Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.801
Filtrar
1.
Exp Neurol ; 380: 114924, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147260

RESUMO

Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN). Additionally, we explored neuronal connectivity between SNpc and cNTS. Projections pathways were assessed using unilateral injection of the retrograde tracer Fluorogold (FG) in the cNTS and RTN. Neuronal activation was evaluated by analyzing fos expression in rats exposed to hypoxia. In the PD model, the ventilatory response, measured through whole-body plethysmography, was impaired at both baseline and in response to hypoxia. A reduction in Phox2b-expressing neurons or hypoxia-activated neurons projecting to the RTN was observed. Additionally, we identified an indirect pathway linking the SNpc and cNTS, which passes through the periaqueductal gray (PAG). In conclusion, our findings suggest impairment in the SNpc-PAG-cNTS pathway in the PD model, explaining the loss of Phox2b-expressing neurons or hypoxia-activated neurons in the cNTS and subsequent respiratory impairment during hypoxic stimulation. We propose that the reduced population of Phox2b-expressing neurons in the NTS may include the same neurons activated by hypoxia and projecting to the RTN.


Assuntos
Hipóxia , Oxidopamina , Ratos Wistar , Núcleo Solitário , Animais , Masculino , Ratos , Núcleo Solitário/patologia , Hipóxia/patologia , Oxidopamina/toxicidade , Proteínas de Homeodomínio/metabolismo , Modelos Animais de Doenças , Degeneração Neural/patologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Fatores de Transcrição/metabolismo
2.
Bull Exp Biol Med ; 177(1): 162-168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960963

RESUMO

In adult male C57BL/6 mice with high (HR) and low (LR) resistance to hypoxia, morphological features of colon tumors and blood parameters were evaluated 70 days after intraperitoneal injection of azoxymethane and subsequent consumption of 3 cycles of dextran sulfate sodium. On macroscopic analysis, tumors were found in the distal colon in 35% (7 of 20 animals) of HR and 31% (4 of 13 animals) of LR animals. Microscopic analysis of the distal colon revealed tumors in 75% (15 of 20 animals) of HR and 69% (9 of 13 animals) of LR mice. The tumors were presented by areas of glandular intraepithelial neoplasia and adenocarcinomas; the incidence and the area of the tumors did not differ in groups of HR and LR mice. The number of neuroendocrine and goblet cells in the distal colon mucosa in the areas of tumors was similar in the compared groups. However, in both HR and LR mice of the experimental groups, the content of goblet cells in tumors was lower and the content of endocrine cells was higher than in the corresponding control groups. In the peripheral blood, the erythrocyte count and hemoglobin content decreased in HR and LR mice of the experimental groups; the relative number of monocytes increased only in HR mice and the absolute number of lymphocytes and monocytes decreased in LR mice. Thus, 70 days after azoxymethane administration and dextran sulfate sodium consumption, the tumors in mice were presented by glandular intraepithelial neoplasia and adenocarcinomas, and their incidence and area did not differ between animals with different tolerance to hypoxia.


Assuntos
Adenocarcinoma , Azoximetano , Neoplasias do Colo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Animais , Camundongos , Neoplasias do Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Masculino , Sulfato de Dextrana/toxicidade , Azoximetano/toxicidade , Adenocarcinoma/patologia , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Hipóxia/patologia , Colo/patologia , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Mucosa Intestinal/patologia , Hemoglobinas/metabolismo , Monócitos/patologia , Monócitos/metabolismo , Contagem de Eritrócitos
3.
Respir Res ; 25(1): 287, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061007

RESUMO

BACKGROUND: Asthma's complexity, marked by airway inflammation and remodeling, is influenced by hypoxic conditions. This study focuses on the role of Hypoxia-Inducible Factor-1 Alpha (HIF-1α) and P53 ubiquitination in asthma exacerbation. METHODS: High-throughput sequencing and bioinformatics were used to identify genes associated with asthma progression, with an emphasis on GO and KEGG pathway analyses. An asthma mouse model was developed, and airway smooth muscle cells (ASMCs) were isolated to create an in vitro hypoxia model. Cell viability, proliferation, migration, and apoptosis were assessed, along with ELISA and Hematoxylin and Eosin (H&E) staining. RESULTS: A notable increase in HIF-1α was observed in both in vivo and in vitro asthma models. HIF-1α upregulation enhanced ASMCs' viability, proliferation, and migration, while reducing apoptosis, primarily via the promotion of P53 ubiquitination through MDM2. In vivo studies showed increased inflammatory cell infiltration and airway structural changes, which were mitigated by the inhibitor IDF-11,774. CONCLUSION: The study highlights the critical role of the HIF-1α-MDM2-P53 axis in asthma, suggesting its potential as a target for therapeutic interventions. The findings indicate that modulating this pathway could offer new avenues for treating the complex respiratory disorder of asthma.


Assuntos
Asma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Miócitos de Músculo Liso , Proteína Supressora de Tumor p53 , Asma/metabolismo , Asma/patologia , Asma/genética , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Camundongos Endogâmicos BALB C , Apoptose/fisiologia , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Hipóxia/metabolismo , Hipóxia/patologia , Modelos Animais de Doenças , Hipóxia Celular/fisiologia , Feminino , Humanos , Movimento Celular/fisiologia , Ubiquitinação
4.
Circulation ; 150(6): 466-487, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38873770

RESUMO

BACKGROUND: Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS: EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy-related gene 7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS: In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS: Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.


Assuntos
Apoptose , Autofagia , Células Endoteliais , Hipertensão Pulmonar , Artéria Pulmonar , Animais , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Proliferação de Células , Masculino , Remodelação Vascular , Camundongos Knockout , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Modelos Animais de Doenças , Hipóxia/metabolismo , Hipóxia/patologia , Células Cultivadas , Camundongos Endogâmicos C57BL
5.
Biomolecules ; 14(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38785974

RESUMO

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Assuntos
Modelos Animais de Doenças , Células Ependimogliais , Gliose , Camundongos Transgênicos , Microglia , Animais , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos dos fármacos , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Toxina Diftérica , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Células Ependimogliais/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Gliose/metabolismo , Gliose/induzido quimicamente , Hipóxia/metabolismo , Hipóxia/patologia , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Retina/efeitos dos fármacos , Vimentina/metabolismo , Vimentina/genética
6.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L250-L257, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810241

RESUMO

In the field of pulmonary hypertension (PH), a well-established protocol to induce severe angioproliferation in rats (SuHx) involves combining the VEGF-R inhibitor Sugen 5416 (SU5416) with 3 wk of hypoxia (Hx). In addition, injecting monocrotaline (MCT) into rats can induce inflammation and shear stress in the pulmonary vasculature, leading to neointima-like remodeling. However, the SuHx protocol in mice is still controversial, with some studies suggesting it yields higher and reversible PH than Hx alone, possibly due to species-dependent hypoxic responses. To establish an alternative rodent model of PH, we hypothesized mice would be more sensitive to hemodynamic changes secondary to shear stress compared with Hx. We attempted to induce severe and irreversible PH in mice by combining SU5416 or monocrotaline pyrrole (MCTP) injection with pneumonectomy (PNx). However, our experiments showed SU5416 administered to mice at various time points after PNx did not result in severe PH. Similarly, mice injected with MCTP after PNx (MPNx) showed no difference in right ventricular systolic pressure or exacerbated pulmonary vascular remodeling compared with PNx alone. These findings collectively demonstrate that C57/B6 mice do not develop severe and persistent PH when PNx is combined with either SU5416 or MCTP.NEW & NOTEWORTHY We attempted to establish a mouse model of severe and irreversible pulmonary hypertension by substituting hypoxia with pulmonary overcirculation. To do so, we treated mice with either SU5416 or monocrotaline pyrrole after pneumonectomy and performed hemodynamic evaluations for PH. Despite this "two-hit" protocol, mice did not exhibit signs of severe pulmonary hypertension or exacerbated pulmonary vascular remodeling compared with PNx alone.


Assuntos
Hipertensão Pulmonar , Indóis , Camundongos Endogâmicos C57BL , Monocrotalina , Pneumonectomia , Pirróis , Animais , Monocrotalina/análogos & derivados , Pirróis/farmacologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Indóis/farmacologia , Camundongos , Masculino , Modelos Animais de Doenças , Hipóxia/patologia , Remodelação Vascular/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Hemodinâmica/efeitos dos fármacos
7.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L79-L85, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651234

RESUMO

The pathophysiology of pulmonary hypertension (PH) is not fully understood. Here, we tested the hypothesis that hypoxic perfusion of the vasa vasorum of the pulmonary arterial (PA) wall causes PH. Young adult pig lungs were explanted and placed into a modified ex vivo lung perfusion unit (organ care system, OCS) allowing the separate adjustment of parameters for mechanical ventilation, as well as PA perfusion and bronchial arterial (BA) perfusion. The PA vasa vasorum are branches of the BA. The lungs were used either as the control group (n = 3) or the intervention group (n = 8). The protocol for the intervention group was as follows: normoxic ventilation and perfusion (steady state), hypoxic BA perfusion, steady state, and hypoxic BA perfusion. During hypoxic BA perfusion, ventilation and PA perfusion maintained normal. Control lungs were kept under steady-state conditions for 105 min. During the experiments, PA pressure (PAP) and blood gas analysis were frequently monitored. Hypoxic perfusion of the BA resulted in an increase in systolic and mean PAP, a reaction that was reversible upon normoxic BA perfusion. The PAP increase was reproducible during the second hypoxic BA perfusion. Under control conditions, the PAP stayed constant until about 80 min of the experiment. In conclusion, the results of the current study prove that hypoxic perfusion of the vasa vasorum of the PA directly increases PAP in an ex situ lung perfusion setup, suggesting that PA vasa vasorum function and wall ischemia may contribute to the development of PH.NEW & NOTEWORTHY Hypoxic perfusion of the vasa vasorum of the pulmonary artery directly increased pulmonary arterial pressure in an ex vivo lung perfusion setup. This suggests that the function of pulmonary arterial vasa vasorum and wall ischemia may contribute to the development of pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipóxia , Perfusão , Artéria Pulmonar , Vasa Vasorum , Animais , Vasa Vasorum/patologia , Vasa Vasorum/fisiopatologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Suínos , Hipóxia/fisiopatologia , Hipóxia/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Pressão Arterial , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/fisiopatologia , Artérias Brônquicas/patologia , Artérias Brônquicas/fisiopatologia , Feminino
8.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602915

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar , Interleucina-6 , Animais , Camundongos , Ratos , Linfócitos T CD4-Positivos/patologia , Receptor gp130 de Citocina/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Interleucina-6/genética , Artéria Pulmonar/patologia
9.
Ren Fail ; 46(1): 2338565, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622926

RESUMO

Background: Renal hypoxia plays a key role in the progression of chronic kidney disease (CKD). Shen Shuai II Recipe (SSR) has shown good results in the treatment of CKD as a common herbal formula. This study aimed to explore the effect of SSR on renal hypoxia and injury in CKD rats. Methods: Twenty-five Wistar rats underwent 5/6 renal ablation/infarction (A/I) surgery were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + losartan (LOS), and 5/6 (A/I) + SSR groups. Another eight normal rats were used as the Sham group. After 8-week corresponding interventions, blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) was performed to evaluate renal oxygenation in all rats, and biochemical indicators were used to measure kidney and liver function, hemoglobin, and proteinuria. The expression of fibrosis and hypoxia-related proteins was analyzed using immunoblotting examination. Results: Renal oxygenation, evaluated by BOLD-fMRI as cortical and medullary T2* values (COT2* and MET2*), was decreased in 5/6 (A/I) rats, but increased after SSR treatment. SSR also downregulated the expression of hypoxia-inducible factor-1α (HIF-1α) in 5/6 (A/I) kidneys. With the improvement of renal hypoxia, renal function and fibrosis were improved in 5/6 (A/I) rats, accompanied by reduced proteinuria. Furthermore, the COT2* and MET2* were significantly positively correlated with the levels of creatinine clearance rate (Ccr) and hemoglobin, but negatively associated with the levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum cystatin C (CysC), serum uric acid (UA), 24-h urinary protein (24-h Upr), and urinary albumin:creatinine ratio (UACR). Conclusion: The degree of renal oxygenation reduction is correlated with the severity of renal injury in CKD. SSR can improve renal hypoxia to attenuate renal injury in 5/6 (A/I) rats of CKD.


Assuntos
Insuficiência Renal Crônica , Ácido Úrico , Ratos , Animais , Creatinina/metabolismo , Ácido Úrico/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Rim , Isquemia , Infarto/metabolismo , Infarto/patologia , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Fibrose , Proteinúria/patologia , Imageamento por Ressonância Magnética/métodos , Hemoglobinas/metabolismo
10.
Ren Fail ; 46(1): 2332492, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584135

RESUMO

Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Apoptose , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , Rim/patologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
11.
Zygote ; 32(2): 161-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465746

RESUMO

Environmental hypoxia adversely affects reproductive health in humans and animals at high altitudes. Therefore, how to alleviate the follicle development disorder caused by hypoxia exposure and to improve the competence of fertility in plateau non-habituated female animals are important problems to be solved urgently. In this study, a hypobaric hypoxic chamber was used for 4 weeks to simulate hypoxic conditions in female mice, and the effects of hypoxia on follicle development, proliferation and apoptosis of granulosa cells, reactive oxygen species (ROS) levels in MII oocyte and 2-cell rate were evaluated. At the same time, the alleviating effect of melatonin on hypoxic exposure-induced oogenesis damage was evaluated by feeding appropriate amounts of melatonin daily under hypoxia for 4 weeks. The results showed that hypoxia exposure significantly increased the proportion of antral follicles in the ovary, the number of proliferation and apoptosis granulosa cells in the follicle, and the level of ROS in MII oocytes, eventually led to the decline of oocyte quality. However, these defects were alleviated when melatonin was fed under hypoxia conditions. Together, these findings suggest that hypoxia exposure impaired follicular development and reduced oocyte quality, and that melatonin supplementation alleviated the fertility reduction induced by hypoxia exposure.


Assuntos
Hipóxia , Melatonina , Folículo Ovariano , Melatonina/administração & dosagem , Animais , Camundongos , Folículo Ovariano/citologia , Células da Granulosa/citologia , Ovário/citologia , Hipóxia/patologia , Desenvolvimento Embrionário , Estresse Fisiológico
12.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38457839

RESUMO

Objective.Equivalent uniform aerobic dose (EUAD) is proposed for comparison of integrated cell survival in tumors with different distributions of hypoxia and radiation dose.Approach.The EUAD assumes that for any non-uniform distributions of radiation dose and oxygen enhancement ratio (OER) within a tumor, there is a uniform distribution of radiation dose under hypothetical aerobic conditions with OER = 1 that produces equal integrated survival of clonogenic cells. This definition of EUAD has several advantages. First, the EUAD allows one to compare survival of clonogenic cells in tumors with intra-tumor and inter-tumor variation of radio sensitivity due to hypoxia because the cell survival is recomputed under the same benchmark oxygen level (OER = 1). Second, the EUAD for homogeneously oxygenated tumors is equal to the concept of equivalent uniform dose.Main results. We computed the EUAD using radiotherapy dose and the OER derived from the18F-Fluoromisonidazole PET (18F-FMISO PET) images of hypoxia in patients with glioblastoma, the most common and aggressive type of primary malignant brain tumor. The18F-FMISO PET images include a distribution of SUV (Standardized Uptake Value); therefore, the SUV is converted to partial oxygen pressure (pO2) and then to the OER. The prognostic value of EUAD in radiotherapy for hypoxic tumors is demonstrated using correlation between EUAD and overall survival (OS) in radiotherapy for glioblastoma. The correction to the EUAD for the absolute hypoxic volume that traceable to the tumor control probability improves the correlation with OS.Significance. While the analysis proposed in this research is based on the18F-FMISO PET images for glioblastoma, the EUAD is a universal radiobiological concept and is not associated with any specific cancer or any specific PET or MRI biomarker of hypoxia. Therefore, this research can be generalized to other cancers, for example stage III lung cancer, and to other hypoxia biomarkers.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Misonidazol/análogos & derivados , Humanos , Hipóxia/patologia , Neoplasias Pulmonares/radioterapia , Oxigênio/metabolismo , Hipóxia Celular , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
13.
Transl Res ; 269: 14-30, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38453052

RESUMO

The progression of chronic kidney disease (CKD) often involves renal interstitial fibrosis (RIF) and subsequent loss of peritubular capillaries (PTCs), which enhances disease severity. Despite advancements in our understanding of fibrosis, effective interventions for reversing capillary loss remain elusive. Notably, RIF exhibits reduced capillary density, whereas renal cell carcinoma (RCC) shows robust angiogenesis under hypoxic conditions. Using RNA sequencing and bioinformatics, we identified differentially expressed genes (DEGs) in hypoxic human renal tubular epithelial cells (HK-2) and renal cancer cells (786-0). Analysis of altered Ras and PI3K/Akt pathways coupled with hub gene investigation revealed RAS protein activator-like 2 (RASAL2) as a key candidate. Subsequent in vitro and in vivo studies confirmed RASAL2's early-stage response in RIF, which reduced with fibrosis progression. RASAL2 suppression in HK-2 cells enhanced angiogenesis, as evidenced by increased proliferation, migration, and branching of human umbilical vein endothelial cells (HUVECs) co-cultured with HK-2 cells. In mice, RASAL2 knockdown improved Vascular endothelial growth factor A (VEGFA) and Proliferating cell nuclear antigen (PCNA) levels in unilateral ureteral occlusion (UUO)-induced fibrosis (compared to wild type). Hypoxia-inducible factor 1 alpha (HIF-1α) emerged as a pivotal mediator, substantiated by chromatin immunoprecipitation (ChIP) sequencing, with its induction linked to activation. Hypoxia increased the production of RASAL2-enriched extracellular vesicles (EVs) derived from tubular cells, which were internalized by endothelial cells, contributing to the exacerbation of PTC loss. These findings underscore RASAL2's role in mediating reduced angiogenesis in RIF and reveal a novel EV-mediated communication between hypoxic tubular- and endothelial cells, demonstrating a complex interplay between angiogenesis and fibrosis in CKD pathogenesis.


Assuntos
Fibrose , Proteínas Ativadoras de GTPase , Rim , Animais , Humanos , Masculino , Camundongos , Hipóxia Celular , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/patologia , Hipóxia/metabolismo , Rim/irrigação sanguínea , Rim/patologia , Rim/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Camundongos Endogâmicos C57BL , Rarefação Microvascular/metabolismo , Rarefação Microvascular/patologia , Rarefação Microvascular/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473914

RESUMO

The study of aquaporins (AQPs) in various forensic fields has offered a promising horizon in response to the need to have reliable elements for the identification of the manner of death and for the individuation of forensic markers for the timing of lesions and vitality of injury. In the literature, various tissues have been studied; the most investigated are the lungs, brain, kidneys, skin, and blood vessels. A systematic literature review on PubMed following PRISMA 2020 guidelines enabled the identification of 96 articles. In all, 34 of these were enrolled to identify Aquaporin-like (AQP-like) forensic markers. The analysis of the literature demonstrated that the most significant markers among the AQPs are as follows: for the brain, AQP4, which is very important in brain trauma and hypoxic damage; AQP3 in the skin lesions caused by various mechanisms; and AQP5 in the diagnosis of drowning. Other applications are in organ damage due to drug abuse and thrombus dating. The focus of this review is to collect all the data present in the literature about the forensic application of AQPs as forensic markers in the most important fields of application. In the current use, the individuation, validation, and application of markers in forensic investigation are very useful in real forensic applications in cases evaluated in court.


Assuntos
Aquaporinas , Humanos , Aquaporinas/metabolismo , Pulmão/patologia , Hipóxia/patologia , Encéfalo/metabolismo , Pele/metabolismo
15.
Front Endocrinol (Lausanne) ; 15: 1340188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455658

RESUMO

Introduction: Fabry's disease (FD) is a genetic X-linked systemic and progressive rare disease characterized by the accumulation of globotriaosylceramide (GB3) into the lysosomes of many tissues. FD is due to loss-of-function mutations of α-galactosidase, a key-enzyme for lysosomal catabolism of glycosphingolipids, which accumulate as glycolipid bodies (GB). In homozygous males the progressive deposition of GB3 into the cells leads to clinical symptoms in CNS, skin, kidney, etc. In testis GB accumulation causes infertility and alterations of spermatogenesis. However, the precise damaging mechanism is still unknown. Our hypothesis is that GB accumulation reduces blood vessel lumen and increases the distance of vessels from both stromal cells and seminiferous parenchyma; this, in turn, impairs oxygen and nutrients diffusion leading to subcellular degradation of seminiferous epithelium and sterility. Methods: To test this hypothesis, we have studied a 42-year-old patient presenting a severe FD and infertility, with reduced number of spermatozoa, but preserved sexual activity. Testicular biopsies were analyzed by optical (OM) and transmission electron microscopy (TEM). Activation and cellular localization of HIF-1α and NFκB was analyzed by immunofluorescence (IF) and RT-PCR on homogeneous tissue fractions after laser capture microdissection (LCMD). Results: OM and TEM showed that GB were abundant in vessel wall cells and in interstitial cells. By contrast, GB were absent in seminiferous epithelium, Sertoli's and Leydig's cells. However, seminiferous tubular epithelium and Sertoli's cells showed reduced diameter, thickening of basement membrane and tunica propria, and swollen or degenerated spermatogonia. IF showed an accumulation of HIF-1α in stromal cells but not in seminiferous tubules. On the contrary, NFκB fluorescence was evident in tubules, but very low in interstitial cells. Finally, RT-PCR analysis on LCMD fractions showed the expression of pro-inflammatory genes connected to the HIF-1α/NFκB inflammatory-like pathway. Conclusion: Our study demonstrates that infertility in FD may be caused by reduced oxygen and nutrients due to GB accumulation in blood vessels cells. Reduced oxygen and nutrients alter HIF-1α/NFκB expression and localization while activating HIF-1α/NFκB driven-inflammation-like response damaging seminiferous tubular epithelium and Sertoli's cells.


Assuntos
Doença de Fabry , Infertilidade , Adulto , Humanos , Masculino , Doença de Fabry/complicações , Doença de Fabry/patologia , Hipóxia/patologia , Infertilidade/patologia , Inflamação/complicações , Inflamação/patologia , Oxigênio , Testículo/patologia
16.
Toxicon ; 241: 107675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432611

RESUMO

Gastric cancer (GC) is a common, life-threatening malignancy that contributes to the global burden of cancer-related mortality, as conventional therapeutic modalities show limited effects on GC. Hence, it is critical to develop novel agents for GC therapy. Morusin, a typical prenylated flavonoid, possesses antitumor effects against various cancers. The present study aimed to demonstrate the inhibitory effect and mechanism of morusin on the stemness characteristics of human GC in vitro under hypoxia and to explore the potential molecular mechanisms. The effects of morusin on cell proliferation and cancer stem cell-like properties of the human GC cell lines SNU-1 and AGS were assessed by MTT assay, colony formation test, qRT-PCR, flow cytometry analysis, and sphere formation test under hypoxia or normoxia condition through in vitro assays. The potential molecular mechanisms underlying the effects of morusin on the stem-cell-like properties of human GC cells in vitro were investigated by qRT-PCR, western blotting assay, and immunofluorescence assay by evaluating the nuclear translocation and expression level of hypoxia-inducible factor-1α (HIF-1α). The results showed that morusin exerted growth inhibitory effects on SNU-1 and AGS cells under hypoxia in vitro. Moreover, the proportions of CD44+/CD24- cells and the sphere formation ability of SNU-1 and AGS reduced in a dose-dependent manner following morusin treatment. The expression levels of stem cell-related genes, namely Nanog, OCT4, SOX2, and HIF-1α, gradually decreased, and the nuclear translocation of the HIF-1α protein was apparently attenuated. HIF-1α overexpression partially reversed the abovementioned effects of morusin. Taken together, morusin could restrain stemness characteristics of GC cells by inhibiting HIF-1α accumulation and nuclear translocation and could serve as a promising compound for GC treatment.


Assuntos
Flavonoides , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Flavonoides/farmacologia , Hipóxia/metabolismo , Hipóxia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
17.
Am J Pathol ; 194(5): 656-672, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325552

RESUMO

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Lesão Pulmonar , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Miofibroblastos/metabolismo , Lesão Pulmonar/patologia , Proteômica , Pulmão/patologia , Fibrose , Hipóxia/patologia , Fibrose Pulmonar Idiopática/patologia , Bleomicina/toxicidade , Regeneração , Peptídeos e Proteínas de Sinalização Intracelular
18.
J Biomech Eng ; 146(8)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421341

RESUMO

Chronic hypoxia plays a central role in diverse pulmonary pathologies, but its effects on longitudinal changes in the biomechanical behavior of proximal pulmonary arteries remain poorly understood. Similarly, effects of normoxic recovery have not been well studied. Here, we report hypoxia-induced changes in composition, vasoactivity, and passive biaxial mechanics in the main branch pulmonary artery of male C57BL/6J mice exposed to 10% FiO2 for 1, 2, or 3 weeks. We observed significant changes in extracellular matrix, and consequently wall mechanics, as early as 1 week of hypoxia. While circumferential stress and stiffness returned toward normal values by 2-3 weeks of hypoxia, area fractions of cytoplasm and thin collagen fibers did not return toward normal until after 1 week of normoxic recovery. By contrast, elastic energy storage and overall distensibility remained reduced after 3 weeks of hypoxia as well as following 1 week of normoxic recovery. While smooth muscle and endothelial cell responses were attenuated under hypoxia, smooth muscle but not endothelial cell responses recovered following 1 week of subsequent normoxia. Collectively, these data suggest that homeostatic processes were unable to preserve or restore overall function, at least over a brief period of normoxic recovery. Longitudinal changes are critical in understanding large pulmonary artery remodeling under hypoxia, and its reversal, and will inform predictive models of vascular adaptation.


Assuntos
Hipóxia , Artéria Pulmonar , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Hipóxia/patologia , Músculo Liso , Remodelação Vascular
19.
Front Immunol ; 15: 1328565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312838

RESUMO

The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.


Assuntos
Adenosina , Síndrome do Desconforto Respiratório , Humanos , Hipóxia/patologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Inflamação , Oxigênio
20.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345224

RESUMO

Cerebrovascular complications, including cerebral edema and ischemic and hemorrhagic stroke, constitute the leading cause of maternal mortality associated with preeclampsia. The underlying mechanisms of these cerebrovascular complications remain unclear. However, they are linked to placental dysfunction and blood-brain barrier (BBB) disruption. Nevertheless, the connection between these two distant organs is still being determined. Increasing evidence suggests that the placenta releases signaling molecules, including extracellular vesicles, into maternal circulation. Extracellular vesicles are categorized according to their size, with small extracellular vesicles (sEVs smaller than 200 nm in diameter) considered critical signaling particles in both physiological and pathological conditions. In preeclampsia, there is an increased number of circulating sEVs in maternal circulation, the signaling function of which is not well understood. Placental sEVs released in preeclampsia or from normal pregnancy placentas exposed to hypoxia induce brain endothelial dysfunction and disruption of the BBB. In this protocol, we assess whether sEVs isolated from placental explants cultured under hypoxic conditions (modeling one aspect of preeclampsia) disrupt the BBB in vivo.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Camundongos , Animais , Placenta/irrigação sanguínea , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/patologia , Barreira Hematoencefálica/patologia , Vesículas Extracelulares/patologia , Hipóxia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...