Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Sleep Breath ; 28(3): 1155-1163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221554

RESUMO

OBJECTIVE: To investigate the distribution characteristics of intestinal flora in patients with obstructive sleep apnoea hypopnea syndrome (OSAHS) of different severities and the relationship between different intestinal flora and sleep structure disorder, hypoxemia and obesity. METHODS: A total of 25 healthy volunteers and 80 patients with OSAHS were enrolled in this study. The control group was healthy, and the experimental group comprised patients with OSAHS. The apnoea-hypopnea index (AHI), minimum saturation of peripheral oxygen (SpO2min), mean saturation of peripheral oxygen, body mass index, maximum apnoea time and other indicators were collected in clinical practice. The patients with OSAHS were divided into 20 mild and 42 moderate OSAHS cases, as well as 18 patients with severe OSAHS according to the AHI classification. Bioinformatics-related statistics were analysed using the QIIME2 software, and clinical data were analysed with the SPSS 22.0 software. RESULTS: The changes in microbial alpha diversity in the intestinal flora of patients with OSAHS showed that richness, diversity and evenness decreased, but the beta diversity did not change significantly. The Thermus Anoxybacillus, Anaerofustis, Blautia, Sediminibacterium, Ralstonia, Pelomonas, Ochrobactrum, Thermus Sediminibacterium, Ralstonia, Coccidia, Cyanobacteria, Anoxic bacilli and Anaerobes were negatively correlated with AHI (r = -0.38, -0.36, -0.35, -0.33, -0.31, -0.29, -0.22, -0.18) and positively correlated with SpO2min (r =0.38, 0.2, 0.25, 0.22, 0.24, 0.11, 0.23, 0.15). CONCLUSION: Some bacteria showed a significant correlation with clinical sleep monitoring data, which provides a possibility for the assessment of disease risk, but the mechanisms of their actions in the intestinal tract are not clear at present. Further research and observations are needed.


Assuntos
Microbioma Gastrointestinal , Hipóxia , Obesidade , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/microbiologia , Microbioma Gastrointestinal/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Obesidade/microbiologia , Hipóxia/microbiologia
2.
PeerJ ; 10: e14090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225905

RESUMO

Background: Gut microbiota plays an important role in host health and is influenced by multiple factors. Hypobaric hypoxia usually existing at high altitude conditions can adversely affect normal physiological functions. However, the dynamic changes of gut microbiota influenced by hypobaric hypoxia have not been elucidated. Methods: In this study, we collected fecal samples from seven rats at 14 time points from entering the hypobaric chamber (eight time points) to leaving the chamber (six time points) and five rats served as normoxic controls. Metagenome sequencing was performed on all samples and the dynamics of taxa and functions were analyzed. Results: We found that the α-diversity was changed in the first 5 days after entering or leaving the hypobaric chamber. The ß-diversity analysis revealed that gut microbiota structure was significantly separated among 14 time points. After entering the chamber, the relative abundance of Bacteroides decreased and the most abundant genus turned into Prevotella. The abundance of Firmicutes and Bacteroidetes showed an opposite trend and both have a significant change within 5 days after entering or leaving the hypobaric hypoxia chamber. Some obligate anaerobic bacteria belonging to Desulfovibrio and Alistipes were significantly enriched after entering the chamber for 5 weeks, whereas Probiotics like Bifidobacterium and Lactococcus, and short-chain fatty acids producers like Butyrivibrio and Pseudobutyrivibrio were significantly enriched after leaving the chamber for 3 weeks. Microbial functions like 'Two-component regulatory system', 'beta-carotene biosynthesis' and 'Fatty acid biosynthesis' were significantly enriched after entering the chamber for 5 weeks. Hypobaric hypoxia conditions could deeply affect the diversity and structure of gut microbiota. The alterations of abundance of dominant taxa (Firmicutes and Bacteroidetes), increased anaerobes and decreased probiotics induced by hypobaric hypoxia conditions might affect the host health.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , Microbioma Gastrointestinal/genética , Hipóxia/microbiologia , Fezes/microbiologia , Bactérias Anaeróbias , Ácidos Graxos Voláteis
3.
J Biol Chem ; 298(2): 101562, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998824

RESUMO

Hypoxia exerts profound effects on cell physiology, but its effect on colonic uptake of the microbiota-generated forms of vitamin B1 (i.e., thiamin pyrophosphate [TPP] and free thiamine) has not been described. Here, we used human colonic epithelial NCM460 cells and human differentiated colonoid monolayers as in vitro and ex vivo models, respectively, and were subjected to either chamber (1% O2, 5% CO2, and 94% N2) or chemically (desferrioxamine; 250 µM)-induced hypoxia followed by determination of different physiological-molecular parameters. We showed that hypoxia causes significant inhibition in TPP and free thiamin uptake by colonic NCM460 cells and colonoid monolayers; it also caused a significant reduction in the expression of TPP (SLC44A4) and free thiamin (SLC19A2 and SLC19A3) transporters and in activity of their gene promoters. Furthermore, hypoxia caused a significant induction in levels of hypoxia-inducible transcription factor (HIF)-1α but not HIF-2α. Knocking down HIF-1α using gene-specific siRNAs in NCM460 cells maintained under hypoxic conditions, on the other hand, led to a significant reversal in the inhibitory effect of hypoxia on TPP and free thiamin uptake as well as on the expression of their transporters. Finally, a marked reduction in level of expression of the nuclear factors cAMP responsive element-binding protein 1 and gut-enriched Krüppel-like factor 4 (required for activity of SLC44A4 and SLC19A2 promoters, respectively) was observed under hypoxic conditions. In summary, hypoxia causes severe inhibition in colonic TPP and free thiamin uptake that is mediated at least in part via HIF-1α-mediated transcriptional mechanisms affecting their respective transporters.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Microbiota , Tiamina , Transporte Biológico , Hipóxia Celular/fisiologia , Humanos , Hipóxia/metabolismo , Hipóxia/microbiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo
4.
Physiology (Bethesda) ; 35(4): 234-243, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490751

RESUMO

The supply of oxygen to tissues is controlled by microcirculatory blood flow. One of the more surprising discoveries in cardiovascular physiology is the critical dependence of microcirculatory blood flow on a single conserved cysteine within the ß-subunit (ßCys93) of hemoglobin (Hb). ßCys93 is the primary site of Hb S-nitrosylation [i.e., S-nitrosothiol (SNO) formation to produce S-nitrosohemoglobin (SNO-Hb)]. Notably, S-nitrosylation of ßCys93 by NO is favored in the oxygenated conformation of Hb, and deoxygenated Hb releases SNO from ßCys93. Since SNOs are vasodilatory, this mechanism provides a physiological basis for how tissue hypoxia increases microcirculatory blood flow (hypoxic autoregulation of blood flow). Mice expressing ßCys93A mutant Hb (C93A) have been applied to understand the role of ßCys93, and RBCs more generally, in cardiovascular physiology. Notably, C93A mice are unable to effect hypoxic autoregulation of blood flow and exhibit widespread tissue hypoxia. Moreover, reactive hyperemia (augmentation of blood flow following transient ischemia) is markedly impaired. C93A mice display multiple compensations to preserve RBC vasodilation and overcome tissue hypoxia, including shifting SNOs to other thiols on adult and fetal Hbs and elsewhere in RBCs, and growing new blood vessels. However, compensatory vasodilation in C93A mice is uncoupled from hypoxic control, both peripherally (e.g., predisposing to ischemic injury) and centrally (e.g., impairing hypoxic drive to breathe). Altogether, physiological studies utilizing C93A mice are confirming the allosterically controlled role of SNO-Hb in microvascular blood flow, uncovering essential roles for RBC-mediated vasodilation in cardiovascular physiology and revealing new roles for RBCs in cardiovascular disease.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Animais , Hemodinâmica , Hemoglobinas/química , Humanos , Hipóxia/microbiologia , Hipóxia/patologia , Microcirculação , Vasodilatação
5.
J Biol Chem ; 295(30): 10493-10505, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32503843

RESUMO

The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.


Assuntos
Imunidade Adaptativa , Neoplasias Colorretais , Microbioma Gastrointestinal/imunologia , Hipóxia , Imunidade Inata , Oxigênio/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Humanos , Hipóxia/imunologia , Hipóxia/microbiologia , Hipóxia/patologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
6.
Hypertension ; 76(1): 206-216, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418496

RESUMO

Therapeutic advances for pulmonary hypertension (PH) have been incremental because of the focus on the pulmonary vasculature in PH pathology. Here, we evaluate the concept that PH is, rather, a systemic disorder involving interplay among multiorgan systems, including brain, gut, and lungs. Therefore, the objective of this study was to evaluate the hypothesis that PH is associated with a dysfunctional brain-gut-lung axis and that global overexpression of ACE2 (angiotensin-converting enzyme 2) rebalances this axis and protects against PH. ACE2 knockin and wild-type (WT; C57BL/6) mice were subjected to chronic hypoxia (10% FIO2) or room air for 4 weeks. Cardiopulmonary hemodynamics, histology, immunohistochemistry, and fecal 16S rRNA microbial gene analyses were evaluated. Hypoxia significantly increased right ventricular systolic pressure, sympathetic activity as well as the number and activation of microglia in the paraventricular nucleus of the hypothalamus in WT mice. This was associated with a significant increase in muscularis layer thickening and decreases in both villi length and goblet cells and altered gut microbiota. Global overexpression of ACE2 prevented changes in hypoxia-induced pulmonary and gut pathophysiology and established distinct microbial communities from WT hypoxia mice. Furthermore, WT mice subjected to fecal matter transfer from ACE2 knockin mice were resistant to hypoxia-induced PH compared with their controls receiving WT fecal matter transfer. These observations demonstrate that ACE2 ameliorates these hypoxia-induced pathologies and attenuates PH. The data implicate dysfunctional brain-gut-lung communication in PH and provide novel avenues for therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , Disbiose/etiologia , Microbioma Gastrointestinal , Hipertensão Pulmonar/microbiologia , Hipóxia/complicações , Enzima de Conversão de Angiotensina 2/genética , Animais , Disbiose/enzimologia , Disbiose/microbiologia , Disbiose/terapia , Transplante de Microbiota Fecal , Técnicas de Introdução de Genes , Hemodinâmica , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/microbiologia , Inflamação , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Sistema Nervoso Simpático/fisiopatologia
7.
PLoS One ; 15(3): e0230197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163488

RESUMO

Since hypobaric hypoxia significantly affects metabolic characteristics of intestinal flora, which plays an important role in the biotransformation of aspirin, high altitudes may influence the pharmacokinetics and therapeutic effects of aspirin in the intestines. In the present study, to test alterations of intestinal microbiota at high altitude comparing to that at low altitude, we analyzed rat feces from plain group and high-altitude group by 16S rRNA analysis. To detect concentrations of aspirin and salicylic acid, we established a reliable liquid chromatography tandem mass spectrometry method to measure aspirin and salicylic acid concentrations in fecal suspensions and plasma. Our study found that the plateau hypoxic environment caused a significant increase in Bacteroides in rat feces, while Corynebacterium, Prevotella, and Coprococcus were declined. In addition, compared with the plain group, the metabolic activity of fecal suspensions from the plateau group on aspirin was significantly reduced. More importantly, these changes in the intestinal microbiota led to increasing absorption of aspirin in the rats after rapidly ascent to the plateau, and a reduction in the pharmacodynamic index TXB2, which would possibly result in bleeding. In conclusion, our research provides new ideas for changes in plateau pharmacokinetics, and then guide the corresponding reduction in aspirin dose for the population quickly entering the plateau.


Assuntos
Aspirina/farmacologia , Aspirina/farmacocinética , Microbioma Gastrointestinal/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Altitude , Doença da Altitude/microbiologia , Animais , Fezes/microbiologia , Hipóxia/microbiologia , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar
8.
Sci Rep ; 9(1): 19741, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874975

RESUMO

Due to increased temperatures and aquaculture density, thermal and hypoxia stresses have become serious problems for the aquaculture of abalone Haliotis diversicolor. Stresses lead to immunosuppression, which can cause severe negative impacts on aquaculture farms. To study the mechanism of immunosuppression after hypoxia stress and bacterial challenge, transcriptomes of H. diversicolor hemocytes involved in immunity were profiled. A total of 307,395,572 clean reads were generated and assembled into 99,774 unigenes. KEGG analysis indicated that 225 unigenes with immunologic function were mapped into immune-related pathways. Expression of 41 unigenes measured by quantitative real-time PCR (qRT-PCR) showed consistent results with that of transcriptome analysis. When exposure challenge of Vibrio parahaemolyticus, it is indicated that the PI3K-AKT, MAPK, NF-κB and P53 signal pathways were involved in the hypoxia-induced immunosuppression of H. diversicolor. Furthermore, when the AKT gene (HdAKT) was inhibited by double-stranded RNA (dsRNA), expression levels of HdAKT was lower than the blank and control group in hemocytes at 4 h, 12 h and 24 h (p < 0.05).


Assuntos
Gastrópodes , Regulação da Expressão Gênica/imunologia , Hemócitos , Hipóxia , Sistema de Sinalização das MAP Quinases , Estresse Fisiológico , Vibrio parahaemolyticus/imunologia , Animais , Gastrópodes/genética , Gastrópodes/imunologia , Gastrópodes/microbiologia , Hemócitos/imunologia , Hemócitos/microbiologia , Hipóxia/genética , Hipóxia/imunologia , Hipóxia/microbiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia
9.
Nat Microbiol ; 4(12): 2430-2441, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548684

RESUMO

Microbial populations form intricate macroscopic colonies with diverse morphologies whose functions remain to be fully understood. Despite fungal colonies isolated from environmental and clinical samples revealing abundant intraspecies morphological diversity, it is unclear how this diversity affects fungal fitness and disease progression. Here we observe a notable effect of oxygen tension on the macroscopic and biofilm morphotypes of the human fungal pathogen Aspergillus fumigatus. A hypoxia-typic morphotype is generated through the expression of a subtelomeric gene cluster containing genes that alter the hyphal surface and perturb interhyphal interactions to disrupt in vivo biofilm and infection site morphologies. Consequently, this morphotype leads to increased host inflammation, rapid disease progression and mortality in a murine model of invasive aspergillosis. Taken together, these data suggest that filamentous fungal biofilm morphology affects fungal-host interactions and should be taken into consideration when assessing virulence and host disease progression of an isolated strain.


Assuntos
Biofilmes/crescimento & desenvolvimento , Progressão da Doença , Fungos/metabolismo , Hipóxia/microbiologia , Animais , Aspergilose/metabolismo , Aspergillus fumigatus , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas , Fungos/genética , Hifas/genética , Camundongos , Família Multigênica , Virulência
11.
J Infect Chemother ; 25(12): 1007-1011, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31227380

RESUMO

Using the hospital records, we retrospectively assessed whether urinary ß2 microglobulin/creatinine ratio (UBCR) and lactate dehydrogenase (LD) values could be used to estimate the severity of Mycoplasma pneumoniae-associated lower respiratory tract infection (MP-LRTI). We studied 48 patients with MP-LRTI (median age, 7.5 years; range, 3-14 years) admitted to Kagoshima City Hospital and examined the relationships of the UBCR or LD values with fever and pulmonary tissue damage (hypoxemia and severity assessments on chest radiographs). Patients were assigned to four groups based on whether they had fever and/or hypoxemia. Patients with high fever showed significantly higher UBCR values than those without (P < 0.05), whereas those with hypoxemia showed higher LD values than those without (P = 0.001). The maximum body temperature on admission was closely associated with the UBCR but not with LD levels. In chest radiography assessments, LD levels were significantly higher in patients with severe than mild or moderate MP-LRTI. A cut-off LD level of 530 IU/L showed a very high sensitivity (100%) and specificity (93%). Although UBCR values were higher in patients with severe MP-LRTI, the differences were not statistically significant. Our study shows that the UBCR is associated with body temperature, whereas LD levels may serve as an index of pulmonary tissue damage in children with MP-LRTI.


Assuntos
Infecções Comunitárias Adquiridas/diagnóstico , Hipóxia/diagnóstico , L-Lactato Desidrogenase/sangue , Pneumonia por Mycoplasma/diagnóstico , Microglobulina beta-2/urina , Adolescente , Biomarcadores/sangue , Biomarcadores/urina , Temperatura Corporal , Criança , Pré-Escolar , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/urina , Creatinina/urina , Feminino , Humanos , Hipóxia/microbiologia , Hipóxia/urina , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Mycoplasma pneumoniae/isolamento & purificação , Pneumonia por Mycoplasma/sangue , Pneumonia por Mycoplasma/microbiologia , Pneumonia por Mycoplasma/urina , Radiografia , Estudos Retrospectivos
12.
J Physiol ; 597(12): 3029-3051, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31081119

RESUMO

KEY POINTS: Maternal obesity has been associated with shifts in intestinal microbiota, which may contribute to impaired barrier function Impaired barrier function may expose the placenta and fetus to pro-inflammatory mediators We investigated the impacts of diet-induced obesity in mice on maternal and fetal intestinal structure and placental vascularization Diet-induced obesity decreased maternal intestinal short chain fatty acids and their receptors, impaired gut barrier integrity and was associated with fetal intestinal inflammation. Placenta from obese mothers showed blood vessel immaturity, hypoxia, increased transcript levels of inflammation, autophagy and altered levels of endoplasmic reticulum stress markers. These data suggest that maternal intestinal changes probably contribute to adverse placental adaptations and also impart an increased risk of obesity in the offspring via alterations in fetal gut development. ABSTRACT: Shifts in maternal intestinal microbiota have been implicated in metabolic adaptations to pregnancy. In the present study, we generated cohorts of female C57BL/6J mice fed a control (17% kcal fat, n = 10-14) or a high-fat diet (HFD 60% kcal from fat, n = 10-14; ad libitum) aiming to investigate the impact on the maternal gut microbiota, intestinal inflammation and gut barrier integrity, placental inflammation and fetal intestinal development at embryonic day 18.5. HFD was associated with decreased relative abundances of short-chain fatty acid (SCFA) producing genera during pregnancy. These diet-induced shifts paralleled decreased maternal intestinal mRNA levels of SCFA receptor Gpr41, modestly decreased cecal butyrate, and altered mRNA levels of inflammatory cytokines and immune cell markers in the maternal intestine. Maternal HFD resulted in impaired gut barrier integrity, with corresponding increases in circulating maternal levels of lipopolysaccharide (LPS) and tumour necrosis factor. Placentas from HFD dams demonstrated blood vessel immaturity and hypoxia; decreased free carnitine, acylcarnitine derivatives and trimethylamine-N-oxide; and altered mRNA levels of inflammation, autophagy, and ER stress markers. HFD exposed fetuses had increased activation of nuclear factor-kappa B and inhibition of the unfolded protein response in the developing intestine. Taken together, these data suggest that HFD intake prior to and during pregnancy shifts the composition of the maternal gut microbiota and impairs gut barrier integrity, resulting in increased maternal circulating LPS, which may ultimate contribute to changes in placental vascularization and fetal gut development.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Hipóxia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade , Placenta/irrigação sanguínea , Animais , Feminino , Desenvolvimento Fetal , Feto , Hipóxia/metabolismo , Hipóxia/microbiologia , Hipóxia/fisiopatologia , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/fisiopatologia , Placenta/metabolismo , Gravidez
13.
Artigo em Inglês | MEDLINE | ID: mdl-30999108

RESUMO

A novel gene encoding the mitochondrial manganese superoxide dismutase from sterlet Acipenser ruthenus (Ar-MnSOD) was cloned. The full-length cDNA of MnSOD was of 1040 bp with a 672 bp open reading frame encoding 224 amino acids and the deduced amino acid sequence was located in mitochondria. Sequence comparison analysis showed that Ar-MnSOD was highly similar to MnSODs of invertebrates and vertebrates, especially those of freshwater Cyprinidae fishes and mammals. Phylogenetic analysis revealed that Ar-MnSOD was distant from MnSODs of other fishes and belonged to the family of mitochondrial MnSODs (mMnSOD). Consistently, Ar-MnSOD was located in mitochondria. The 3D structure of Ar-MnSOD was predicted and the overall structure was similar to that of MnSODs of humans and the bay scallop Argopecten irradians. In addition, mRNA of Ar-MnSOD was detected to extensively express in all tissues, with the highest level in brain and liver. Spleen and head kidney inoculation of Aeromonas hydrophila led to a significant up-regulation of Ar-MnSOD transcript levels. Also, hypoxia induced a transient increase in transcription of Ar-MnSOD in the gills, but not in the heart and brain, suggesting metabolic depression in these vital organs. The results also implied the anti-hypoxia properties of Ar-MnSOD in the related tissues and proved that Ar-MnSOD was involved in the stress response and (anti) oxidative processes triggered by hypoxia. The results indicated that Ar-MnSOD is induced upon A. hydrophila infection and hypoxia, consistent with its role in host immune and stress-induced anti-oxidative responses.


Assuntos
Peixes/fisiologia , Hipóxia/metabolismo , Estresse Fisiológico/genética , Superóxido Dismutase/genética , Aeromonas hydrophila/patogenicidade , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Peixes/genética , Peixes/microbiologia , Hipóxia/genética , Hipóxia/microbiologia , Superóxido Dismutase/química
14.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30082478

RESUMO

Hypoxia modulates bacterial virulence and the inflammation response through hypoxia-inducible factor 1α (HIF-1α). Here we study the influence of hypoxia on Acinetobacter baumannii and Pseudomonas aeruginosa infections. In vitro, hypoxia increases the bactericidal activities of epithelial cells against A. baumannii and P. aeruginosa, reducing extracellular bacterial concentrations to 50.5% ± 7.5% and 90.8% ± 13.9%, respectively, at 2 h postinfection. The same phenomenon occurs in macrophages (67.6% ± 18.2% for A. baumannii at 2 h and 50.3% ± 10.9% for P. aeruginosa at 24 h). Hypoxia decreases the adherence of A. baumannii to epithelial cells (42.87% ± 8.16% at 2 h) and macrophages (52.0% ± 18.7% at 24 h), as well as that of P. aeruginosa (24.9% ± 4.5% in epithelial cells and 65.7% ± 5.5% in macrophages at 2 h). Moreover, hypoxia decreases the invasion of epithelial cells (48.6% ± 3.8%) and macrophages (8.7% ± 6.9%) by A. baumannii at 24 h postinfection and by P. aeruginosa at 2 h postinfection (75.0% ± 16.3% and 63.4% ± 5.4%, respectively). In vivo, hypoxia diminishes bacterial loads in fluids and tissues in animal models of infection by both pathogens. In contrast, mouse survival time was shorter under hypoxia (23.92 versus 36.42 h) with A. baumannii infection. No differences in the production of cytokines or HIF-1α were found between hypoxia and normoxia in vitro or in vivo We conclude that hypoxia increases the bactericidal activities of host cells against both pathogens and reduces the interaction of pathogens with host cells. Moreover, hypoxia accelerates the rate at which animals die despite the lower bacterial concentrations in vivo.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Hipóxia/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/fisiologia , Animais , Aderência Bacteriana , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Oxigênio/metabolismo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Virulência
15.
Sci Rep ; 8(1): 6891, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720669

RESUMO

Stress enhances the disease susceptibility in fish by altering the innate immune responses, which are essential defense mechanisms. The use of probiotics is increasingly popular in the aquaculture industry. Yellow perch is a promising candidate for aquaculture. We investigated the efficiency of a mixed Bacillus species in minimizing the potential problems resulting from husbandry practices such as hypoxia and exposure to air in yellow perch. We showed that hypoxia and air exposure conditions induced a significant reduction in the early innate immune response (lysozyme activity, interferon-induced-GTP-binding protein-Mx1 [mx], interleukin-1ß [il1ß], serum amyloid-A [saa]), and a substantial increase in cortisol, heat shock protein (Hsp70), glutathione peroxidase (Gpx), superoxide dismutase (Sod1) that associated with a decline in insulin-like growth factor-1 (Igf1). Mixed Bacillus species administration improved the early innate responses, reduced cortisol, Hsp70, Gpx and Sod1, and elevated Igf1 levels. Bacillus species treated group showed faster recovery to reach the baseline levels during 24 h compared to untreated group. Therefore, mixed Bacillus species may enhance yellow perch welfare by improving the stress tolerance and early innate immune response to counterbalance the various husbandry stressors. Further studies are warranted to investigate the correlations between the aquaculture practices and disease resistance in yellow perch.


Assuntos
Bacillus/imunologia , Hipóxia/imunologia , Imunidade Inata , Estresse Oxidativo , Percas/imunologia , Animais , Bacillus/patogenicidade , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Hidrocortisona/metabolismo , Hipóxia/microbiologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Percas/microbiologia , Percas/fisiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
Nat Commun ; 9(1): 2020, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789585

RESUMO

Systemic chronic hypoxia is a feature of many diseases and may influence the communication between bone marrow (BM) and gut microbiota. Here we analyse patients with cyanotic congenital heart disease (CCHD) who are experiencing chronic hypoxia and characterize the association between bone marrow mesenchymal stem cells (BMSCs) and gut microbiome under systemic hypoxia. We observe premature senescence of BMSCs and abnormal D-galactose accumulation in patients with CCHD. The hypoxia that these patients experience results in an altered diversity of gut microbial communities, with a remarkable decrease in the number of Lactobacilli and a noticeable reduction in the amount of enzyme-degraded D-galactose. Replenishing chronic hypoxic rats with Lactobacillus reduced the accumulation of D-galactose and restored the deficient BMSCs. Together, our findings show that chronic hypoxia predisposes BMSCs to premature senescence, which may be due to gut dysbiosis and thus induced D-galactose accumulation.


Assuntos
Células da Medula Óssea/microbiologia , Cianose/microbiologia , Microbioma Gastrointestinal , Cardiopatias Congênitas/microbiologia , Hipóxia/microbiologia , Células-Tronco Mesenquimais/microbiologia , Animais , Animais Recém-Nascidos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Senescência Celular , Pré-Escolar , Doença Crônica , Cianose/metabolismo , Cianose/patologia , Modelos Animais de Doenças , Feminino , Galactose/metabolismo , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Lactente , Lactobacillus/fisiologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Sprague-Dawley
17.
Chest ; 154(4): 754-759, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29548630

RESUMO

OSA has emerged as a highly prevalent public health problem that imposes important mid- and long-term consequences, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. OSA is characterized by increased upper airway resistance, alveolar hypoventilation, and recurrent upper airway obstruction during sleep. Recurrent collapse of the upper airway develops with sleep onset and is associated with both intermittent hypoxemia and sleep fragmentation. The microbiome is a vast and complex polymicrobial ecosystem that coexists with the human organism, and it has been identified as playing significant roles in the development of host immunologic phenotypes. In humans and animal models, changes in gut microbial communities occur with lifestyle behaviors, such as smoking, long-distance travel, dietary preferences, physical exercise, and circadian rhythm disturbances. In parallel, diseases previously attributed in part to lifestyle such as obesity, coronary heart disease, depression, and asthma (also associated with OSA) are now claimed as microbiota related. We therefore posit that altered patterns of sleep and oxygenation, as seen in OSA, will promote specific alterations in gut microbiota that in turn will elicit the immunologic alterations that lead to OSA-induced end-organ morbidities. The present article assesses the potential mechanistic links between OSA-induced changes in gut microbiota and its morbid phenotypes.


Assuntos
Microbioma Gastrointestinal/fisiologia , Apneia Obstrutiva do Sono/microbiologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/microbiologia , Ritmo Circadiano , Humanos , Hipertensão/imunologia , Hipertensão/microbiologia , Hipóxia/imunologia , Hipóxia/microbiologia , Fatores de Risco , Apneia Obstrutiva do Sono/imunologia
18.
J Physiol ; 596(15): 3411-3424, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29178568

RESUMO

KEY POINTS: Balloon-assisted enteroscopy (BAE) is an emerging standard procedure by utilizing distensible balloons to facilitate deep endoscopy in the small and large intestine. Sporadic cases of bacteraemia were found after BAE. Balloon distension by BAE caused gut tissue hypoxia. The impact of balloon distension-induced hypoxia on intestinal barriers remains unclear. Murine models of BAE by colonic balloon distension showed that short- and long-term hypoxia evoked opposite effects on epithelial tight junctions (TJs). Short-term hypoxia fortified TJ integrity, whereas long-term hypoxia caused damage to barrier function. Our data showed for the first time the molecular mechanisms and signalling pathways of epithelial barrier fortification and TJ reorganization by short-term hypoxia for the maintenance of gut homeostasis. The findings suggest avoiding prolonged balloon distension during BAE to reduce the risk of hypoxia-induced gut barrier dysfunction. ABSTRACT: Balloon-assisted enteroscopy (BAE) is an emerging standard procedure that uses distensible balloons to facilitate deep endoscopy. Intestines are known to harbour an abundant microflora. Whether balloon distension causes perturbation of blood flow and gut barrier dysfunction, and elicits risk of bacterial translocation remains unknown. Our aims were to (1) conduct a prospective study to gather microbiological and molecular evidence of bacterial translocation by BAE in patients, (2) establish a murine model of colonic balloon distension to investigate tissue hypoxia and intestinal barrier, and (3) assess the effect of short- and long-term hypoxia on epithelial permeability using cell lines. Thirteen patients were enrolled for BAE procedures, and blood samples were obtained before and after BAE for paired comparison. Four of the 13 patients (30.8%) had positive bacterial DNA in blood after BAE. Post-BAE endotoxaemia was higher than the pre-BAE level. Nevertheless, no clinical symptom of sepsis or fever was reported. To mimic clinical BAE, mice were subjected to colonic balloon distension. Local tissue hypoxia was observed during balloon inflation, and reoxygenation after deflation. A trend of increased gut permeability was seen after long-term distension, whereas a significant reduction of permeability was observed by short-term distension in the proximal colon. Human colonic epithelial Caco-2 cells exposed to hypoxia for 5-20 min exhibited increased tight junctional assembly, while those exposed to longer hypoxia displayed barrier disruption. In conclusion, sporadic cases of bacteraemia were found after BAE, without septic symptoms. Short-term hypoxia by balloon distension yielded a protective effect whereas long-term hypoxia caused damage to the gut barrier.


Assuntos
Enteroscopia de Balão , Hipóxia , Mucosa Intestinal/metabolismo , Adulto , Idoso , Animais , Células CACO-2 , Feminino , Humanos , Hipóxia/diagnóstico , Hipóxia/metabolismo , Hipóxia/microbiologia , Fígado/microbiologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Permeabilidade , Baço/microbiologia , Junções Íntimas/metabolismo
20.
PLoS Pathog ; 13(11): e1006752, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29176894

RESUMO

The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.


Assuntos
Coenzimas/biossíntese , Transferência Genética Horizontal , Metaloproteínas/biossíntese , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Hipóxia/metabolismo , Hipóxia/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Cofatores de Molibdênio , Mycobacterium/genética , Mycobacterium/metabolismo , Nitratos/metabolismo , Pteridinas , Tuberculose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...