Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0063723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37750723

RESUMO

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.


Assuntos
DNA Viral , Herpesvirus Humano 8 , Microscopia Eletrônica , Multimerização Proteica , Transativadores , Humanos , Sítios de Ligação , DNA Viral/química , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Herpesvirus Humano 8/química , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/ultraestrutura , Ligação Proteica , Mapas de Interação de Proteínas , Especificidade por Substrato , Transativadores/química , Transativadores/metabolismo , Transativadores/ultraestrutura , Replicação Viral/genética , Sarcoma de Kaposi/virologia
2.
Nat Commun ; 13(1): 472, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078976

RESUMO

The Kaposi's sarcoma associated herpesvirus protein ORF45 binds the extracellular signal-regulated kinase (ERK) and the p90 Ribosomal S6 kinase (RSK). ORF45 was shown to be a kinase activator in cells but a kinase inhibitor in vitro, and its effects on the ERK-RSK complex are unknown. Here, we demonstrate that ORF45 binds ERK and RSK using optimized linear binding motifs. The crystal structure of the ORF45-ERK2 complex shows how kinase docking motifs recognize the activated form of ERK. The crystal structure of the ORF45-RSK2 complex reveals an AGC kinase docking system, for which we provide evidence that it is functional in the host. We find that ORF45 manipulates ERK-RSK signaling by favoring the formation of a complex, in which activated kinases are better protected from phosphatases and docking motif-independent RSK substrate phosphorylation is selectively up-regulated. As such, our data suggest that ORF45 interferes with the natural design of kinase docking systems in the host.


Assuntos
Cristalografia por Raios X/métodos , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/química , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Sarcoma de Kaposi/metabolismo , Linhagem Celular , Biologia Computacional , Herpesvirus Humano 8/química , Herpesvirus Humano 8/isolamento & purificação , Humanos , Proteínas Imediatamente Precoces/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais
3.
Commun Biol ; 4(1): 1330, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857874

RESUMO

In herpesvirus replicating cells, host cell gene transcription is frequently down-regulated because important transcriptional apparatuses are appropriated by viral transcription factors. Here, we show a small peptide derived from the Kaposi's sarcoma-associated herpesvirus transactivator (K-Rta) sequence, which attenuates cellular MYC expression, reduces cell proliferation, and selectively kills cancer cell lines in both tissue culture and a xenograft tumor mouse model. Mechanistically, the peptide functions as a decoy to block the recruitment of coactivator complexes consisting of Nuclear receptor coactivator 2 (NCOA2), p300, and SWI/SNF proteins to the MYC promoter in primary effusion lymphoma cells. Thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq) with target-transcriptional analyses further confirm that the viral peptide directly attenuates MYC and MYC-target gene expression. This study thus provides a unique tool to control MYC activation, which may be used as a therapeutic payload to treat MYC-dependent diseases such as cancers and autoimmune diseases.


Assuntos
Herpesvirus Humano 8/fisiologia , Leucemia/fisiopatologia , Linfoma/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/genética , Transativadores/genética , Linhagem Celular Tumoral , Proliferação de Células , Herpesvirus Humano 8/química , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transativadores/metabolismo , Células Tumorais Cultivadas
4.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807444

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection 'dead end'.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Poro Nuclear/metabolismo , Montagem de Vírus , Linhagem Celular Tumoral , Microscopia Crioeletrônica , DNA Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fases de Leitura Aberta/genética
5.
Elife ; 102021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554858

RESUMO

Genome packaging in large double-stranded DNA viruses requires a powerful molecular motor to force the viral genome into nascent capsids, which involves essential accessory factors that are poorly understood. Here, we present structures of two such accessory factors from the oncogenic herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV; ORF68) and Epstein-Barr virus (EBV; BFLF1). These homologous proteins form highly similar homopentameric rings with a positively charged central channel that binds double-stranded DNA. Mutation of individual positively charged residues within but not outside the channel ablates DNA binding, and in the context of KSHV infection, these mutants fail to package the viral genome or produce progeny virions. Thus, we propose a model in which ORF68 facilitates the transfer of newly replicated viral genomes to the packaging motor.


Assuntos
Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Genoma Viral , Células HEK293 , Infecções por Herpesviridae/virologia , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Humanos , Empacotamento do Genoma Viral , Proteínas Virais/genética , Replicação Viral
6.
Nat Commun ; 11(1): 5964, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235207

RESUMO

The human γ-herpesviruses Kaposi sarcoma associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are associated with many human malignancies. Viral glycoprotein H (gH) and glycoprotein L (gL) are crucial for the cell tropism by binding to specific receptors. Recently, EphA2 was identified as the specific entry receptor for both KSHV and EBV. Here, we characterized the crystal structures of KSHV gHgL or EBV gHgL in complex with the ligand binding domain (LBD) of EphA2. Both KSHV and EBV gHgL bind to the channel and peripheral regions of LBD primarily using gL. Extensive interactions with more contacts contribute to the higher affinity of KSHV gHgL to LBD than that of EBV gHgL. These binding characteristics were verified using cell-based fusion assays with mutations in key EphA2 residues. Our experiments suggest that multiple animal γ-herpesviruses could use EphA2 as an entry receptor, implying a potential threat to human health.


Assuntos
Gammaherpesvirinae/química , Receptor EphA2/química , Proteínas do Envelope Viral/química , Cristalografia por Raios X/métodos , Herpesvirus Humano 4/química , Herpesvirus Humano 8/química , Interações entre Hospedeiro e Microrganismos , Glicoproteínas de Membrana/química , Chaperonas Moleculares/química , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo , Internalização do Vírus
7.
ACS Nano ; 14(1): 476-487, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31895530

RESUMO

Viruses are associated with up to 15% of human cancer. MicroRNAs (miRNAs) encoded by numerous oncogenic viruses including Kaposi's sarcoma-associated herpesvirus (KSHV) play significant roles in regulating the proliferation and survival of virus-induced cancer cells, hence representing attractive therapeutic targets. Here, we report that specific inhibition of viral miRNAs by carbon dots (Cdots)-mediated delivery of locked nucleic acid (LNA)-based suppressors inhibit the proliferation of KSHV-associated primary effusion lymphoma (PEL) cells. Specifically, a combination of Cdots-LNAs to knock down the levels of KSHV miR-K12-1, miR-K12-4, and miR-K12-11 induces apoptosis and inhibits proliferation of PEL cells. Significantly, these Cdots-LNAs effectively inhibit the initiation of PEL and regress established PEL in a xenograft mouse model. These results demonstrate the feasibility of using Cdots to deliver miRNA suppressors for targeting viral cancers. Our study with viral miRNAs as targets may provide the scientific basis for using antisense drugs for human cancers associated with oncogenic viruses.


Assuntos
Antineoplásicos/farmacologia , Carbono/química , Herpesvirus Humano 8/química , Linfoma/tratamento farmacológico , Oligonucleotídeos/farmacologia , RNA Viral/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Linfoma/patologia , Linfoma/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/virologia , Oligonucleotídeos/química , Tamanho da Partícula , Pontos Quânticos/química , Ratos , Propriedades de Superfície
8.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447177

RESUMO

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/metabolismo , Empacotamento do DNA , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/virologia , Montagem de Vírus , Microscopia Crioeletrônica/métodos , DNA Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
9.
J Vis Exp ; (131)2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29443057

RESUMO

It is well known that spatial and temporal regulation of genes is an integral part of governing proper gene expression. Consequently, it is invaluable to understand where and when transcription is taking place within nuclear space and to visualize the relationship between episomes infected within the same cell's nucleus. Here, both immunofluorescence (IFA) and RNA-FISH have been combinedto identify actively transcribing Kaposi's sarcoma-associated herpesvirus (KSHV) episomes. By staining KSHV latency-associated nuclear antigen (LANA), it is possible to locate where viral episomes exist within the nucleus. In addition, by designing RNA-FISH probes to target the intron region of a viral gene, which is expressed only during productive infection, nascent RNA transcripts can be located. Using this combination of molecular probes, it is possible to visualize the assembly of large viral transcription factories and analyze the spatial regulation of viral gene expression during KSHV reactivation. By including anti-RNA polymerase II antibody staining, one can also visualize the association between RNA polymerase II (RNAPII) aggregation and KSHV transcription during reactivation.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/genética , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Herpesvirus Humano 8/química , Herpesvirus Humano 8/metabolismo , Humanos
10.
Nature ; 553(7689): 521-525, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342139

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer that commonly affects patients with AIDS and which is endemic in sub-Saharan Africa. The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses. Capsid assembly and genome packaging of herpesviruses are prone to interruption and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids-comprising nearly 3,000 proteins and over 1,300 Å in diameter-present a formidable challenge to atomic structure determination and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP-MCP interaction-including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain-define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/ultraestrutura , Mutagênese , Replicação Viral , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dissulfetos/metabolismo , Desenho de Fármacos , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Replicação Viral/genética
11.
Viruses ; 9(10)2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065450

RESUMO

Gammaherpesviruses like Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) subvert the ubiquitin proteasome system for their own benefit in order to facilitate viral gene expression and replication. In particular, viral tegument proteins that share sequence homology to the formylglycineamide ribonucleotide amidotransferase (FGARAT, or PFAS), an enzyme in the cellular purine biosynthesis, are important for disrupting the intrinsic antiviral response associated with Promyelocytic Leukemia (PML) protein-associated nuclear bodies (PML-NBs) by proteasome-dependent and independent mechanisms. In addition, all herpesviruses encode for a potent ubiquitin protease that can efficiently remove ubiquitin chains from proteins and thereby interfere with several different cellular pathways. In this review, we discuss mechanisms and functional consequences of virus-induced ubiquitination and deubiquitination for early events in gammaherpesviral infection.


Assuntos
Herpesvirus Humano 8/química , Interações Hospedeiro-Patógeno , Proteína da Leucemia Promielocítica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Replicação do DNA/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Ubiquitinação , Replicação Viral
12.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931678

RESUMO

Primary effusion lymphoma (PEL) is a lymphogenic disorder associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Key to the survival and proliferation of PEL is the canonical NF-κB pathway, which becomes constitutively activated following overexpression of the viral oncoprotein KSHV vFLIP (ks-vFLIP). This arises from its capacity to form a complex with the modulatory subunit of the IκB kinase (IKK) kinase, IKKγ (or NEMO), resulting in the overproduction of proteins that promote cellular survival and prevent apoptosis, both of which are important drivers of tumorigenesis. Using a combination of cell-based and biophysical assays together with structural techniques, we showed that the observed resistance to cell death is largely independent of autophagy or major death receptor signaling pathways and demonstrated that direct targeting of the ks-vFLIP-IKKγ interaction both in cells and in vitro can be achieved using IKKγ-mimetic peptides. Our results further reveal that these peptides not only induce cell killing but also potently sensitize PEL to the proapoptotic agents tumor necrosis factor alpha and etoposide and are the first to confirm ks-vFLIP as a tractable target for the treatment of PEL and related disorders.IMPORTANCE KSHV vFLIP (ks-vFLIP) has been shown to have a crucial role in cellular transformation, in which it is vital for the survival and proliferation of primary effusion lymphoma (PEL), an aggressive malignancy associated with infection that is resistant to the majority of chemotherapeutic drugs. It operates via subversion of the canonical NF-κB pathway, which requires a physical interaction between ks-vFLIP and the IKK kinase modulatory subunit IKKγ. While this interaction has been directly linked to protection against apoptosis, it is unclear whether the suppression of other cell death pathways implicated in ks-vFLIP pathogenesis is an additional contributor. We demonstrate that the interaction between ks-vFLIP and IKKγ is pivotal in conferring resistance to apoptosis. Additionally, we show that the ks-vFLIP-IKKγ complex can be disrupted using peptides leading to direct killing and the sensitization of PEL cells to proapoptotic agents. Our studies thus provide a framework for future therapeutic interventions.


Assuntos
Apoptose , Herpesvirus Humano 8/fisiologia , Quinase I-kappa B/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Sarcoma de Kaposi/virologia , Autofagia , Etoposídeo/farmacologia , Herpesvirus Humano 8/química , Humanos , Quinase I-kappa B/metabolismo , Células Jurkat , Mimetismo Molecular , Peptídeos/química , Ligação Proteica , Sarcoma de Kaposi/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Virais/metabolismo
13.
J Am Chem Soc ; 139(34): 11650-11653, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28759216

RESUMO

Targeting of cryptic binding sites represents an attractive but underexplored approach to modulating protein function with small molecules. Using the dimeric protease (Pr) from Kaposi's sarcoma-associated herpesvirus (KSHV) as a model system, we sought to dissect a putative allosteric network linking a cryptic site at the dimerization interface to enzyme function. Five cryogenic X-ray structures were solved of the monomeric protease with allosteric inhibitors bound to the dimer interface site. Distinct coordinated movements captured by the allosteric inhibitors were also revealed as alternative states in room-temperature X-ray data and comparative analyses of other dimeric herpesvirus proteases. A two-step mechanism was elucidated through detailed kinetic analyses and suggests an enzyme isomerization model of inhibition. Finally, a representative allosteric inhibitor from this class was shown to be efficacious in a cellular model of viral infectivity. These studies reveal a coordinated dynamic network of atomic communication linking cryptic binding site occupancy and allosteric inactivation of KHSV Pr that can be exploited to target other members of this clinically relevant family of enzymes.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Cristalografia por Raios X , Infecções por Herpesviridae/tratamento farmacológico , Herpesvirus Humano 8/química , Herpesvirus Humano 8/efeitos dos fármacos , Humanos , Modelos Moleculares , Peptídeo Hidrolases/química , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
14.
Int J Mol Sci ; 18(8)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28813018

RESUMO

Certain viruses have the ability to subvert the mammalian immune response, including interference in the chemokine system. Poxviruses produce the chemokine binding protein vCCI (viral CC chemokine inhibitor; also called 35K), which tightly binds to CC chemokines. To facilitate the study of vCCI, we first provide a protocol to produce folded vCCI from Escherichia coli (E. coli.) It is shown here that vCCI binds with unusually high affinity to viral Macrophage Inflammatory Protein-II (vMIP-II), a chemokine analog produced by the virus, human herpesvirus 8 (HHV-8). Fluorescence anisotropy was used to investigate the vCCI:vMIP-II complex and shows that vCCI binds to vMIP-II with a higher affinity than most other chemokines, having a Kd of 0.06 ± 0.006 nM. Nuclear magnetic resonance (NMR) chemical shift perturbation experiments indicate that key amino acids used for binding in the complex are similar to those found in previous work. Molecular dynamics were then used to compare the vCCI:vMIP-II complex with the known vCCI:Macrophage Inflammatory Protein-1ß/CC-Chemokine Ligand 4 (MIP-1ß/CCL4) complex. The simulations show key interactions, such as those between E143 and D75 in vCCI/35K and R18 in vMIP-II. Further, in a comparison of 1 µs molecular dynamics (MD) trajectories, vMIP-II shows more overall surface binding to vCCI than does the chemokine MIP-1ß. vMIP-II maintains unique contacts at its N-terminus to vCCI that are not made by MIP-1ß, and vMIP-II also makes more contacts with the vCCI flexible acidic loop (located between the second and third beta strands) than does MIP-1ß. These studies provide evidence for the basis of the tight vCCI:vMIP-II interaction while elucidating the vCCI:MIP-1ß interaction, and allow insight into the structure of proteins that are capable of broadly subverting the mammalian immune system.


Assuntos
Quimiocina CXCL2/química , Polarização de Fluorescência , Herpesvirus Humano 8/química , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Vaccinia virus/química , Proteínas Virais/química , Quimiocina CXCL2/genética , Herpesvirus Humano 8/genética , Complexos Multiproteicos/genética , Estrutura Quaternária de Proteína , Vaccinia virus/genética , Proteínas Virais/genética
15.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515293

RESUMO

Virus-like vesicles (VLVs) are membrane-enclosed vesicles that resemble native enveloped viruses in organization but lack the viral capsid and genome. During the productive infection of tumor-associated gammaherpesviruses, both virions and VLVs are produced and are released into the extracellular space. However, studies of gammaherpesvirus-associated VLVs have been largely restricted by the technical difficulty of separating VLVs from mature virions. Here we report a strategy of selectively isolating VLVs by using a Kaposi's sarcoma-associated herpesvirus (KSHV) mutant that is defective in small capsid protein and is unable to produce mature virions. Using mass spectrometry analysis, we found that VLVs contained viral glycoproteins required for cellular entry, as well as tegument proteins involved in regulating lytic replication, but lacked capsid proteins. Functional analysis showed that VLVs induced the expression of the viral lytic activator RTA, initiating KSHV lytic gene expression. Furthermore, employing RNA sequencing, we performed a genomewide analysis of cellular responses triggered by VLVs and found that PRDM1, a master regulator in cell differentiation, was significantly upregulated. In the context of KSHV replication, we demonstrated that VLV-induced upregulation of PRDM1 was necessary and sufficient to reactivate KSHV by activating its RTA promoter. In sum, our study systematically examined the composition of VLVs and demonstrated their biological roles in manipulating host cell responses and facilitating KSHV lytic replication.IMPORTANCE Cells lytically infected with tumor-associated herpesviruses produce a high proportion of virus-like vesicles (VLVs). The composition and function of VLVs have not been well defined, largely due to the inability to efficiently isolate VLVs that are free of virions. Using a cell system capable of establishing latent KSHV infection and robust reactivation, we successfully isolated VLVs from a KSHV mutant defective in the small capsid protein. We quantitatively analyzed proteins and microRNAs in VLVs and characterized the roles of VLVs in manipulating host cells and facilitating viral infection. More importantly, we demonstrated that by upregulating PRDM1 expression, VLVs triggered differentiation signaling in targeted cells and facilitated viral lytic infection via activation of the RTA promoter. Our study not only demonstrates a new strategy for isolating VLVs but also shows the important roles of KSHV-associated VLVs in intercellular communication and the viral life cycle.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Repressoras/biossíntese , Transdução de Sinais , Virossomos/química , Replicação Viral , Diferenciação Celular , Linhagem Celular , Herpesvirus Humano 8/química , Humanos , Proteínas Imediatamente Precoces/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Transativadores/metabolismo , Regulação para Cima
16.
Biochem Biophys Res Commun ; 486(3): 700-705, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342865

RESUMO

Before an infection can be completely established, the host immediately turns on the innate immune system through activating the interferon (IFN)-mediated antiviral pathway. Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes a unique antagonistic mechanism of type I IFN-mediated host antiviral immunity by incorporating four viral interferon regulatory factors (vIRF1-4). Herein, we characterized novel immune evasion strategies of vIRF4 to inhibit the IRF7-mediated IFN-α production. KSHV vIRF4 specifically interacts with IRF7, resulting in inhibition of IRF7 dimerization and ultimately suppresses IRF7-mediated activation of type I IFN. These results suggest that each of the KSHV vIRFs, including vIRF4, subvert IFN-mediated anti-viral response via different mechanisms. Therefore, it is indicated that KSHV vIRFs are indeed a crucial immunomodulatory component of their life cycles.


Assuntos
Herpesvirus Humano 8/imunologia , Evasão da Resposta Imune , Fator Regulador 7 de Interferon/imunologia , Fatores Reguladores de Interferon/imunologia , Interferon-alfa/imunologia , Proteínas Virais/imunologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Herpesvirus Humano 8/química , Humanos , Imunidade Inata , Fator Regulador 7 de Interferon/genética , Fatores Reguladores de Interferon/genética , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/genética , Luciferases/genética , Luciferases/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Vírus Sendai/genética , Vírus Sendai/imunologia , Transdução de Sinais , Transfecção , Proteínas Virais/genética
17.
Nucleic Acids Res ; 45(8): 4756-4767, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28132029

RESUMO

Onset of the lytic phase in the KSHV life cycle is accompanied by the rapid, global degradation of host (and viral) mRNA transcripts in a process termed host shutoff. Key to this destruction is the virally encoded alkaline exonuclease SOX. While SOX has been shown to possess an intrinsic RNase activity and a potential consensus sequence for endonucleolytic cleavage identified, the structures of the RNA substrates targeted remained unclear. Based on an analysis of three reported target transcripts, we were able to identify common structures and confirm that these are indeed degraded by SOX in vitro as well as predict the presence of such elements in the KSHV pre-microRNA transcript K12-2. From these studies, we were able to determine the crystal structure of SOX productively bound to a 31 nucleotide K12-2 fragment. This complex not only reveals the structural determinants required for RNA recognition and degradation but, together with biochemical and biophysical studies, reveals distinct roles for residues implicated in host shutoff. Our results further confirm that SOX and the host exoribonuclease Xrn1 act in concert to elicit the rapid degradation of mRNA substrates observed in vivo, and that the activities of the two ribonucleases are co-ordinated.


Assuntos
Herpesvirus Humano 8/química , Proteínas de Ligação a RNA/química , RNA/química , Fatores de Transcrição SOXB1/química , Cristalografia por Raios X , Expressão Gênica , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Estágios do Ciclo de Vida/genética , Conformação Proteica , RNA Mensageiro/genética , Fatores de Transcrição SOXB1/genética
18.
Virology ; 500: 190-197, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27829174

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components of the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication.


Assuntos
Antígenos Nucleares/metabolismo , Antígenos Virais/metabolismo , Replicação do DNA , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Origem de Replicação , Antígenos Nucleares/genética , Antígenos Virais/química , Antígenos Virais/genética , Proteínas de Ciclo Celular , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Domínios Proteicos , Replicação Viral
19.
J Virol ; 90(11): 5329-5342, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009954

RESUMO

UNLABELLED: Although Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 (also known as KSHV inhibitor of cGAS [KicGAS]) has been detected in purified virions, the roles of this protein during KSHV replication have not been characterized. Using specific monoclonal antibodies, we revealed that ORF52 displays true late gene expression kinetics and confirmed its cytoplasmic localization in both transfected and KSHV-infected cells. We demonstrated that ORF52 comigrates with other known virion proteins following sucrose gradient centrifugation. We also determined that ORF52 resides inside the viral envelope and remains partially associated with capsid when extracellular virions are treated with various detergents and/or salts. There results indicate that ORF52 is a tegument protein abundantly present in extracellular virions. To characterize the roles of ORF52 in the KSHV life cycle, we engineered a recombinant KSHV ORF52-null mutant virus and found that loss of ORF52 results in reduced virion production and a further defect in infectivity. Upon analysis of the virion composition of ORF52-null viral particles, we observed a decrease in the incorporation of ORF45, as well as other tegument proteins, suggesting that ORF52 is important for the packaging of other virion proteins. In summary, our results indicate that, in addition to its immune evasion function, KSHV ORF52 is required for the optimal production of infectious virions, likely due to its roles in virion assembly as a tegument protein. IMPORTANCE: The tegument proteins of herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), play key roles in the viral life cycle. Each of the three subfamilies of herpesviruses (alpha, beta, and gamma) encode unique tegument proteins with specialized functions. We recently found that one such gammaherpesvirus-specific protein, ORF52, has an important role in immune evasion during KSHV primary infection, through inhibition of the host cytosolic DNA sensing pathway. In this report, we further characterize ORF52 as a tegument protein with vital roles during KSHV lytic replication. We found that ORF52 is important for the production of infectious viral particles, likely through its role in virus assembly, a critical process for KSHV replication and pathogenesis. More comprehensive investigation of the functions of tegument proteins and their roles in viral replication may reveal novel targets for therapeutic interventions against KSHV-associated diseases.


Assuntos
Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiologia , Proteínas do Envelope Viral/metabolismo , Vírion/química , Replicação Viral , Animais , Citoplasma/ultraestrutura , Citoplasma/virologia , DNA Viral , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação , Vírion/genética , Vírion/metabolismo , Montagem de Vírus
20.
BMC Cancer ; 16: 148, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912031

RESUMO

BACKGROUND: Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is not only expressed on the envelope of mature virions but also on the surfaces of cells undergoing lytic replication. Among herpesviruses, KSHV gB is the only glycoprotein known to possess the RGD (Arg-Gly-Asp) binding integrin domain critical to mediating cell attachment. Recent studies described gB to also possess a disintegrin-like domain (DLD) said to interact with non-RGD binding integrins. We wanted to decipher the roles of two individually distinct integrin binding domains (RGD versus DLD) within KSHV gB in regulating attachment of cells over cell migration. METHODS: We established HeLa cells expressing recombinant full length gB, gB lacking a functional RGD (gBΔR), and gB lacking a functionally intact DLD (gBΔD) on their cell surfaces. These cells were tested in wound healing assay, Transwell migration assay, and adhesion assay to monitor the ability of the RGD and DLD integrin recognition motifs in gB to mediate migration and attachment of cells. We also used soluble forms of the respective gB recombinant proteins to analyze and confirm their effect on migration and attachment of cells. The results from the above studies were authenticated by the use of imaging, and standard biochemical approaches as Western blotting and RNA silencing using small interfering RNA. RESULTS: The present report provides the following novel findings: (i) gB does not induce cell migration; (ii) RGD domain in KSHV gB is the switch that inhibits the ability of DLD to induce cellular migration thus promoting attachment of cells. CONCLUSIONS: Independently, RGD interactions mediate attachment of cells while DLD interactions regulate migration of cells. However, when both RGD and DLD are functionally present in the same protein, gB, the RGD interaction-induced attachment of cells overshadows the ability of DLD mediated signaling to induce migration of cells. Furthering our understanding of the molecular mechanism of integrin engagement with RGD and DLD motifs within gB could identify promising new therapeutic avenues and research areas to explore.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Herpesvirus Humano 8/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sítios de Ligação , Adesão Celular , Movimento Celular , Proliferação de Células , Glicoproteínas/genética , Células HeLa , Herpesvirus Humano 8/química , Herpesvirus Humano 8/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...