Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.249
Filtrar
1.
Sci Rep ; 14(1): 15983, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987427

RESUMO

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Assuntos
Flavonoides , Hidroxibenzoatos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligação Proteica , Quercetina/farmacologia , Quercetina/química , Quercetina/metabolismo , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/metabolismo , Células HEK293
2.
J Mass Spectrom ; 59(8): e5075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989744

RESUMO

Prinsepia utilis Royle, native to the Himalayas, is esteemed in Chinese and Indian folk medicine for its diverse medicinal benefits, targeting arthritis, pain relief, bone disorders, and joint discomfort. This study examined the 25% aqueous methanol extract of P. utilis leaves using UPLC-Q-TOF-MS/MS, identifying 78 metabolites, 76 of which were reported for the first time in P. utilis. These included 64 phenolics represented by 56 flavonoids, 5 phenolic acids, 3 phenolic glycosides, 4 terpenoids, 2 lignan glycosides, and 8 other compounds, expanding the knowledge of its chemical composition. These findings lay a foundation for further research, providing insights into potential bioactive compounds and opening avenues for applications in natural product drug discovery, traditional medicine, and nutraceutical development, leveraging the plant's established traditional uses.


Assuntos
Flavonoides , Metabolômica , Extratos Vegetais , Folhas de Planta , Espectrometria de Massas em Tandem , Folhas de Planta/química , Folhas de Planta/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodos , Flavonoides/análise , Fenóis/análise , Glicosídeos/análise , Glicosídeos/metabolismo , Metaboloma , Terpenos/análise , Terpenos/metabolismo , Lignanas/análise , Lignanas/metabolismo , Hidroxibenzoatos
3.
Front Immunol ; 15: 1345002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975345

RESUMO

Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.


Assuntos
Anti-Inflamatórios , Hidroxibenzoatos , Inflamação , Plantas Comestíveis , Plantas Medicinais , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Inflamação/imunologia , Plantas Comestíveis/química , Plantas Medicinais/química , Transdução de Sinais/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos
4.
Molecules ; 29(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998946

RESUMO

Pigmented rice varieties are abundant in phenolic compounds. Antioxidant activity and bioaccessibility of phenolic compounds are modified in the gastrointestinal tract. After in vitro simulated digestion, changes in antioxidant activity and bioaccessibility of phenolic compounds (phenolic acids, flavonoids, and anthocyanins) in purple rice brans (Hom Nil and Riceberry) were compared with undigested crude extracts. The digestion method was conducted following the INFOGEST protocol. Antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assays. The bioaccessibility index (BI) was calculated from the ratio of digested to undigested soluble phenolic content. Overall results showed that the in vitro simulated digested rice brans had lower antioxidant activity and lower total phenolic, flavonoid, and anthocyanin contents. However, the concentration of sinapic acid was stable, while other phenolic acids (gallic, protocatechuic, vanillic, ρ-coumaric, and ferulic acids) degraded after the oral, gastric, and intestinal phases. The BI of sinapic, gallic, vanillic, and ferulic acids remained stable, and the BI of quercetin was resistant to digestion. Conversely, anthocyanins degraded during the intestinal phase. In conclusion, selective phenolic compounds are lost along the gastrointestinal tract, suggesting that controlled food delivery is of further interest.


Assuntos
Antocianinas , Antioxidantes , Digestão , Flavonoides , Oryza , Fenóis , Extratos Vegetais , Oryza/química , Antioxidantes/química , Extratos Vegetais/química , Fenóis/química , Fenóis/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Antocianinas/química , Hidroxibenzoatos/química , Disponibilidade Biológica
5.
Int J Biol Macromol ; 273(Pt 2): 133175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889835

RESUMO

The molecular and colloidal-level interactions between two major phenolic acids, gallic and caffeic acid, with a major food polysaccharide, xanthan gum, were studied in binary systems aiming to correlate the stability of the binary systems as a function of pH and xanthan-polyphenol concentrations. Global stability diagrams were built, acting as roadmaps for examining the phase separation regimes followed by the fluorimetry-based thermodynamics of the interactions. The effects of noncovalent interactions on the macroscopic behavior of the binary systems were studied, using shear and extensional rheometry. The collected data for caffeic acid - xanthan gum mixtures showed that the main interactions were pH-independent volume exclusions, while gallic acid interacts with xanthan gum, especially at pH 7 with other mechanisms as well, improving the colloidal dispersion stability. A combination of fluorimetry, extensional rheology and stability measurements highlight the effect of gallic acid-induced aggregation of xanthan gum, both in structuring and de-structuring the binary systems. The above provide a coherent framework of the physicochemical aspect of binary systems, shedding light on the role of xanthan gum in its oral functions, such as in inducing texture, in model complex systems containing phenolic acids.


Assuntos
Polissacarídeos Bacterianos , Reologia , Polissacarídeos Bacterianos/química , Hidroxibenzoatos/química , Concentração de Íons de Hidrogênio , Ácido Gálico/química , Termodinâmica
6.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930808

RESUMO

In this study, a beverage made from a combination of Agave sap (AS) and prickly pear juice (PPJ) was analyzed for its nutrients and bioactive and potentially health-promoting compounds. The beverage was evaluated for its ability to act as an antioxidant, regulate glycemic properties, and undergo gut bacterial fermentation in vitro. The major mono- and oligosaccharides present in the beverage were galacturonic acid (217.74 ± 13.46 mg/100 mL), rhamnose (227.00 ± 1.58 mg/100 mL), and fructose (158.16 ± 8.86 mg/mL). The main phenolic compounds identified were protocatechuic acid (440.31 ± 3.06 mg/100 mL) and catechin (359.72 ± 7.56 mg/100 mL). It was observed that the beverage had a low glycemic index (<40) and could inhibit digestive carbohydrases. The combination of ingredients also helped to reduce gas production during AS fermentation from 56.77 cm3 to 15.67 cm3. The major SCFAs produced during fermentation were butyrate, acetate, and propionate, with valerate being produced only during the late fermentation of the AS. This beverage is rich in bioactive compounds, such as polyphenols and dietary fiber, which will bring health benefits when consumed.


Assuntos
Agave , Antioxidantes , Sucos de Frutas e Vegetais , Agave/química , Sucos de Frutas e Vegetais/análise , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Fermentação , Hidroxibenzoatos/análise , Polifenóis/análise , Polifenóis/química , Pyrus/química , Fenóis/análise , Fenóis/química , Ramnose/análise , Ramnose/química , Catequina/análise , Catequina/química , Catequina/análogos & derivados , Ácidos Hexurônicos
7.
Water Res ; 259: 121891, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870888

RESUMO

The practical application of the Fe-catalyzed peracetic acid (PAA) processes is seriously restricted due to the need for narrow pH working range and poor anti-interference capacity. This study demonstrates that protocatechuic acid (PCA), a natural and eco-environmental phenolic acid, significantly enhanced the removal of sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions (6.0-8.0) by complexing Fe(III). With sulfamethoxazole (SMX) as the model contaminant, the pseudo-first-order rate constant of SMX elimination in PCA/Fe(III)/PAA process was 63.5 times higher than that in Fe(III)/PAA process at pH 7.0, surpassing most of the previously reported strategies-enhanced Fe-catalyzed PAA processes (i.e., picolinic acid and hydroxylamine etc.). Excluding the primary contribution of reactive species commonly found in Fe-catalyzed PAA processes (e.g., •OH, R-O•, Fe(IV)/Fe(V) and 1O2) to SMX removal, the Fe(III)-peroxy complex intermediate (CH3C(O)OO-Fe(III)-PCA) was proposed as the primary reactive species in PCA/Fe(III)/PAA process. DFT theoretical calculations indicate that CH3C(O)OO-Fe(III)-PCA exhibited stronger oxidation potential than CH3C(O)OO-Fe(III), thereby enhancing SMX removal. Four potential removal pathways of SMX were proposed and the toxicity of reaction solution decreased with the removal of SMX. Furthermore, PCA/Fe(III)/PAA process exhibited strong anti-interference capacity to common natural anions (HCO3-, Cl-and NO3-) and humic acid. More importantly, the PCA/Fe(III)/PAA process demonstrated high efficiency for SMX elimination in actual samples, even at a trace Fe(III) dosage (i.e., 5 µM). Overall, this study provided a highly-efficient and eco-environmental strategy to remove sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions and to strengthen its anti-interference capacity, underscoring its potential application in water treatment.


Assuntos
Antibacterianos , Hidroxibenzoatos , Sulfonamidas , Concentração de Íons de Hidrogênio , Hidroxibenzoatos/química , Sulfonamidas/química , Antibacterianos/química , Ferro/química , Poluentes Químicos da Água/química
8.
PLoS One ; 19(6): e0299372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885237

RESUMO

Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 µM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.


Assuntos
Hidroxibenzoatos , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Ácido Gálico/química , Ácido Gálico/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia
9.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891825

RESUMO

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Assuntos
Antocianinas , Mutação , Phaseolus , Polifenóis , Sementes , Sementes/genética , Sementes/metabolismo , Sementes/química , Phaseolus/genética , Phaseolus/metabolismo , Polifenóis/biossíntese , Antocianinas/biossíntese , Flavonoides/biossíntese , Flavonoides/metabolismo , Genótipo , Hidroxibenzoatos/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
10.
Hereditas ; 161(1): 19, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907290

RESUMO

The Balanophorae are not only traditional Chinese herbal medicines but also functional foods with diverse sources. This study aimed to distinguish pharmacognostic characteristics and secondary metabolites among different species of Balanophorae. Eight species of Balanophorae herbs were harvested, including 21 batches with 209 samples. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze secondary metabolites of Balanophorae from 21 sources. Targeted metabolomic analysis was performed to compare differences among the groups. Rhopalocnemis phalloide and B. indica can be identified by their pharmacognostic characteristics. Then, 41 secondary metabolites were identified or characterized in the mixed extracts of the 209 samples, mainly phenolic acids, flavonoids, and their derivatives. The distribution of these secondary metabolites revealed apparent differences among different species. In addition, targeted metabolomic analysis suggested that the secondary metabolite profiles of seven species of Balanophorae showed noticeable differences, and differences were also observed among different growing regions. Finally, five important metabolic markers were screened to successfully distinguish B. laxiflora, B. harlandii, and B. polyandra, including three phenolic acids and two flavonoids. This is the first study to systematically compare both the morphology and secondary metabolites among different sources of Balanophorae, which could provide effective information for identifying diverse species.


Assuntos
Metabolômica , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Medicamentos de Ervas Chinesas , Farmacognosia , Metaboloma , Metabolismo Secundário , Espectrometria de Massas , Hidroxibenzoatos/metabolismo , Extratos Vegetais
11.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893465

RESUMO

Yerba Mate drink made from dried and crushed leaves and twigs of Paraguayan holly (Ilex paraguariensis A. St.-Hil.), which is a valuable source of bioactive substances, in particular antioxidants. The available literature lacks data on changes in the content and profile of bioactive compounds such as tannins, caffeine, the phenolic acid profile of flavonoids and carotenoids, as well as total polyphenol content and antioxidant activity in Yerba Mate infusions depending on different brewing conditions, and how different brewing conditions affect the physicochemical properties of these infusions. Therefore, this study evaluated the physicochemical properties of dried and Yerba Mate infusions prepared via single and double brewing processes at 70 °C and 100 °C. The organoleptic evaluation, as well as the instrumental color measurement, showed significant changes in the total color difference (ΔE) and the L*a*b* chromatic coordinates of dried Yerba Mate samples and their infusions. Moreover, the research showed higher contents of tannins (mean 1.36 ± 0.14 g/100 g d.m.), caffeine (mean 17.79 ± 3.49 mg/g d.m.), carotenoids (mean 12.90 ± 0.44 µg/g d.m.), phenolic acids (mean 69.97 ± 7.10 mg/g d.m.), flavonoids (mean 5.47 ± 1.78 mg/g d.m.), total polyphenols (mean 55.26 ± 8.51 mg GAE/g d.m.), and antioxidant activity (mean 2031.98 ± 146.47 µM TEAC/g d.m.) in single-brewed Yerba Mate infusions compared to double-brewed (0.77 ± 0.12 g/100 g d.m., 14.28 ± 5.80 mg/g d.m., 12.67 ± 0.62 µg/g d.m., 57.75 ± 8.73 mg/g d.m., 3.64 ± 0.76 mg/g d.m., 33.44 ± 6.48 mg GAE/g d.m. and 1683.09 ± 155.34 µM TEAC/g d.m., respectively). In addition, infusions prepared at a lower temperature (70 °C) were characterized by a higher content of total polyphenols and higher antioxidant activity, in contrast to the tannin and carotenoid contents, the levels of which were higher at 100 °C than at 70 °C. Considering the high amount of bioactive ingredients, in particular antioxidants, and a wide range of health benefits, it is worth including Yerba Mate in the daily diet.


Assuntos
Antioxidantes , Ilex paraguariensis , Polifenóis , Ilex paraguariensis/química , Antioxidantes/química , Antioxidantes/análise , Polifenóis/química , Polifenóis/análise , Taninos/análise , Taninos/química , Flavonoides/análise , Flavonoides/química , Carotenoides/química , Carotenoides/análise , Extratos Vegetais/química , Folhas de Planta/química , Cafeína/análise , Cafeína/química , Hidroxibenzoatos/química , Hidroxibenzoatos/análise , Bebidas/análise
12.
Talanta ; 277: 126344, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838562

RESUMO

A magnetic MXene aerogel (Fe3O4@MXene@PEI) was prepared by crosslinking amino modified MXene with polyethyleneimine using epichlorohydrin as a cross-linker. Adsorption properties of Fe3O4@MXene@PEI aerogel for phenolic acids were evaluated by adsorption kinetics and isotherms experiments, showing that the high adsorption affinity was governed by multilayer chemisorption process. An efficient MSPE/HPLC method was developed for the determination of phenolic acids with excellent selectivity, good linearity (0.025-5.0 µg mL-1), low LODs (0.007-0.017 µg mL-1), and satisfactory recoveries (80.0-120.0 %). Moreover, the antioxidant activity of the Fe3O4@MXene@PEI purified compounds was superior to that of the conventional method as demonstrated by the results of scavenging experiments on 2,2 -diphenyl-1-picrylhydrazyl radical scavenging assay. Finally, 65 organic acids were identified in the Fe3O4@MXene@PEI treated honeysuckle extracts by UHPLC-Q-Exactive Orbitrap MS/MS analysis. The proposed sorbent exhibits remarkable promise for the selective separation and purification of organic acids from herbal products.


Assuntos
Hidroxibenzoatos , Polietilenoimina , Hidroxibenzoatos/química , Hidroxibenzoatos/análise , Hidroxibenzoatos/isolamento & purificação , Polietilenoimina/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Géis/química , Plantas Medicinais/química , Extração em Fase Sólida/métodos , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
13.
J Mater Chem B ; 12(27): 6617-6626, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38896436

RESUMO

Multifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m-2 on porcine skin, which is further amplified to 615 J m-2 after 30 minutes. The hydrogel also possesses the desired features for wound dressing, such as self-healing, antioxidant, anti-UV and antibacterial properties, good cytocompatibility, strong adhesion in use and weak adhesion on removal, as well as reversible and wet adhesion. Finally, in vivo data reveal that the PAA-PAE-PCA hydrogels can significantly accelerate wound healing, as evidenced by a noticeable reduction in the wound area and a diminished inflammatory response. Collectively, these results endorse the obtained multifunctional hydrogel as a promising candidate for wound healing and related fields.


Assuntos
Resinas Acrílicas , Bandagens , Hidrogéis , Hidroxibenzoatos , Cicatrização , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Animais , Resinas Acrílicas/química , Cicatrização/efeitos dos fármacos , Suínos , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Adesivos/química , Adesivos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Escherichia coli/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
14.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2654-2665, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812166

RESUMO

This study established an ultrasound-assisted extraction-high performance liquid chromatography method for simulta-neously determinining the content of 11 bioactive compounds including iridoids, phenolic acids, and flavonoids in Lonicera japonica flowers. The flowers at six stages from the rice bud stage(ML) to the golden flower stage(JH) of L. japonica varieties 'Sijuhua' and 'Beihua No.1' in two planting bases in Shandong province were collected. The established method was employed to determine the content of 11 target compounds, on the basis of which the dynamics of active components in L. japonica sampels during different development stages was investigated. The correlation analysis was carried out to reveal the correlations of the content of iridoids, phenolic acids, and flavonoids. Furthermore, the antioxidant activities of samples at different developmental stages were determined, and the relationship between antioxidant activity and chemical components was analyzed by the correlation analysis. The results showed that the total content of the 11 components in 'Sijihua' changed in a "W" pattern from the ML to JH, being the highest at the ML and the second at the slight white stage(EB). The total content of 11 compounds in 'Beihua No.1' was the highest at the ML and decreased gra-dually from the ML to JH. The samples of 'Sijihua' had higher content of iridoids and lower content of phenolic acids than those of 'Beihua No.1'. The content of flavonoids and phenolic acids showed a positive correlation(R~2=0.90, P<0.05) in 'Sijihua' but no obvious correlation in 'Beihua No.1'. The antioxidant activity and phenolic acid content showed positive correlations, with the determination coefficients(R~2) of 0.84(P<0.05) in 'Beihua No.1' and 0.73(P<0.05) in 'Sijihua'. The antioxidant activity of both varieties was the strongest at the ML and the second at the EB. This study revealed that the content dynamics of iridoids, phenolic acids, and flavonoids in 'Sijihua' and 'Beihua No.1' cultivated in Shandong province during different developmental stages. The results indicated that the antioxidant activity of L. japonica flowers was significantly correlated with the content of phenolic acids at different deve-lopmental stages, which provided a basis for determining the optimum harvest time of L. japonica flowers.


Assuntos
Antioxidantes , Flavonoides , Flores , Lonicera , Lonicera/química , Lonicera/crescimento & desenvolvimento , Lonicera/metabolismo , Flores/química , Flores/crescimento & desenvolvimento , Flores/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análise , Antioxidantes/química , China , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo , Metabolismo Secundário , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Iridoides/metabolismo , Iridoides/análise , Iridoides/química
15.
Biomacromolecules ; 25(6): 3542-3553, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38780531

RESUMO

Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway. In this work, three transgenic poplar lines with increasing QsuB expression levels and different lignin contents were studied using small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS). SANS showed that although the cellulose microfibril cross-sectional dimension remained unchanged, the ordered organization of the microfibrils progressively decreased with increased QsuB expression. This was correlated with decreasing total lignin content in the QsuB lines. WAXS showed that the crystallite dimensions of cellulose microfibrils transverse to the growth direction were not affected by the QsuB expression, but the crystallite dimensions parallel to the growth direction were decreased by ∼20%. Cellulose crystallinity was also decreased with increased QsuB expression, which could be related to high levels of 3,4-dihydroxybenzoate, the product of QsuB expression, disrupting microfibril crystallization. In addition, the cellulose microfibril orientation angle showed a bimodal distribution at higher QsuB expression levels. Overall, this study provides new structural insights into the impact of ectopic synthesis of small-molecule metabolites on cellulose organization and structure that can be used for future efforts aimed at reducing biomass recalcitrance.


Assuntos
Celulose , Populus , Celulose/química , Populus/genética , Populus/metabolismo , Populus/química , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Lignina/química , Plantas Geneticamente Modificadas , Hidroliases/metabolismo , Hidroliases/genética , Biomassa , Parede Celular/metabolismo , Parede Celular/química , Resorcinóis
16.
J Chromatogr A ; 1728: 465020, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38805896

RESUMO

Qianggan capsule (QGC) is a complex preparation composed of 16 traditional Chinese medicines (TCM) that can clear heat and dampness, fortify the spleen and blood, typify qi and relieve depression. However, the chemical composition of QGC remains incompletely understood, despite its clinical use in treating chronic hepatitis and liver injury. The objective of this study was to explore the quality markers of QGC through qualitative and quantitative analysis of its chemical components. First, the chemical composition of QGC was qualitatively analyzed using UHPLC-Q-TOF-MS/MS. Subsequently, the LC-sMRM method was developed and optimized to accurately quantify various chemical components of 10 batches of QGC. Finally, the variations in chemical components between batches were analyzed via multivariate statistical analysis. UHPLC-Q-TOF-MS/MS analysis revealed 167 chemical constituents in QGC, comprised of 48 flavonoids, 32 terpenoids, 18 phenolic acids, 9 coumarins, 9 phenylpropanoids, and 51 nucleosides, sugars, amino acids, anthraquinones, and other compounds. The LC-sMRM method was established for the quantitative analysis of 42 chemical components in 10 batches of QGC. The ultrasonic-assisted extraction parameters were optimized using RSM. Compared with conventional MRM, sMRM demonstrated superior sensitivity and precision. PCA and OPLS-DA identified eight chemical components with content differences among batches. This study established the chemical composition of QGC, offering useful guidance for assessing its quality.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Flavonoides/química , Cumarínicos/química , Cumarínicos/análise , Terpenos/análise , Hidroxibenzoatos/análise , Reprodutibilidade dos Testes , Nucleosídeos/análise , Cápsulas/química
17.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703500

RESUMO

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Assuntos
Cádmio , Depsídeos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cádmio/metabolismo , Depsídeos/metabolismo , Metabolismo Secundário/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Benzofuranos/metabolismo , Ácido Rosmarínico , Cinamatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Raios Ultravioleta , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Abietanos/metabolismo , Abietanos/biossíntese , Hidroxibenzoatos/metabolismo
18.
Plant Foods Hum Nutr ; 79(2): 330-336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710923

RESUMO

The present work carries out a quantitative analysis of the major bioactive compounds found in the native Mexican purple tomatoes. Total phenolic content ranged from 7.54 to 57.79 mg TPC/g DM, total flavonoid content ranged from 1.89 to 16.93 mg TFC/g DM, total anthocyanin content ranged from 0.29 to 2.56 mg TAC/g DM, and total carotenoid content ranged from 0.11 to 0.75 mg TCC/ g DM. In addition, 14 phenolic acids were identified, among which caffeoylquinic acid derivatives were the most abundant compounds with chlorogenic acid concentration up to 9.680 mg/g DM, together with flavonoids, such as rutin and quercetin-hexoxide. The qualitative analysis also showed the presence of 9 acylated anthocyanins and 2 carotenoids with significant functional features. As for anthocyanins, their chemical structures disclosed special structural features: glycosylated anthocyanins exhibited cis-trans hydroxycinnamic moieties and petunidin-3-(trans-p-coumaroyl)-rutinoside-5-glucoside was reported to be the main anthocyanin, whitin the range of concentrations between 0.160 and 1.143 mg/g DM.


Assuntos
Antocianinas , Carotenoides , Flavonoides , Fenóis , Solanum lycopersicum , Solanum lycopersicum/química , Antocianinas/análise , Carotenoides/análise , México , Flavonoides/análise , Fenóis/análise , Frutas/química , Ácido Clorogênico/análise , Ácido Quínico/análise , Ácido Quínico/análogos & derivados , Hidroxibenzoatos/análise
19.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727835

RESUMO

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Assuntos
Biodegradação Ambiental , Ácidos Ftálicos , Sphingomonadaceae , Ácidos Ftálicos/metabolismo , Sphingomonadaceae/metabolismo , Sphingomonadaceae/genética , Dibutilftalato/metabolismo , Plastificantes/metabolismo , Cromatografia Líquida de Alta Pressão , Hidroxibenzoatos/metabolismo
20.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791194

RESUMO

MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5' RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza.


Assuntos
Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos , MicroRNAs , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , MicroRNAs/genética , Hidroxibenzoatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...