Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.406
Filtrar
1.
Cell Rep Med ; 5(7): 101647, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019006

RESUMO

Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.


Assuntos
Cálcio , Hidrocefalia , Proteínas de Membrana Transportadoras , Mitocôndrias , Células-Tronco Neurais , Receptores Virais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Mitocôndrias/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Cálcio/metabolismo , Humanos , Receptores Virais/metabolismo , Receptores Virais/genética , Camundongos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Neurogênese/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética
2.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956598

RESUMO

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Assuntos
Aquaporina 4 , Epêndima , Hidrocefalia , Camundongos Knockout , Microglia , Animais , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Microglia/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Camundongos , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Antígenos CD11/metabolismo , Antígenos CD11/genética , Camundongos Endogâmicos C57BL
3.
J Vis Exp ; (208)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39007604

RESUMO

Pineal neoplasms have a significant impact on children although they are relatively uncommon. They account for approximately 3-11% of all childhood brain tumors, which is considerably higher than the <1% seen in adult brain tumors. These tumors can be divided into three main categories: germ cell tumors, parenchymal pineal tumors, and tumors arising from related anatomical structures. Obtaining an accurate and minimally invasive tissue diagnosis is crucial for selecting the most appropriate treatment regimen for patients with pineal gland tumors. This is due to the diverse treatment options available and the potential risks associated with complete resection. In cases where patients present with acute obstructive hydrocephalus caused by a pineal gland tumor, immediate treatment of the hydrocephalus is necessary. The urgency stems from the potential complications of hydrocephalus, including increased intracranial pressure and neurological deficits. To address these challenges, a minimally invasive endoscopic approach provides a valuable opportunity. This technique allows clinicians to promptly relieve hydrocephalus and obtain a histological diagnosis simultaneously. This dual benefit enables a more comprehensive understanding of the tumor and assists in determining the most effective treatment strategy for the patient.


Assuntos
Neoplasias Encefálicas , Glândula Pineal , Pinealoma , Ventriculostomia , Humanos , Ventriculostomia/métodos , Glândula Pineal/cirurgia , Glândula Pineal/patologia , Pinealoma/cirurgia , Pinealoma/patologia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Biópsia/métodos , Hidrocefalia/cirurgia , Hidrocefalia/patologia , Terceiro Ventrículo/cirurgia , Terceiro Ventrículo/patologia , Neuroendoscopia/métodos
4.
Sci Rep ; 14(1): 12966, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839864

RESUMO

The inflow of CSF into perivascular spaces (PVS) in the brain is crucial for clearing waste molecules. Inefficiency in PVS flow leads to neurodegeneration. Failure of PVS flushing is associated with CSF flow impairment in the intracranial hydrodynamic condition of CSF hypo-pulsatility. However, enlarged PVS (ePVS), a finding indicative of PVS flow dysfunction, is also present in patients with derangement of CSF dynamics characterized by CSF hyper-pulsatility, which increases CSF flow. Intriguingly, two opposite intracranial hydrodynamic conditions would lead to the same result of impairing the PVS flushing. To investigate this issue, we assessed the subsistence of a dysfunctional interplay between CSF and PVS flows and, if the case, the mechanisms preventing a hyper-pulsatile brain from providing an effective PVS flushing. We analyzed the association between phase contrast MRI aqueductal CSF stroke volume (aqSV), a proxy of CSF pulsatility, and the burden of ePVS in chronic adult hydrocephalus, a disease involving a broad spectrum of intracranial hydrodynamics disturbances. In the 147 (85 males, 62 females) patients, the age at diagnosis ranged between 28 and 88 years (median 73 years). Ninety-seven patients had tri-ventriculomegaly and 50 tetra-ventriculomegaly. According to the extent of ePVS, 113 patients had a high ePVS burden, while 34 had a low ePVS burden. aqSV, which ranged between 0 and 562 µL (median 86 µL), was increased with respect to healthy subjects. Patients presenting with less ePVS burden had higher aqSV (p < 0.002, corrected for the multiple comparisons) than those with higher ePVS burden. The present study confirmed the association between CSF dynamics and PVS flow disturbances and demonstrated this association in intracranial hyper-pulsatility. Further studies should investigate the association between PVS flow failure and CSF hypo- and hyper-pulsatility as responsible/co-responsible for glymphatic failure in other neurodegenerative diseases, particularly in diseases in which CSF disturbances can be corrected, as in chronic adult hydrocephalus.


Assuntos
Sistema Glinfático , Hidrocefalia , Imageamento por Ressonância Magnética , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/fisiopatologia , Hidrocefalia/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Adulto , Sistema Glinfático/fisiopatologia , Sistema Glinfático/patologia , Idoso de 80 Anos ou mais , Líquido Cefalorraquidiano , Hidrodinâmica , Volume Sistólico , Aqueduto do Mesencéfalo/patologia , Aqueduto do Mesencéfalo/fisiopatologia , Doença Crônica
5.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916997

RESUMO

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Assuntos
Cílios , Hidrocefalia , Microtúbulos , Animais , Feminino , Humanos , Masculino , Camundongos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Cílios/metabolismo , Cílios/patologia , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/metabolismo , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia
6.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741020

RESUMO

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Assuntos
Encéfalo , Órgão Subcomissural , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/embriologia , Órgão Subcomissural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Timosina/metabolismo , Timosina/genética , Camundongos Transgênicos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Neurônios/metabolismo , Movimento Celular/fisiologia , Peptídeos/metabolismo , Camundongos Endogâmicos C57BL
7.
PLoS Biol ; 22(5): e3002596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718086

RESUMO

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Assuntos
Transtorno do Espectro Autista , Cílios , Epêndima , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Cílios/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Hipocampo/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Katanina/metabolismo , Katanina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Sinapses/metabolismo , Transcriptoma/genética
8.
Cell Biochem Funct ; 42(4): e4034, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38715189

RESUMO

L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.


Assuntos
Mutação de Sentido Incorreto , Molécula L1 de Adesão de Célula Nervosa , Humanos , Masculino , Células HEK293 , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Linhagem , Recém-Nascido
9.
Prenat Diagn ; 44(3): 357-359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366977

RESUMO

A 36 years old woman in her first pregnancy was referred at 24w3d for a dedicated neurosonographic examination due to a suspected short corpus callosum (CC). The examination depicted a dysgenetic CC with asymmetric thickness at the level of the body in coronal views, very thin in the midline and thicker in both sides, suggesting bilateral formation of Probst bundles. The BPD, HC, and transverse cerebellar diameters were in the normal low range without associated growth restriction. Associated anomalies were not detected in the brain or other organs. Following genetic consultation and a normal CMA, trio exome sequencing was performed and a de novo missense pathogenic mutation c.2353 C > T in the DHX30 gene was detected. This variant has been previously reported in children and adults, mostly with a severe phenotype including neurodevelopmental disorder with variable motor and language impairment, but also mild phenotypes have been reported. MRI describes delayed myelination, ventriculomegaly, and cortical and cerebellar atrophy as imaging features in affected patients. This is the first prenatal report of a DHX30-associated neurodevelopmental disorder in which the fetus presents with isolated callosal dysgenesis, stressing the importance of exome sequencing in fetuses with this condition, as far as it is phenotypic presentation of numerous syndromes with different outcomes.


Assuntos
Corpo Caloso , Hidrocefalia , Adulto , Feminino , Humanos , Gravidez , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/genética , Encéfalo/anormalidades , Corpo Caloso/diagnóstico por imagem , Feto , Hidrocefalia/patologia , Imageamento por Ressonância Magnética/métodos , RNA Helicases
10.
Neurochem Res ; 49(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337135

RESUMO

The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.


Assuntos
Hidrocefalia , Criança , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/patologia , Encéfalo/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Cabeça , Líquido Cefalorraquidiano
11.
J Child Neurol ; 39(1-2): 66-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38387869

RESUMO

This study investigates structural alterations of the corpus callosum in children diagnosed with infantile hydrocephalus. We aim to assess both macrostructural (volume) and microstructural (diffusion tensor imaging metrics) facets of the corpus callosum, providing insights into the nature and extent of alterations associated with this condition. Eighteen patients with infantile hydrocephalus (mean age = 9 years) and 18 age- and sex-matched typically developing healthy children participated in the study. Structural magnetic resonance imaging and diffusion tensor imaging were used to assess corpus callosum volume and microstructure, respectively. Our findings reveal significant alterations in corpus callosum volume, particularly in the posterior area, as well as distinct microstructural disparities, notably pronounced in these same segments. These results highlight the intricate interplay between macrostructural and microstructural aspects in understanding the impact of infantile hydrocephalus. Examining these structural alterations provides an understanding into the mechanisms underlying the effects of infantile hydrocephalus on corpus callosum integrity, given its pivotal role in interhemispheric communication. This knowledge offers a more nuanced perspective on neurologic disorders and underscores the significance of investigating the corpus callosum's health in such contexts.


Assuntos
Corpo Caloso , Imagem de Tensor de Difusão , Hidrocefalia , Imageamento por Ressonância Magnética , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Masculino , Feminino , Imagem de Tensor de Difusão/métodos , Criança , Imageamento por Ressonância Magnética/métodos , Pré-Escolar , Lactente , Processamento de Imagem Assistida por Computador
12.
Eur J Hum Genet ; 32(5): 545-549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351293

RESUMO

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.


Assuntos
DNA Ligase Dependente de ATP , Hidrocefalia , Fenótipo , Humanos , Feminino , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/diagnóstico por imagem , Masculino , DNA Ligase Dependente de ATP/genética , Aqueduto do Mesencéfalo/patologia , Aqueduto do Mesencéfalo/anormalidades , Aqueduto do Mesencéfalo/diagnóstico por imagem , Feto/patologia , Gravidez , Mutação , Adulto , Constrição Patológica/genética , Constrição Patológica/patologia
13.
Surg Radiol Anat ; 46(3): 271-283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374441

RESUMO

PURPOSE: Endoscopic third ventriculostomy (ETV) is a surgical procedure that can lead to complications and requires detailed preoperative planning. This study aimed to provide a more accurate understanding of the anatomy of the third ventricle and the location of important structures to improve the safety and success of ETV. METHODS: We measured the stereotactic coordinates of six points of interest relative to a predefined stereotactic reference point in 23 cadaver brain hemi-sections, 200 normal brain magnetic resonance imaging (MRI) scans, and 24 hydrocephalic brain MRI scans. The measurements were statistically analyzed, and comparisons were made. RESULTS: We found some statistically significant differences between genders in MRIs from healthy subjects. We also found statistically significant differences between MRIs from healthy subjects and both cadaver brains and MRIs with hydrocephalus, though their magnitude is very small and not clinically relevant. Some stereotactic points were more posteriorly and inferiorly located in cadaver brains, particularly the infundibular recess and the basilar artery. It was found that all stereotactic points studied were more posteriorly located in brains with hydrocephalus. CONCLUSION: The study describes periventricular structures in cadaver brains and MRI scans from healthy and hydrocephalic subjects, which can guide neurosurgeons in planning surgical approaches to the third ventricle. Overall, the study contributes to understanding ETV and provides insights for improving its safety and efficacy. The findings also support that practicing on cadaveric brains can still provide valuable information and is valid for study and training of neurosurgeons unfamiliar with the ETV technique.


Assuntos
Hidrocefalia , Neuroendoscopia , Terceiro Ventrículo , Humanos , Masculino , Feminino , Terceiro Ventrículo/diagnóstico por imagem , Terceiro Ventrículo/cirurgia , Neuroendoscopia/métodos , Encéfalo , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Hidrocefalia/patologia , Ventriculostomia/métodos , Cadáver , Resultado do Tratamento , Estudos Retrospectivos
14.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284552

RESUMO

Rapid and fast magnetic resonance imaging (MRI) protocols have become increasingly popular for pediatric neurosurgical patients as they are a great way to reduce ionizing radiation and sedation. While their popularity has increased, there are hurdles to overcome when transitioning to using them clinically, such as cost, staffing training, and motion artifact. Through this paper, we developed a protocol for clinical applications where rapid MRI can be a substitute or adjuvant in diagnostic workup. Further, we outline the relevant literature for the use of RS-MRI for the spine, TBI, and hydrocephalus pathologies while expanding upon the limitations and logistical barriers when transitioning to their use, a few of which are discussed above. Through this, we conclude that RS-MRI can be used diagnostically for spinal pathologies such as syrinx and hydrocephalus. Further, its lack of sensitivity for TBI findings makes rapid sequence magnetic resonance imaging (RS-MRI) a strong adjuvant with other advanced imaging or computed tomography (CT) for traumatic brain injury (TBI) pathologies.


Assuntos
Lesões Encefálicas Traumáticas , Hidrocefalia , Criança , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/cirurgia , Hidrocefalia/patologia , Hidrocefalia/cirurgia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Adjuvantes Imunológicos
15.
J Am Anim Hosp Assoc ; 60(1): 25-30, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175980

RESUMO

Ependymal cysts represent congenital brain malformations rarely described in human medicine, where surgical resection is the treatment of choice. In veterinary medicine, only three cases have been previously reported, with one partially resected with surgery. A 6 yr old entire male American Staffordshire terrier was referred with a 4 mo history of incoordination and collapsing episodes with extensor rigidity. Neurological examination localized the lesion to the left central vestibular system and cerebellum. A brain computed tomography scan showed a hypoattenuating lesion with peripheral contrast enhancement in the fourth ventricle consistent with a cyst and secondary hydrocephalus. Treatment with prednisone was initiated, but despite an initial improvement, neurologic signs recurred and a suboccipital craniectomy to remove the cyst was performed. The cyst was first drained, and the capsule was carefully resected. The histopathological evaluation revealed a simple cubic to cylindrical epithelium with apical cilia and loose surrounding fibrillar tissue consistent with an intraventricular ependymal cyst. Four and a half years after surgery, the dog only shows short episodes of balance loss when turning abruptly but is otherwise neurologically normal. To the authors' knowledge, this is the first reported ependymal cyst in the fourth ventricle of a dog with successful surgical resection.


Assuntos
Cistos , Doenças do Cão , Hidrocefalia , Masculino , Cães , Humanos , Animais , Quarto Ventrículo/cirurgia , Quarto Ventrículo/patologia , Doenças do Cão/cirurgia , Doenças do Cão/patologia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/veterinária , Hidrocefalia/patologia , Hidrocefalia/cirurgia , Hidrocefalia/veterinária , Cistos/cirurgia , Cistos/veterinária , Cistos/patologia
16.
Fetal Diagn Ther ; 51(2): 133-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38008087

RESUMO

BACKGROUND: Limited information exists in the prenatal literature regarding the neuroimaging features of fetal hemimegalencephaly. SUMMARY: This report describes ultrasound and magnetic resonance imaging (MRI) findings in a second-trimester fetus with an isolated, severe form of hemimegalencephaly. The most prominent imaging findings included unilateral enlarged cerebral hemisphere and ipsilateral ventriculomegaly causing cerebral asymmetry, midline shift, and macrocephaly. Abnormal cortical development imaging signs were also evident. A literature review encompassing 23 reports describing 36 cases, including ours, is presented. KEY MESSAGES: Characteristic ultrasound findings for the diagnosis of hemimegalencephaly are not always apparent prenatally. Asymmetric ventriculomegaly emerges as the most common but nonspecific presenting feature during routine second- or third-trimester ultrasound scans. Subsequent high-resolution prenatal neurosonography and fetal MRI facilitate definitive prenatal diagnosis, showcasting associated features primarily related to cortical migration, differentiation, and maturation. Postnatally, the prognosis is poor due to intractable seizures, hemiplegia, and progressive neurodevelopmental delay.


Assuntos
Hemimegalencefalia , Hidrocefalia , Malformações do Sistema Nervoso , Gravidez , Feminino , Humanos , Hemimegalencefalia/patologia , Ultrassonografia Pré-Natal/métodos , Diagnóstico Pré-Natal/métodos , Feto/patologia , Hidrocefalia/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem
17.
Neuropathology ; 44(1): 68-75, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381626

RESUMO

A 76-year-old female with no apparent immunosuppressive conditions and no history of exposure to freshwater and international travel presented with headache and nausea 3 weeks before the presentation. On admission, her consciousness was E4V4V6. Cerebrospinal fluid analysis showed pleocytosis with mononuclear cell predominance, elevated protein, and decreased glucose. Despite antibiotic and antiviral therapy, her consciousness and neck stiffness gradually worsened, right eye-movement restriction appeared, and the right direct light reflex became absent. Brain magnetic resonance imaging revealed hydrocephalus in the inferior horn of the left lateral ventricle and meningeal enhancement around the brainstem and cerebellum. Tuberculous meningitis was suspected, and pyrazinamide, ethambutol, rifampicin, isoniazid, and dexamethasone were started. In addition, endoscopic biopsy was performed from the white matter around the inferior horn of the left lateral ventricle to exclude brain tumor. A brain biopsy specimen revealed eosinophilic round cytoplasm with vacuoles around blood vessels, and we diagnosed with amoebic encephalitis. We started azithromycin, flucytosine, rifampicin, and fluconazole, but her symptoms did not improve. She died 42 days after admission. In autopsy, the brain had not retained its structure due to autolysis. Hematoxylin and eosin staining of her brain biopsy specimen showed numerous amoebic cysts in the perivascular brain tissue. Analysis of the 16S ribosomal RNA region of amoebas from brain biopsy and autopsy specimens revealed a sequence consistent with Balamuthia mandrillaris. Amoebic meningoencephalitis can present with features characteristic of tuberculous meningitis, such as cranial nerve palsies, hydrocephalus, and basal meningeal enhancement. Difficulties in diagnosing amoebic meningoencephalitis are attributed to the following factors: (1) excluding tuberculous meningitis by microbial testing is difficult, (2) amoebic meningoencephalitis has low incidence and can occur without obvious exposure history, (3) invasive brain biopsy is essential in diagnosing amoebic meningoencephalitis. We should recognize the possibility of amoebic meningoencephalitis when evidence of tuberculosis meningitis cannot be demonstrated.


Assuntos
Amebíase , Amoeba , Balamuthia mandrillaris , Infecções Protozoárias do Sistema Nervoso Central , Hidrocefalia , Encefalite Infecciosa , Tuberculose Meníngea , Humanos , Feminino , Idoso , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/patologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Rifampina , Amebíase/diagnóstico , Amebíase/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalite Infecciosa/diagnóstico , Encefalite Infecciosa/patologia , Hidrocefalia/patologia
19.
Cell ; 186(26): 5719-5738.e28, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38056463

RESUMO

Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.


Assuntos
Neoplasias Encefálicas , Plexo Corióideo , Hidrocefalia , Mastócitos , Humanos , Neoplasias Encefálicas/secundário , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Triptases/líquido cefalorraquidiano , Metástase Neoplásica/patologia
20.
Acta Neurochir (Wien) ; 165(12): 4169-4174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935949

RESUMO

BACKGROUND: Hydrocephalus (HC) is common in patients with vestibular schwannoma (VS). This can be managed with a cerebrospinal fluid (CSF) diversion procedure prior to VS resection or with VS resection, keeping CSF diversion in reserve unless required postoperatively. No clear consensus exists as to which approach is superior. This study identifies factors predictive of the development of HC, and analyses outcomes for those managed with primary CSF resection versus tumour resection. METHODS: Single-centre retrospective cohort study of 204 consecutive adult patients with a unilateral VS from May 2009 to June 2021. Data was collected on patient and tumour demographics, management, and outcome. RESULTS: 204 patients, with a mean age at presentation of 59.5 (21-83), with 50% female, and a mean follow-up of 7.5 years (1.8-13.9) were included. 119 were managed conservatively, 36 with stereotactic radiosurgery only, and 49 with surgery. 30 (15%) patients had radiological HC, of which 23 (77%) were obstructive, and 7 (23%) were communicating. Maximum intracranial tumour diameter and Koos grade were higher in patients with HC. Of the patients with HC the majority (20, 67%) were managed initially with CSF diversion, with 12 patients undergoing subsequent tumour resection, and three patients avoiding primary resection. Nine (30%) were managed with primary surgical resection, of whom three required subsequent CSF diversion. Complication rates and Modified Rankin Scale (MRS) were comparable or lower in the CSF diversion group (8%, MRS ≤2 = 83%), versus the primary resection group (67%, MRS ≤2 = 67%), and the primary surgical resection without HC group (25%, MRS ≤2 = 86%). CONCLUSIONS: CSF diversion prior to tumour resection is a safe and acceptable strategy compared to primary VS resection, with improved outcomes and reduced surgical complications. Randomized studies and national databases are needed to determine the long-term outcomes of patients treated with CSF diversion versus primary resection.


Assuntos
Neoplasias Encefálicas , Hidrocefalia , Neuroma Acústico , Adulto , Humanos , Feminino , Masculino , Estudos Retrospectivos , Neuroma Acústico/complicações , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/cirurgia , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Hidrocefalia/patologia , Neoplasias Encefálicas/cirurgia , Derivação Ventriculoperitoneal/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...