Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.852
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000446

RESUMO

Small intestinal bacterial overgrowth (SIBO) is a pathology of the small intestine and may predispose individuals to various nutritional deficiencies. Little is known about whether specific subtypes of SIBO, such as the hydrogen-dominant (H+), methane-dominant (M+), or hydrogen/methane-dominant (H+/M+), impact nutritional status and dietary intake in SIBO patients. The aim of this study was to investigate possible correlations between biochemical parameters, dietary nutrient intake, and distinct SIBO subtypes. This observational study included 67 patients who were newly diagnosed with SIBO. Biochemical parameters and diet were studied utilizing laboratory tests and food records, respectively. The H+/M+ group was associated with low serum vitamin D (p < 0.001), low serum ferritin (p = 0.001) and low fiber intake (p = 0.001). The M+ group was correlated with high serum folic acid (p = 0.002) and low intakes of fiber (p = 0.001) and lactose (p = 0.002). The H+ group was associated with low lactose intake (p = 0.027). These results suggest that the subtype of SIBO may have varying effects on dietary intake, leading to a range of biochemical deficiencies. Conversely, specific dietary patterns may predispose one to the development of a SIBO subtype. The assessment of nutritional status and diet, along with the diagnosis of SIBO subtypes, are believed to be key components of SIBO therapy.


Assuntos
Dieta , Estado Nutricional , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Síndrome da Alça Cega/diagnóstico , Idoso , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Hidrogênio/metabolismo , Metano/metabolismo , Microbioma Gastrointestinal
2.
Environ Microbiol Rep ; 16(4): e13298, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961629

RESUMO

Ciliate protozoa are an integral part of the rumen microbial community involved in a variety of metabolic processes. These processes are thought to be in part the outcome of interactions with their associated prokaryotic community. For example, methane production is enhanced through interspecies hydrogen transfer between protozoa and archaea. We hypothesize that ciliate protozoa are host to a stable prokaryotic community dictated by specific functions they carry. Here, we modify the microbial community by varying the forage-to-concentrate ratios and show that, despite major changes in the prokaryotic community, several taxa remain stably associated with ciliate protozoa. By quantifying genes belonging to various known reduction pathways in the rumen, we find that the bacterial community associated with protozoa is enriched in genes belonging to hydrogen utilization pathways and that these genes correspond to the same taxonomic affiliations seen enriched in protozoa. Our results show that ciliate protozoa in the rumen may serve as a hub for various hydrogenotrophic functions and a better understanding of the processes driven by different protozoa may unveil the potential role of ciliates in shaping rumen metabolism.


Assuntos
Bactérias , Cilióforos , Hidrogênio , Rúmen , Rúmen/microbiologia , Rúmen/parasitologia , Animais , Hidrogênio/metabolismo , Cilióforos/genética , Cilióforos/metabolismo , Cilióforos/classificação , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Microbiota
3.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954064

RESUMO

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Assuntos
Hidrogênio , Metagenoma , Metano , Microbiologia do Solo , Enxofre , Metano/metabolismo , Hidrogênio/metabolismo , Itália , Enxofre/metabolismo , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Ilhas , Filogenia
4.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985767

RESUMO

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Assuntos
Grafite , Hidrogênio , Shewanella , Hidrogênio/metabolismo , Shewanella/metabolismo , Shewanella/genética , Grafite/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Transporte de Elétrons , Reatores Biológicos , Biologia Sintética/métodos , Eletrodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Periplasma/metabolismo , Fontes de Energia Bioelétrica/microbiologia
5.
Bioresour Technol ; 406: 131068, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972429

RESUMO

Cupriavidus necator is a facultative chemolithoautotrophic bacterium able to convert carbon dioxide into poly-3-hydroxybutyrate. This is highly promising as the conversion process allows the production of sustainable and biodegradable plastics. Poly-3-hydroxybutyrate accumulation is known to be induced by nutrient starvation, but information regarding the optimal stress conditions controlling the process is still heterogeneous and fragmentary. This study presents a comprehensive comparison of the effects of nutrient stress conditions, namely nitrogen, hydrogen, phosphorus, oxygen, and magnesium deprivation, on poly-3-hydroxybutyrate accumulation in C. necator DSM545. Nitrogen starvation exhibited the highest poly-3-hydroxybutyrate accumulation, achieving 54% of total cell dry weight after four days of nutrient stress, and a carbon conversion efficiency of 85%. The gas consumption patterns indicated flexible physiological mechanisms underlying polymer accumulation and depolymerization. These findings provide insights into strategies for efficient carbon conversion into bioplastics, and highlight the key role of C. necator for future industrial-scale applications.


Assuntos
Cupriavidus necator , Hidroxibutiratos , Nitrogênio , Poliésteres , Cupriavidus necator/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Nitrogênio/metabolismo , Processos Autotróficos , Oxigênio/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Nutrientes/metabolismo , Plásticos/metabolismo , Hidrogênio/metabolismo , Plásticos Biodegradáveis/metabolismo , Magnésio/metabolismo , Poli-Hidroxibutiratos
6.
Extremophiles ; 28(3): 32, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023751

RESUMO

Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 â„ƒ) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.


Assuntos
Metabolismo Energético , Methanocaldococcus , Methanocaldococcus/metabolismo , Termodinâmica , Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia
7.
Plant Mol Biol ; 114(4): 87, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023834

RESUMO

Under nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H2 production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H2 synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.


Assuntos
Glicogênio , Hidrogênio , Paraquat , Fotossíntese , Synechocystis , Glicogênio/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Fotossíntese/efeitos dos fármacos , Hidrogênio/metabolismo , Paraquat/farmacologia , Hidroxibutiratos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Poliésteres/metabolismo , Poli-Hidroxibutiratos
8.
Bioresour Technol ; 406: 131030, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917911

RESUMO

This study investigates the efficacy of pyrite in enhancing biohydrogen production from xylose at low temperature (20 °C). Higher hydrogen yield rates (Rm) and reduced lag time (λ) were achieved across initial xylose concentrations ranging from 2-10 g/L. At an optimal xylose concentration of 5 g/L, pyrite reduced λ by 2.5 h and increased Rm from 1.3 to 2.7 mL h-1. These improvements are attributed to pyrite's ability to enhance the secretion of extracellular polymeric substance and flavins, facilitate NADH and NAD+ generation and transition, and favor biohydrogen production. Thermodynamic analyses and Gibbs free energy calculations further elucidated pyrite's role in the full reaction process and rate-limiting steps at low temperature. This study offers valuable insights into improving the efficiency of biohydrogen production at low temperature, with significant implications for energy conservation.


Assuntos
Hidrogênio , Sulfetos , Termodinâmica , Xilose , Hidrogênio/metabolismo , Xilose/química , Sulfetos/química , Ferro/química , Temperatura Baixa , NAD/metabolismo , Temperatura
9.
Bioresour Technol ; 406: 131029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925401

RESUMO

Hydrogen production through the metabolic bypass of microalgae photosynthesis is an environmentally friendly method. This review examines the genetic differences in hydrogen production between prokaryotic and eukaryotic microalgae. Additionally, the pathways for enhancing microalgae-based photosynthetic hydrogen generation are summarized. The main strategies for enhancing microalgal hydrogen production involve inhibiting the oxygen-generating process of photosynthesis and promoting the oxygen tolerance of hydrogenase. Future research is needed to explore the regulation of physiological metabolism through quorum sensing in microalgae to enhance photosynthetic hydrogen production. Moreover, effective evaluation of carbon emissions and sequestration across the entire photosynthetic hydrogen production process is crucial for determining the sustainability of microalgae-based production approaches through comprehensive lifecycle assessment. This review elucidates the prospects and challenges associated with photosynthetic hydrogen production by microalgae.


Assuntos
Hidrogênio , Microalgas , Fotossíntese , Hidrogênio/metabolismo , Microalgas/metabolismo , Fotossíntese/fisiologia , Células Procarióticas/metabolismo , Células Eucarióticas/metabolismo
10.
BMC Plant Biol ; 24(1): 542, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872107

RESUMO

BACKGROUND: Hydrogen gas (H2), a novel and beneficial gaseous molecule, plays a significant role in plant growth and development processes. Hydrogen-rich water (HRW) is regarded as a safe and easily available way to study the physiological effects of H2 on plants. Several recent research has shown that HRW attenuates stress-induced seed germination inhibition; however, the underlying modes of HRW on seed germination remain obscure under non-stress condition. RESULTS: In this current study, we investigated the possible roles of gibberellin (GA) and abscisic acid (ABA) in HRW-regulated seed germination in wax gourd (Benincasa hispida) through pharmacological, physiological, and transcriptome approaches. The results showed that HRW application at an optimal dose (50% HRW) significantly promoted seed germination and shortened the average germination time (AGT). Subsequent results suggested that 50% HRW treatment stimulated GA production by regulating GA biosynthesis genes (BhiGA3ox, BhiGA2ox, and BhiKAO), whereas it had no effect on the content of ABA and the expression of its biosynthesis (BhiNCED6) and catabolism genes (BhiCYP707A2) but decreased the expression of ABA receptor gene (BhiPYL). In addition, inhibition of GA production by paclobutrazol (PAC) could block the HRW-mediated germination. Treatment with ABA could hinder HRW-mediated seed germination and the ABA biosynthesis inhibitor sodium tungstate (ST) could recover the function of HRW. Furthermore, RNA-seq analysis revealed that, in the presence of GA or ABA, an abundance of genes involved in GA, ABA, and ethylene signal sensing and transduction might involve in HRW-regulated germination. CONCLUSIONS: This study portrays insights into the mechanism of HRW-mediated seed germination, suggesting that HRW can regulate the balance between GA and ABA to mediate seed germination through ethylene signals in wax gourd.


Assuntos
Ácido Abscísico , Germinação , Giberelinas , Hidrogênio , Reguladores de Crescimento de Plantas , Sementes , Transdução de Sinais , Giberelinas/metabolismo , Germinação/efeitos dos fármacos , Ácido Abscísico/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
11.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893534

RESUMO

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Assuntos
Reatores Biológicos , Butileno Glicóis , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentação , Formiatos , Hidrogênio , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
12.
Chemosphere ; 361: 142514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830468

RESUMO

Energy is a crucial entity for the development and it has various alternative forms of energy sources. Recently, the synthesis of nanoparticles using benign biocatalyst has attracted increased attention. In this study, silver nanoparticles were synthesized and characterized using Azadirachta indica plant-derived phytochemical as the reducing agent. Biomass of the microalga Chlorella sp. cultivated in BG11 medium increased after exposure to low concentrations of up to 0.48 mg L-1 AgNPs. In addition, algal cells treated with 0.24 mg L-1 AgNPs and cultivated in BG110 medium which contained no nitrogen source showed the highest hydrogen yield of 10.8 mmol L-1, whereas the untreated cells under the same conditions showed very low hydrogen yield of 0.003 mmol L-1. The enhanced hydrogen production observed in the treated cells was consistent with an increase in hydrogenase activity. Treatment of BG110 grown cells with low concentration of green synthesized AgNPs at 0.24 mg L-1 enhanced hydrogenase activity with a 5-fold increase of enzyme activity compared to untreated BG110 grown cells. In addition, to improve photolytic water splitting efficiency for hydrogen production, cells treated with AgNPs at 0.24 mg L-1 showed highest oxygen evolution signifying improvement in photosynthesis. The silver nanoparticles synthesized using phytochemicals derived from plant enhanced both microalgal biomass and hydrogen production with an added advantage of CO2 reduction which could be achieved due to an increase in biomass. Hence, treating microalgae with nanoparticles provided a promising strategy to reduce the atmospheric carbon dioxide as well as increasing production of hydrogen as clean energy.


Assuntos
Biomassa , Chlorella , Hidrogênio , Nanopartículas Metálicas , Nitrogênio , Prata , Nanopartículas Metálicas/química , Chlorella/metabolismo , Chlorella/efeitos dos fármacos , Prata/química , Hidrogênio/metabolismo , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Hidrogenase/metabolismo , Microalgas/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(26): e2318570121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905238

RESUMO

Hydrogen isotope ratios (δ2H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here, we elucidate the underlying physiological controls of 2H/1H fractionation in algal lipids by systematically manipulating temperature, light, and CO2(aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica. We analyze the hydrogen isotope fractionation in alkenones (αalkenone), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the αalkenone with increasing CO2(aq) and confirm αalkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a cellular model of the δ2H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor a greater exchange of NADPH with 2H-richer intracellular water, increasing αalkenone. Higher chloroplast CO2(aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of αalkenone to CO2(aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO2 at the Rubisco site, but rather that chloroplast CO2 varies with external CO2(aq). The pervasive inverse correlation of αalkenone with CO2(aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, αalkenone may be a powerful tool to elucidate the carbon limitation of photosynthesis.


Assuntos
Dióxido de Carbono , Haptófitas , Lipídeos , Fotossíntese , Dióxido de Carbono/metabolismo , Haptófitas/metabolismo , Lipídeos/química , Hidrogênio/metabolismo , Cloroplastos/metabolismo , Deutério/metabolismo , NADP/metabolismo , Temperatura , Fracionamento Químico/métodos , Metabolismo dos Lipídeos
14.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866018

RESUMO

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Assuntos
Archaea , Hidrogênio , Hidrogenase , Filogenia , Archaea/genética , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Genoma Arqueal , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Hidrogenase/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Estrutura Terciária de Proteína
15.
Sci Total Environ ; 944: 173986, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876344

RESUMO

Antibiotic fermentation residue, which is generated from the microbial antibiotic production process, has been a troublesome waste faced by the pharmaceutical industry. Dark fermentation is a potential technology to treat antibiotic fermentation residue in terms of renewable H2 generation and waste management. However, the inherent antibiotic in antibiotic fermentation residue may inhibit its dark fermentation performance, and current understanding on this topic is limited. This investigation examined the impact of the inherent antibiotic on the dark H2 fermentation of Cephalosporin C (CEPC) fermentation residue, and explored the mechanisms from the perspectives of bacterial communities and functional genes. It was found that CEP-C in the antibiotic fermentation residue significantly inhibited the H2 production, with the H2 yield decreasing from 17.2 mL/g-VSadded to 12.5 and 9.6 mL/g-VSadded at CEP-C concentrations of 100 and 200 mg/L, respectively. CEP-C also prolonged the H2-producing lag period. Microbiological analysis indicated that CEP-C remarkably decreased the abundances of high-yielding H2-producing bacteria, as well as downregulated the genes involved in hydrogen generation from the"pyruvate pathway" and"NADH pathway", essentially leading to the decline of H2 productivity. The present work gains insights into how cephalosporin antibiotics influence the dark H2 fermentation, and provide guidance for mitigating the inhibitory effects.


Assuntos
Antibacterianos , Cefalosporinas , Fermentação , Hidrogênio , Hidrogênio/metabolismo , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
16.
Bioresour Technol ; 404: 130918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823562

RESUMO

Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup+) strain (wild type) and a Hup- strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup- nodules, Hup+ nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.


Assuntos
Glycine max , Hidrogênio , Bifenilos Policlorados , Simbiose , Bifenilos Policlorados/metabolismo , Simbiose/fisiologia , Glycine max/metabolismo , Glycine max/microbiologia , Hidrogênio/metabolismo , Rhizobium/fisiologia , Biotransformação , Bradyrhizobium/metabolismo , Bradyrhizobium/fisiologia , Biodegradação Ambiental
17.
Bioresour Technol ; 406: 130972, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876276

RESUMO

Rhodospirillum rubrum is a photosynthetic purple non-sulphur bacterium with great potential to be used for complex waste valorisation in biotechnological applications due to its metabolic versatility. This study investigates the production of hydrogen (H2) and polyhydroxyalkanoates (PHA) by R. rubrum from syngas under photoheterotrophic conditions. An adaptive laboratory evolution strategy (ALE) has been carried out to improve the yield of the process. After 200 generations, two evolved strains were selected that showed reduced lag phase and enhanced poly-3-hydroxybutyrate (PHB) and H2 synthesis compared to the parental strain. Genomic analysis of the photo-adapted (PA) variants showed four genes with single point mutations, including the photosynthesis gene expression regulator PpsR. The proteome of the variants suggested that the adapted variants overproduced H2 due to a more efficient CO oxidation through the CO-dehydrogenase enzyme complex and confirmed that energy acquisition was enhanced through overexpression of the photosynthetic system and metal cofactors essential for pigment biosynthesis.


Assuntos
Hidrogênio , Rhodospirillum rubrum , Rhodospirillum rubrum/metabolismo , Rhodospirillum rubrum/genética , Hidrogênio/metabolismo , Fotossíntese , Poli-Hidroxialcanoatos/biossíntese , Adaptação Fisiológica , Hidroxibutiratos/metabolismo , Gases/metabolismo , Poli-Hidroxibutiratos
18.
Bioresour Technol ; 406: 130981, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879053

RESUMO

Biological H2-assisted biogas upgrading has gained significant attention as an environmentally friendly substitute to common physico-chemical upgrading techniques, but is largely limited by the low solubility of H2. This study evaluated the design of a ceramic membrane contactor module for H2 injection. H2 dissolution was maintained at high efficiency by controlling gas supply and sludge recirculation rate, achieving a biogas quality of average 98.8% CH4 during the stable operation phase with a 108% increase in the CH4 production rate. This also outperforms conventional H2 injection using diffuser sparging which could only achieve a biogas quality of 84% CH4 content. Microbial community analysis found high Methanobacterium spp. abundance within the archaea at 95.2% at the end of the operation, allowing the dominance of the hydrogenotrophic methanogenesis pathway for high upgrading efficiencies. The system is a high-performance external membrane connector module coupled to common anaerobic digestion systems for biogas upgrading.


Assuntos
Biocombustíveis , Cerâmica , Hidrogênio , Membranas Artificiais , Metano , Cerâmica/química , Metano/metabolismo , Hidrogênio/metabolismo , Reatores Biológicos , Esgotos/microbiologia , Anaerobiose
19.
Bioresour Technol ; 406: 131004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889870

RESUMO

This study demonstrates the substantial role of bicarbonate within a zero-valent iron (ZVI) system in hydrogen evolution, demonstrating that heightened concentration levels notably enhance hydrogen output. The acetic acid performance production of seven different inocula was examined when exposed to ZVI and CO2 as the sole carbon source, separately. Along the seven inocula, river and constructed wetland sludges show the highest production rates at 300 mg/L day-1 and 269 mg/L day-1, respectively. Acetobacterium levels significantly rose in CO2-enriched environments, particularly in river and wetland sludges. Moreover, bacteria attached to ZVI showed accelerated hydrogen consumption and acetic acid production compared to their freely suspended or ZVI-detached counterparts when hydrogen was primarily added externally. This study highlighted the positive effect of high concentrations of soluble CO2, which acted both as a reactant with ZVI for hydrogen production and as a substrate for homoacetogens, leading to high acetic acid generation.


Assuntos
Ácido Acético , Bicarbonatos , Hidrogênio , Ferro , Hidrogênio/metabolismo , Ácido Acético/metabolismo , Dióxido de Carbono , Acetobacterium/metabolismo
20.
Bioresour Technol ; 406: 130993, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889871

RESUMO

Hydrogen, a clean and sustainable energy source, faces challenges from energy-intensive pre-processing technologies. This study explores the synergistic enhancement of active electric fields on enzymolysis of wheat straw and hydrogen production through dark fermentation. The active electric field enzymolysis system improved the adsorption capacity of wheat straw to cellulase, increasing cellulase activity by 18.0 %, causing a 39.1 % increase in reducing sugar content. In the active fermentation system, Clostridium_sensu_stricto_1 activity was enhanced in the first stage, increasing hydrogenase activity by 23.0 %, prolonging the first hydrogen production peak. Elevated reducing sugars were observed in the second stage, with Prevotella_9 and Bacteroides becoming the dominant hydrogen-producing bacteria in the third stage, leading to a second hydrogen production peak. Overall, cumulative hydrogen production was enhanced by 50.9 % compared to the control. The synergistic pretreatment with an active electric field and cellulase provides a novel approach for efficiently utilizing wheat straw.


Assuntos
Celulase , Eletricidade , Fermentação , Hidrogênio , Triticum , Triticum/metabolismo , Hidrogênio/metabolismo , Celulase/metabolismo , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...