RESUMO
Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.
Assuntos
Bactérias , Biodegradação Ambiental , Ésteres , Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/enzimologia , Ésteres/metabolismo , Engenharia Metabólica/métodos , Poluentes Ambientais/metabolismo , Hidrolases/metabolismo , Hidrolases/genéticaRESUMO
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.0 as well as high thermal stability. A mass-spectrometric analysis identified seven peptidases with molecular masses of 26.8-154.8 kDa in the secretory proteome. These peptidases are members of S8 and S41 serine peptidase families and of M14, M42, and M55 metallopeptidase families. Additionally, α-amylase (55.2 kDa), alkaline phosphatase (59.8 kDa), and esterase (26.8 kDa) were detected. The strong keratinolytic properties of the strain were confirmed by degradation of chicken and goose feathers, which got completely hydrolyzed within 4 days. Submerged fermentation by strain B. paralicheniformis T7 was carried out in a pilot bioreactor, where the highest keratinase production was noted after 19 h of cultivation. After the fermentation, in the culture fluid, the keratinase activity toward keratin azure was 63.6 ± 5.8 U/mL. The protease activity against azocasein was 715.7 ± 40.2 U/mL. The possibility of obtaining enzyme preparations in liquid and powder form was demonstrated, and their comparative characteristics are given. In the concentrate, the keratinase, protease, α-amylase, phosphatase, and esterase/lipase activities were 2,656.7 ± 170.4, 29,886.7 ± 642.9, 176.1 ± 16.3, 23.9 ± 1.8, and 510.9 ± 12.2 U/mL, respectively. In the lyophilizate, these activities were 57,733.3 ± 8,911.4, 567,066.7 ± 4,822.2, 2,823.0 ± 266.8, 364.2 ± 74.8, and 17,618.0 ± 610.3 U/g, respectively. In the preparation obtained by air flow drying at 55°C, these activities were 53,466.7 ± 757.2, 585,333.3 ± 4,277.1, 2,395.8 ± 893.7, 416.7 ± 52.4, and 15,328.1 ± 528.6 U/g, respectively. The results show high potential of B. paralicheniformis strain T7 as a producer of keratinases and other enzymes for applications in agricultural raw materials and technologies for processing of keratin-containing animal waste.
Assuntos
Bacillus , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Bacillus/enzimologia , Animais , Concentração de Íons de Hidrogênio , Fermentação , Hidrolases/metabolismo , Queratinas/metabolismo , Proteínas de Bactérias/metabolismo , Galinhas , Plumas/metabolismoRESUMO
Hydrolysis catalyzed by aspartic proteases is a crucial reaction in many biological processes. However, anchoring water molecules and unifying multiple catalytic pathways remain significant challenges. Consequently, molecular design often compromises by focusing on enhancing substrate specificity. Using our self-developed polarizable point charge (PPC) force field, we determined the significant role of polarization in the hydrolase of pepsin for the first time. To be stably anchored in the active site, the water should be intensely polarized with a charge higher than -0.94e. Induced by this polarization, the pepsin was shown to support three general base/general acid pathways, with a preference for the gemdiol-intermediate-based pathway. Consequently, we proposed the "Blade of Polarized Water Molecule" model for rational enzyme design, highlighting that the polarization of both the attacking water and the attacked carbonyl is crucial for enhancing hydrolysis. Mutants D290Q and S172P showed activity enhancements of 191.23% and 324.70%, respectively. The improved polarization of water, carbonyl, and relevant nucleophilic attack distances in the mutants reaffirmed the crucial role of polarization in improving hydrolysis. This study provides a new perspective on hydrolase analysis and modification.
Assuntos
Biocatálise , Hidrolases , Água , Água/química , Hidrolases/metabolismo , Hidrolases/química , Modelos Moleculares , Hidrólise , Pepsina A/química , Pepsina A/metabolismo , Domínio Catalítico , Conformação ProteicaRESUMO
Serine hydrolases have become increasingly important for recycling PET plastics. However, their properties are inherently constrained by their 3D structure, which in turn limits the conditions for their application. Considering peptides as catalysts for industrial depolymerization processes can help us to escape some of these limitations. In this article, a 25 amino acid thermostable peptide, HSH-25, was designed to depolymerize PET. The peptide incorporates a His-Ser-His motif, inspired by the catalytic triad found in the serine hydrolase family, into a ß-hairpin fold. Stability of the fold was investigated by molecular dynamics simulations. Esterolytic activity of the peptide toward model substrates was detected within a pH range from pH 7 to pH 9.5. Degradation of polymeric PET substrates was confirmed by atomic force microscopy imaging on spin-coated PET thin films.
Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Hidrolases/metabolismo , Hidrolases/química , Concentração de Íons de Hidrogênio , Domínio Catalítico , Ésteres/química , Ésteres/metabolismo , Motivos de AminoácidosRESUMO
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Assuntos
ADP-Ribosilação , Humanos , Animais , Glicosídeo Hidrolases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo do DNA , Transdução de Sinais , Terapia de Alvo MolecularRESUMO
The pursuit of novel therapeutics is a complex and resource-intensive endeavor marked by significant challenges, including high costs and low success rates. In response, drug repositioning strategies leverage existing FDA-approved compounds to predict their efficacy across diverse diseases. Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in protein citrullination, a process implicated in the autoimmune pathogenesis of rheumatoid arthritis (RA). Targeting PAD4 has thus emerged as a promising therapeutic approach. This study employs computational and enzyme inhibition strategies to identify potential PAD4-targeting compounds from a library of FDA-approved drugs. In silico docking analyses validated the binding interactions and orientations of screened compounds within PAD4's active site, with key residues such as ASP350, HIS471, ASP473, and CYS645 participating in crucial hydrogen bonding and van der Waals interactions. Molecular dynamics simulations further assessed the stability of top compounds exhibiting high binding affinities. Among these compounds, Saquinavir (SQV) emerged as a potent PAD4 inhibitor, demonstrating competitive inhibition with a low IC50 value of 1.21 ± 0.04â µM. In vitro assays, including enzyme kinetics and biophysical analyses, highlighted significant changes in PAD4 conformation upon SQV binding, as confirmed by circular dichroism spectroscopy. SQV induced localized alterations in PAD4 structure, effectively occupying the catalytic pocket and inhibiting enzymatic activity. These findings underscore SQV's potential as a therapeutic candidate for RA through PAD4 inhibition. Further validation through in vitro and in vivo studies is essential to confirm SQV's therapeutic benefits in autoimmune diseases associated with dysregulated citrullination.
Assuntos
Artrite Reumatoide , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína-Arginina Desiminase do Tipo 4 , Saquinavir , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/química , Humanos , Saquinavir/química , Saquinavir/farmacologia , Reposicionamento de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/química , Domínio Catalítico , Hidrolases/antagonistas & inibidores , Hidrolases/química , Hidrolases/metabolismoRESUMO
N-Glycan-dependent endoplasmic reticulum quality control (ERQC) primarily mediates protein folding, which determines the fate of the polypeptide. Monoglucose residues on N-glycans determine whether the nascent N-glycosylated proteins enter into and escape from the calnexin (CANX)/calreticulin (CALR) cycle, which is a central system of the ERQC. To reveal the impact of ERQC on glycosylation and protein fate, we performed comprehensive quantitative proteomic and glycoproteomic analyses using cells defective in N-glycan-dependent ERQC. Deficiency of MOGS encoding the ER α-glucosidase I, CANX, or/and CALR broadly affected protein expression and glycosylation. Among the altered glycoproteins, the occupancy of oligomannosidic N-glycans was significantly affected. Besides the expected ER stress, proteins and glycoproteins involved in pathways for lysosome and viral infection are differentially changed in those deficient cells. We demonstrated that lysosomal hydrolases were not correctly modified with mannose-6-phosphates on the N-glycans and were directly secreted to the culture medium in N-glycan-dependent ERQC mutant cells. Overall, the CANX/CALR cycle promotes the correct folding of glycosylated peptides and influences the transport of lysosomal hydrolases.
Assuntos
Calnexina , Retículo Endoplasmático , Glicoproteínas , Lisossomos , Polissacarídeos , Proteoma , alfa-Glucosidases , Glicosilação , Retículo Endoplasmático/metabolismo , Polissacarídeos/metabolismo , Calnexina/metabolismo , Calnexina/genética , Lisossomos/metabolismo , Proteoma/metabolismo , Proteoma/análise , Glicoproteínas/metabolismo , Glicoproteínas/genética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/genética , Calreticulina/metabolismo , Calreticulina/genética , Hidrolases/metabolismo , Hidrolases/genética , Humanos , Proteômica/métodos , Dobramento de Proteína , AnimaisRESUMO
Staphylococcus aureus (S. aureus), commonly found on the skin and nose, causes minor skin conditions to life-threatening diseases, including boils or impetigo, pneumonia, and bloodstream infections. MRSA (Methicillin-Resistant S. aureus) is a strain resistant to many antibiotics and poses a significant challenge in clinical settings. Nowadays, the alternative drug Linezolid is used, and it is not clear when MRSA starts resistance to it, necessitating the need for more alternative drugs with the least chance of developing resistance. This study aims to identify a multitargeted drug candidate with better efficacy than Linezolid. We have taken three hydrolase and transferase proteins from S. aureus, performed the multitargeted docking studies with human-approved drugs, and compared them with the control drug Linezolid. The docking and MM\GBSA scores ranging from -6.79 to -5.78 Kcal/mol and - 37.47 to 30.16 Kcal/mol, respectively, that revealed Deprodone (used for inflammatory skin disorders, bowel disease, and fatty acid metabolism disorders) can be a far better and multitargeted drug candidate than Linezolid. We extended our studies to include extensive pharmacokinetics and molecular interaction fingerprints for interaction pattern studies. Also, the DFT computations optimised the drug, and we extended our studies for MD Simulation in water for 100 ns, which showed the complexes among the identified drug with proteins are entirely stable with acceptable deviation, fluctuations and many intermolecular interactions that make them stable. We also performed the MM\GBSA studies on MD simulation's all 1000 frames to understand the complex energy level. All the results reveal promising interactions between Deprodone and the targeted enzymes, suggesting its potential as a multitargeted therapeutic agent-however, experimental studies need to validate Deprodone against MRSA.
Assuntos
Hidrolases , Linezolida , Staphylococcus aureus Resistente à Meticilina , Simulação de Acoplamento Molecular , Linezolida/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Hidrolases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Dinâmica Molecular , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ligação ProteicaRESUMO
The accumulation of polyethylene terephthalate (PET), a widely used polyester plastic in packaging and textiles, has led to a global environmental crisis. Biodegradation presents a promising strategy for PET recycling, with PET hydrolases (PETase) undertaking the task at the molecular level. Unfortunately, PETase operates only at ambient temperatures with low efficiency, limiting its industrial application. Current engineering efforts focus on enhancing the thermostability of PETase, but increased stability can reduce the structural dynamics needed for substrate binding, potentially slowing enzymatic activity. To elucidate the balance between stability and flexibility in optimizing PETase catalytic activity, we performed theoretical investigations on both wild-type PETase (WT-PETase) and a thermophilic variant (Thermo-PETase) using molecular dynamics simulations and frustration analysis. Despite being initially designed to stabilize the native structure of the enzyme, our findings reveal that Thermo-PETase exhibits an unprecedented increase in structural flexibility at the PET-binding and catalytic sites, beneficial for substrate recruitment and product release, compared to WT-PETase. Upon PET binding, we observed that the structural dynamics of Thermo-PETase is largely quenched, favoring the proximity between the catalytic residues and the carbonyl of the PET substrate. This may potentially contribute to a higher probability of a catalytic reaction occurring in Thermo-PETase compared to WT-PETase. We suggest that Thermo-PETase can exhibit higher PET-degradation performance than WT-PETase across a broad temperature range by leveraging stability and flexibility at high and low temperatures, respectively. Our findings provide valuable insights into how PETase optimizes its enzymatic performance by balancing stability and flexibility, which may contribute to future PETase design strategies.
Assuntos
Estabilidade Enzimática , Hidrolases , Simulação de Dinâmica Molecular , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Hidrolases/química , Hidrolases/metabolismo , Conformação Proteica , Domínio Catalítico , Engenharia de ProteínasRESUMO
Eco-friendly enzymatic-recycling has been widely utilized in tackling plastic pollution. However, the limited activity on the polyethylene terephthalate (PET) degradation product mono-hydroxyethyl terephthalate (MHET) leads to the formation of heterogeneous hydrolysis products, resulting in PET downcycling. Herein, by applying a dual-function PET hydrolase IsPETasePA with balanced PET and MHET degradation efficiency, an effective PET hydrolysis process was developed to enhance the terephthalic acid (TPA) product purity. Firstly, the impact of pH on the catalytic activity of IsPETasePA revealed that the pH reduction caused by TPA generation hindered the complete conversion of MHET to TPA. Further investigation of the catalytic mechanism showed that the pH-induced protonation of His208 in the catalytic triad destabilized the interaction between IsPETasePA and MHET. Thus, by introducing pH regulation strategy on the bifunctional IsPETasePA, the single-enzyme process could achieve high-purity TPA recovery (>99 %). Overall, this work ensured the high-quality PET enzymatic-recycling for effectively addressing plastic pollution.
Assuntos
Hidrolases , Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Ácidos Ftálicos/química , Concentração de Íons de Hidrogênio , Hidrólise , Hidrolases/metabolismo , Hidrolases/química , Biodegradação AmbientalRESUMO
Plastic-degrading enzymes, particularly poly(ethylene terephthalate) (PET) hydrolases, have garnered significant attention in recent years as potential eco-friendly solutions for recycling plastic waste. However, understanding of their PET-degrading activity and influencing factors remains incomplete, impeding the development of uniform approaches for enhancing PET hydrolases for industrial applications. A key aspect of PET hydrolase engineering is optimizing the PET-hydrolysis reaction by lowering the associated free energy barrier. However, inconsistent findings have complicated these efforts. Therefore, our goal is to elucidate various aspects of enzymatic PET degradation by means of quantum mechanics/molecular mechanics (QM/MM) reaction simulations and analysis, focusing on the initial reaction step, acylation, in two thermophilic PET hydrolases, LCC and PES-H1, along with their highly active variants, LCCIG and PES-H1FY. Our findings highlight the impact of semiempirical QM methods on proton transfer energies, affecting the distinction between a two-step reaction involving a metastable tetrahedral intermediate and a one-step reaction. Moreover, we uncovered a concerted conformational change involving the orientation of the PET benzene ring, altering its interaction with the side-chain of the "wobbling" tryptophan from T-stacking to parallel π-π interactions, a phenomenon overlooked in prior research. Our study thus enhances the understanding of the acylation mechanism of PET hydrolases, in particular by characterizing it for the first time for the promising PES-H1FY using QM/MM simulations. It also provides insights into selecting a suitable QM method and a reaction coordinate, valuable for future studies on PET degradation processes.
Assuntos
Hidrolases , Simulação de Dinâmica Molecular , Mutação , Polietilenotereftalatos , Teoria Quântica , Termodinâmica , Triptofano , Triptofano/química , Triptofano/metabolismo , Hidrolases/química , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Conformação Proteica , Modelos MolecularesRESUMO
Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.
Assuntos
Autofagossomos , Autofagia , Complexos Endossomais de Distribuição Requeridos para Transporte , Lisossomos , Lisossomos/metabolismo , Humanos , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Sistemas CRISPR-Cas , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Hidrolases/metabolismo , Hidrolases/genética , Células HeLa , Células HEK293RESUMO
Zearalenone (ZEN) is a toxic secondary metabolite produced by the Fusarium fungi, which widely contaminates grains, food, and feed, causing health hazards for humans and animals. Therefore, it is essential to find effective ZEN detoxification methods. Enzymatic degradation of ZEN is believed to be an eco-friendly detoxification strategy, specifically thermostable ZEN degradation enzymes are needed in the food and feed industry. In this study, a novel ZEN lactone hydrolase ZHRnZ from Rosellinia necatrix was discovered using bioinformatic and molecular docking technology. The recombinant ZHRnZ showed the best activity at pH 9.0 and 45 °C with more than 90% degradation for ZEN, α-zearalenol (α-ZOL), ß-zearalenol (ß-ZOL) and α-zearalanol (α-ZAL) after incubation for 15 min. We obtained 10 mutants with improved thermostability by single point mutation technology. Among them, mutants E122Q and E122R showed the best performance, which retained more than 30% of their initial activity at 50 °C for 2 min, and approximately 10% of their initial activity at 60 °C for 1 min. The enzymatic kinetic study showed that the catalytic efficiency of E122R was 1.3 times higher than that of the wild-type (WT). Comprehensive consideration suggests that mutant E122R is a promising hydrolase to detoxify ZEN in food and feed.
Assuntos
Estabilidade Enzimática , Hidrolases , Simulação de Acoplamento Molecular , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Cinética , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Lactonas/metabolismo , Temperatura , Hypocreales/enzimologia , Hypocreales/genéticaRESUMO
Tyrosol and hydroxytyrosol are powerful phenolic antioxidants occurring in olive oil and in by-products from olive processing. Due to their high polarity, esterification or other lipophilization is necessary to make them compatible with lipid matrices. Hydroxytyrosol methyl carbonate is a more effective antioxidant than dibutylhydroxytoluene or α-tocopherol and together with tyrosol methyl carbonate exerts interesting pharmacological properties. The purpose of this work was the enzymatic preparation of alkyl carbonates of tyrosol and hydroxytyrosol. A set of 17 hydrolases was tested in the catalysis of tyrosol methoxycarbonylation in neat dimethyl carbonate to find an economically feasible alternative to the recently reported synthesis of methyl carbonates catalyzed by Novozym 435. Novozym 435 was, however, found to be the best performing catalyst, while Novozym 735, pig pancreatic lipase, lipase F-AK and Lipex 100T exhibited limited reactivity. No enzyme accepted 1,2-propylene carbonate as the acylation donor. Under optimized reaction conditions, Novozym 435 was used in the batch preparation of tyrosol methyl carbonate and hydroxytyrosol methyl carbonate in quantitative yields. The enzymatic methoxycarbonylation of tyrosol and hydroxytyrosol can also be used as a method for their selective protection in enzymatic syntheses of phenylethanoid glycosides catalyzed with enzymes comprising high levels of acetyl esterase side activity.
Assuntos
Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Álcool Feniletílico/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Lipase/química , Animais , Antioxidantes/química , Suínos , Carbonatos/química , Hidrolases/metabolismoRESUMO
Zearalenone and radicicol are resorcylic acid lactones produced by numerous plant pathogenic fungi. Zearalenone is a non-steroidal estrogen mimic that can cause serious reproductive issues in livestock that consume contaminated feed. Radicicol is a potent inhibitor of the molecular chaperone Hsp90, which, in plants, has an important role in coordinating the host's immune response during infection. Here, we describe the identification and characterization of a soil-borne strain of the Gram-positive bacterium Aeromicrobium sp. capable of hydrolyzing the macrolide ring of resorcylic acid lactones, including zearalenone and radicicol. Proteomic analysis of biochemically enriched fractions from the isolated and cultured bacterium identified an α/ß-hydrolase responsible for this activity. A recombinantly expressed and purified form of the hydrolase (termed RALH) was active against both zearalenone and radicicol. Interpretation of high-resolution mass spectrometry and NMR data confirmed the structures of the enzymatic products as the previously reported non-toxic metabolite hydrolyzed zearalenone and hydrolyzed radicicol. Hydrolyzed radicicol was demonstrated to no longer inhibit the ATPase activity of the Saccharomyces cerevisiae Hsp90 homolog in vitro. Enzymatic degradation of resorcylic acid lactones will enable insight into their biological functions.
Assuntos
Lactonas , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Hidrólise , Lactonas/metabolismo , Lactonas/química , Macrolídeos/metabolismo , Macrolídeos/química , Hidrolases/metabolismoRESUMO
Polyethylene terephthalate (PET) is one of the widely used plastics, but its waste pollution has become a global environmental issue. The discovery of polyethylene terephthalate hydrolase (PETase) has provided a green and environmentally friendly approach for PET degradation. However, PETase produces intermediate products that inhibit the enzyme's further activity, leading to a decrease in enzyme efficiency. Mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) works synergistically with PETase to further degrade the intermediate product MHET into ethylene glycol (EG) and terephthalic acid (TPA). MHETase exhibits extremely high specificity for MHET and is crucial for the complete degradation of PET. This article comprehensively reviews MHETase from various perspectives, including its three-dimensional structure, substrate binding, and catalytic mechanism. It demonstrates the structural features and key residues associated with the enzyme's degrading activity and discusses the progress in enzyme engineering modifications. Additionally, the study envisions the development of a two-enzyme PET degradation system by combining MHETase with PETase, aiming to provide valuable references for designing and developing more efficient PET hydrolytic enzyme systems.
Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Hidrolases/metabolismo , Hidrolases/química , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Especificidade por Substrato , Biodegradação Ambiental , Engenharia de Proteínas , Etilenoglicol/química , Etilenoglicol/metabolismoRESUMO
Synthetic pyrethroids are widely used insecticides which may cause chronic diseases in non-target organisms upon long-term exposure. Microbial degradation offers a reliable method to remove them from the environment. This study focused on Brevibacillus parabrevis BCP-09 and its enzymes for degrading pyrethroids. The predicted deltamethrin-degrading genes phnA and mhpC were used to construct recombinant plasmids. These plasmids, introduced into Escherichia coli BL21(DE3) cells and induced with L-arabinose. The results indicated that the intracellular crude enzyme efficiently degraded deltamethrin by 98.8 %, ß-cypermethrin by 94.84 %, and cyfluthrin by 73.52 % within 24 h. The hydrolytic enzyme MhpC possesses a catalytic triad Ser/His/Asp and a typical "Gly-X-Ser-X-Gly" conservative sequence of the esterase family. Co-cultivation of induced E. coli PhnA and E. coli MhpC resulted in degradation rates of 41.44 ± 3.55 % and 60.30 ± 4.55 %, respectively, for deltamethrin after 7 d. This study states that the degrading enzymes from B. parabrevis BCP-09 are an effective method for the degradation of pyrethroids, providing available enzyme resources for food safety and environmental protection.
Assuntos
Brevibacillus , Nitrilas , Piretrinas , Piretrinas/metabolismo , Brevibacillus/metabolismo , Brevibacillus/genética , Nitrilas/metabolismo , Inseticidas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/metabolismo , Hidrolases/genética , Biodegradação Ambiental , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Plasmídeos/genéticaRESUMO
The widespread use of non-naturally degradable plastics is causing increasingly serious harm to the environment. Reducing plastic pollutants has become the core of ecological and environment management. Biological methods such as enzymes demonstrate advantages in depolymerizing plastics with mild reaction conditions and recycling of depolymerization products. However, there are few reports on the biological depolymerization of polyamide plastics. In this study, by using 4-nitropropionanilide as the model substrate, we screened against our plastic depolymerase library and obtained a Meiothermus ruber-derived enzyme (MrABH) that can hydrolyze the polyamide bond. We expressed this enzyme in Escherichia coli and purified the protein by affinity chromatography. Furthermore, we investigated the catalytic properties, enzymatic properties, and catalytic products of this enzyme with polyamide as the substrate. MrABH had good stability at pH 8.0-10.0, with the optimal performance at pH 9.0 and 30 â. The catalytic performance of this enzyme for ester bonds and amide bonds was similar. MrABH can catalyze the depolymerization of PA6 and PA66 to produce monomers and oligomers, demonstrating the potential to be used in the depolymerization and recycling of polyamide.
Assuntos
Escherichia coli , Nylons , Nylons/química , Escherichia coli/genética , Escherichia coli/enzimologia , Hidrolases/metabolismo , Hidrolases/química , Estabilidade Enzimática , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Hidrólise , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/biossínteseRESUMO
Curcumin is a plant-derived secondary metabolite exhibiting antitumor, neuroprotective, antidiabetic activities, and so on. We previously isolated Escherichia coli as an enterobacterium exhibiting curcumin-converting activity from human feces, and discovered an enzyme showing this activity (CurA) and named it NADPH-dependent curcumin/dihydrocurcumin reductase. From soil, here, we isolated a curcumin-degrading microorganism (No. 34) using the screening medium containing curcumin as the sole carbon source and identified as Rhodococcus sp. A curcumin-degrading enzyme designated as CurH was purified from this strain and characterized, and compared with CurA. CurH catalyzed hydrolytic cleavage of a carbon-carbon bond in the ß-diketone moiety of curcumin and its analogs, yielding two products bearing a methyl ketone terminus and a carboxylic acid terminus, respectively. These findings demonstrated that a curcumin degradation reaction catalyzed by CurH in the soil environment was completely different from the one catalyzed by CurA in the human microbiome. Of all the curcumin analogs tested, suitable substrates for the enzyme were curcuminoids (i.e., curcumin and bisdemethoxycurcumin) and tetrahydrocurcuminoids. Thus, we named this enzyme curcuminoid hydrolase. The deduced amino acid sequence of curH exhibited similarity to those of members of acetyl-CoA C-acetyltransferase family. Considering results of oxygen isotope analyses and a series of site-directed mutagenesis experiments on our enzyme, we propose a possible catalytic mechanism of CurH, which is unique and distinct from those of enzymes degrading ß-diketone moieties such as ß-diketone hydrolases known so far.
Assuntos
Curcumina , Rhodococcus , Microbiologia do Solo , Curcumina/metabolismo , Curcumina/análogos & derivados , Curcumina/química , Rhodococcus/enzimologia , Rhodococcus/genética , Rhodococcus/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Cetonas/metabolismo , Cetonas/química , Especificidade por SubstratoRESUMO
Ideonella sakaiensis is a bacterium that can degrade and consume polyethylene terephthalate (PET), a plastic material that was previously considered non-biodegradable. The degradation of PET requires two enzymes, namely poly (ethylene terephthalate) hydrolase (PETase) and mono (2-hydroxyethyl) terephthalate hydrolase (MHETase), which break down PET into terephthalate (TPA) and ethylene glycol (EG), which serve as carbon sources for the bacterium. Previous studies have focused on the enzymatic properties, structure, and mechanism of action of PETase and MHETase. However, the regulation of PETase and MHETase gene expression has not been investigated. This study identified a protein that binds to the MHETase promoter DNA, MHETase gene-regulating protein (MRP) in I. sakaiensis. PET or TPA induced the expression of PETase and MHETase genes. Furthermore, the induction of the MHETase gene was abolished by the deletion of the mrp gene, while the expression of the PETase gene was maintained. In addition, the genes involved in TPA metabolism were not induced in the mrp mutant. Furthermore, the growth of the PET and TPA deteriorated due to mrp mutation. Also, MRP binds to the promoter regions of the MHETase gene and TPA metabolizing genes, but not to the PETase gene promoter. These results suggest that MRP is a transcription factor that activates MHETase and TPA-metabolizing genes.