases , Citidina , Herpesvirus Humano 8 , Ativação Viral , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/genética , Citidina/análogos & derivados , Citidina/metabolismo , Células HEK293 , Acetiltransferases N-Terminal/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Acilação
15.
Viruses ; 16(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932139

RESUMO

The viral interferon regulatory factors (vIRFs) of KSHV are known to dysregulate cell signaling pathways to promote viral oncogenesis and to block antiviral immune responses to facilitate infection. However, it remains unknown to what extent each vIRF plays a role in gene regulation. To address this, we performed a comparative analysis of the protein structures and gene regulation of the four vIRFs. Our structure prediction analysis revealed that despite their low amino acid sequence similarity, vIRFs exhibit high structural homology in both their DNA-binding domain (DBD) and IRF association domain. However, despite this shared structural homology, we demonstrate that each vIRF regulates a distinct set of KSHV gene promoters and human genes in epithelial cells. We also found that the DBD of vIRF1 is essential in regulating the expression of its target genes. We propose that the structurally similar vIRFs evolved to possess specialized transcriptional functions to regulate specific genes.


Assuntos
Células Epiteliais , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Fatores Reguladores de Interferon , Proteínas Virais , Humanos , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Células Epiteliais/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Genoma Viral , Linhagem Celular
16.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717113

RESUMO

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Proteólise , Transativadores , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ativação Viral , Replicação Viral , Humanos , Apoptose , Linhagem Celular , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Latência Viral
17.
J Virol ; 98(6): e0025524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38752725

RESUMO

Human herpesvirus 8 (HHV-8), associated with Kaposi sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman disease, encodes four interferon regulatory factor homologs, vIRFs 1-4, that interact with and inhibit various mediators of host-cell defense against virus infection. A cellular protein targeted by all the vIRFs is ubiquitin-specific protease 7 (USP7); while replication-modulatory and latently infected PEL-cell pro-viability phenotypes of USP7 targeting have been identified for vIRFs 1-3, the significance of the interaction of vIRF-4 with USP7 has remained undetermined. Here we show, through genetic ablation of the vIRF-4-USP7 interaction in infected cells, that vIRF-4 association with USP7 is necessary for optimal expression of vIRF-4 and normal HHV-8 replication. Findings from experiments on transfected and infected cells identified ubiquitination of vIRF-4 via K48-linkage and USP7-binding-associated suppression of vIRF-4 ubiquitination and, in infected cells, increased vIRF-4 expression. Analysis of IFN-I induction and associated signaling as a function of vIRF-4 and its interaction with USP7 identified a role of each in innate-immune suppression. Finally, activation via K63-polyubiquitination of the innate-immune signaling mediator TRAF3 was found to be suppressed by vIRF-4 in a USP7-binding-associated manner in infected cells, but not in transfected cells, likely via binding-regulated expression of vIRF-4. Together, our data identify the first examples of vIRF ubiquitination and a vIRF substrate of USP7, enhanced expression of vIRF-4 via its interaction with USP7, and TRAF3-inhibitory activity of vIRF-4. The findings address, for the first time, the biological significance of the interaction of vIRF-4 with USP7 and reveal a mechanism of vIRF-4-mediated innate-immune evasion and pro-replication activity via TRAF3 regulation. IMPORTANCE: HHV-8 homologs of cellular interferon regulatory factors (IRFs), involved in host-cell defense against virus infection, interact in an inhibitory fashion with IRFs and other mediators of antiviral innate immunity. These interactions are of demonstrated or hypothesized importance for successful primary, productive (lytic), and latent (persistent) infection by HHV-8. While HHV-8 vIRF-4 is known to interact physically with USP7 deubiquitinase, a key regulator of various cellular proteins, the functional and biological significance of the interaction has not been addressed. The present study identifies the interaction as important for HHV-8 productive replication and, indeed, for vIRF-4 expression and reveals a new function of vIRF-4 via inhibition of the activity of TRAF3, a pivotal mediator of host-cell antiviral activity through activation of cellular IRFs and induction of type-I interferons. These findings identify potential targets for the development of novel anti-HHV-8 agents, such as those able to disrupt vIRF-4-USP7 interaction or vIRF-4-stabilizing USP7 activity.


Assuntos
Herpesvirus Humano 8 , Fatores Reguladores de Interferon , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , Proteínas Virais , Replicação Viral , Humanos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Células HEK293 , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Ligação Proteica , Interações Hospedeiro-Patógeno
18.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767375

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas do Envelope Viral , Proteínas Virais , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Animais , Camundongos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Sarcoma de Kaposi/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Hiperplasia do Linfonodo Gigante/virologia , Hiperplasia do Linfonodo Gigante/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Células HEK293 , Células Endoteliais/virologia
19.
J Med Virol ; 96(5): e29684, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773828

RESUMO

Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.


Assuntos
Herpesvirus Humano 8 , Células-Tronco Mesenquimais , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/virologia , Células-Tronco Mesenquimais/virologia , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Proliferação de Células
20.
Viruses ; 16(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793630

RESUMO

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Assuntos
DNA Viral , Herpesvirus Humano 8 , Imunidade Inata , Transdução de Sinais , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , DNA Viral/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Sarcoma de Kaposi/virologia , Nucleotidiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Animais , Proteínas de Membrana/metabolismo , Proteínas Nucleares , Fosfoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...