Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
J Cell Mol Med ; 28(11): e18447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837574

RESUMO

The purpose of this study was to identify the mechanisms underlying the involvement of glycolytic genes in pulmonary arterial hypertension (PAH). This study involved downloading 3 datasets from the GEO database at the National Center for Biotechnology Information. The datasets were processed to obtain expression matrices for analysis. Genes involved in glycolysis-related pathways were obtained, and genes related to glycolysis were selected based on significant differences in expression. Gene Ontology functional annotation analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and GSEA enrichment analysis were performed on the DEGs. Combining LASSO regression with SVM-RFE machine learning technology, a PAH risk prediction model based on glycolysis related gene expression was constructed, and CIBERSORTx technology was used to analyse the immune cell composition of PAH patients. Gene enrichment analysis revealed that the DEGs work synergistically across multiple biological pathways. A total of 6 key glycolysis-related genes were selected using LASSO regression and SVM. A bar plot was constructed to evaluate the weights of the key genes and predict the risk of PAH. The clinical application value and predictive accuracy of the model were assessed. Immunological feature analysis revealed significant correlations between key glycolysis-related genes and the abundances of different immune cell types. The glycolysis genes (ACSS2, ALAS2, ALDH3A1, ADOC3, NT5E, and TALDO1) identified in this study play important roles in the development of pulmonary arterial hypertension, providing new evidence for the involvement of glycolysis in PAH.


Assuntos
Biologia Computacional , Glicólise , Hipertensão Arterial Pulmonar , Humanos , Glicólise/genética , Biologia Computacional/métodos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ontologia Genética , Regulação da Expressão Gênica , Bases de Dados Genéticas
2.
Narra J ; 4(1): e579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798867

RESUMO

Research on noncoding RNA, particularly microRNAs (miRNAs), is growing rapidly. Advances in genomic technologies have revealed the complex roles of miRNAs in pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD). It has been demonstrated that the progression of PAH associated with CHD is characterized by particular dysregulation of miRNAs and is related to cardiovascular remodeling, cell death, and right ventricle dysfunction. This review provides a comprehensive overview of the current state of knowledge regarding the involvement of miRNAs in the pathogenesis and progression of PAH associated with CHD. We commence by explaining the process of miRNA synthesis and its mode of action, as well as the role of miRNA in PAH associated with CHD. Moreover, the article delves into current breakthroughs in research, potential clinical implications, and prospects for future investigations. The review provides the insight into novel approaches for diagnosis, prognosis, and therapy of PAH associated with CHD.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Progressão da Doença , Prognóstico
3.
BMC Pulm Med ; 24(1): 235, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745167

RESUMO

BACKGROUND: Emerging evidences have demonstrated that gut microbiota composition is associated with pulmonary arterial hypertension (PAH). However, the underlying causality between intestinal dysbiosis and PAH remains unresolved. METHOD: An analysis using the two-sample Mendelian randomization (MR) approach was conducted to examine the potential causal relationship between gut microbiota and PAH. To assess exposure data, genetic variants associated with 196 bacterial traits were extracted from the MiBioGen consortium, which included a sample size of 18,340 individuals. As for the outcomes, summary statistics for PAH were obtained from the NHGRI-EBI GWAS Catalog, which conducted a meta-analysis of four independent studies comprising a total of 11,744 samples. Causal effects were estimated employing various methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weight mode and simple mode, with sensitivity analyses also being implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots. RESULTS: Following false discovery rate (FDR) correction, the genetically predicted genus Eubacterium fissicatena group (odds ratio (OR) 1.471, 95% confidence interval (CI) 1.178-1.837, q = 0.076) exhibited a causal association with PAH. In addition, the genus LachnospiraceaeUCG004 (OR 1.511, 95% CI 1.048-2.177) and genus RuminococcaceaeUCG002 (OR 1.407, 95% CI 1.040-1.905) showed a suggestive increased risk of PAH, while genus Eubacterium eligens group (OR 0.563, 95% CI 0.344-0.922), genus Phascolarctobacterium (OR 0.692, 95% CI 0.487-0.982), genus Erysipelatoclostridium (OR 0.757, 95% CI 0.579-0.989) and genus T-yzzerella3 (OR 0.768, 95% CI 0.624-0.945) were found to have nominal protective effect against PAH. CONCLUSION: The findings from our MR study have revealed a potential causal relationship between gut microbiota and PAH. Specifically, we have identified four types of gut microbiota that exhibit a protective effect on PAH, as well as three types that have a detrimental impact on PAH, thereby offering valuable insights for future mechanistic and clinical investigations in the field of PAH.


Assuntos
Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/microbiologia , Estudo de Associação Genômica Ampla , Disbiose/genética , Polimorfismo de Nucleotídeo Único
4.
Inn Med (Heidelb) ; 65(6): 560-565, 2024 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-38771375

RESUMO

Heritable pulmonary arterial hypertension (PAH) can be triggered by at least 18 genes. The most frequently altered gene is the bone morphogenetic protein receptor 2 (BMPR2). Further genes from the same pathway are also well known PAH-causing genes. Genetic testing can aid to confirm differential diagnoses such as a pulmonary veno-occlusive disease. It also enables the testing of healthy family members. In addition to the PAH patient population particularly served by genetic testing, this article touches on the mode of inheritance and provides insights into the first treatments soon on the market that rebalance the BMPR2 signaling pathway.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Testes Genéticos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Predisposição Genética para Doença , Transdução de Sinais
5.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791441

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Células Endoteliais , PPAR gama , Proteínas Proto-Oncogênicas c-akt , Artéria Pulmonar , Receptor Notch1 , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , PPAR gama/metabolismo , PPAR gama/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Masculino , Proliferação de Células , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Feminino , Células Cultivadas
6.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767703

RESUMO

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Assuntos
Exossomos , Integrina beta1 , MicroRNAs , Telócitos , Proteínas rac1 de Ligação ao GTP , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Camundongos , Telócitos/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Proliferação de Células/genética , Movimento Celular/genética , Humanos , Remodelação Vascular/genética , Neuropeptídeos
7.
Respir Res ; 25(1): 192, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702687

RESUMO

This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.


Assuntos
Análise de Célula Única , Humanos , Animais , Análise de Célula Única/métodos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/patologia , Análise de Sequência de RNA/métodos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
8.
Respir Res ; 25(1): 220, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789967

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. METHODS: The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. RESULTS: In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. CONCLUSIONS: Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.


Assuntos
Estresse do Retículo Endoplasmático , Humanos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Feminino , Perfilação da Expressão Gênica/métodos , Pessoa de Meia-Idade , Bases de Dados Genéticas , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica
9.
Clin Respir J ; 18(5): e13771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747117

RESUMO

BACKGROUND: Hypertension is a main contributing factor of cardiovascular diseases; deregulated circular RNAs are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Herein, we evaluated the function and mechanism of circST6GAL1 in PAH process. METHODS: Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic environment for functional analysis. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and flow cytometry assays were used to investigate cell proliferation, migration, and apoptosis. qRT-PCR and Western blotting analyses were used for level measurement of genes and proteins. The binding between miR-509-5p and circST6GAL1 or multiple C2 and transmembrane domain containing 2 (MCTP2) was analyzed by dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. The monocrotaline (MCT)-induced PAH mouse models were established for in vivo assay. RESULTS: CircST6GAL1 was highly expressed in PAH patients and hypoxia-induced HPASMCs. Functionally, circST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs. Mechanistically, circST6GAL1 directly targeted miR-509-5p, and MCTP2 was a target of miR-509-5p. Rescue assays showed that the regulatory effects of circST6GAL1 deficiency on hypoxia-induced HPASMCs were abolished. Moreover, forced expression of miR-509-5p suppressed HPASMC proliferation and migration and induced cell apoptosis under hypoxia stimulation, while these effects were abolished by MCTP2 overexpression. Moreover, circST6GAL1 silencing improved MCT-induced pulmonary vascular remodeling and PAH. CONCLUSION: CircST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs, and alleviated pulmonary vascular remodeling in MCT-induced PAH mouse models through the miR-509-5p/MCTP2 axis, indicating a potential therapeutic target for PAH.


Assuntos
Apoptose , Proliferação de Células , MicroRNAs , Hipertensão Arterial Pulmonar , RNA Circular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Modelos Animais de Doenças , Miócitos de Músculo Liso/metabolismo , Masculino , Movimento Celular/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia
10.
Eur J Med Res ; 29(1): 209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561801

RESUMO

BACKGROUND: Pathologic variants in the bone morphogenetic protein receptor-2 (BMPR2) gene cause a pulmonary arterial hypertension phenotype in an autosomal-dominant pattern with incomplete penetrance. Straight back syndrome is one of the causes of pseudo-heart diseases. To date, no cases of idiopathic or heritable pulmonary arterial hypertension with straight back syndrome have been reported. CASE PRESENTATION: A 30-year-old female was diagnosed with pulmonary arterial hypertension by right heart catheterization. Computed tomography revealed a decreased anteroposterior thoracic space with heart compression, indicating a straight back syndrome. Genetic analysis by whole exome sequencing identified a novel c.2423_2424delGT (p.G808Gfs*4) germline frameshift variant within BMPR2 affecting the cytoplasmic tail domain. CONCLUSIONS: This is the first report of different straight back characteristics in heritable pulmonary arterial hypertension with a novel germline BMPR2 variant. This finding may provide a new perspective on the variable penetrance of the pulmonary arterial hypertension phenotype.


Assuntos
Hipertensão Arterial Pulmonar , Feminino , Humanos , Adulto , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Arterial Pulmonar/genética , Fenótipo , Mutação , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo
11.
Respir Res ; 25(1): 181, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664836

RESUMO

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS: In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS: We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS: This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.


Assuntos
Biomarcadores , DNA Circular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , DNA Circular/sangue , DNA Circular/genética , DNA Circular/análise , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/diagnóstico , Estudos de Coortes , Estudos de Casos e Controles
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 425-431, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660909

RESUMO

Pulmonary arterial hypertension (PAH) is a severe disease characterized by abnormal pulmonary vascular remodeling and increased right ventricular pressure load, posing a significant threat to patient health. While some pathological mechanisms of PAH have been revealed, the deeper mechanisms of pathogenesis remain to be elucidated. In recent years, bioinformatics has provided a powerful tool for a deeper understanding of the complex mechanisms of PAH through the integration of techniques such as multi-omics analysis, artificial intelligence, and Mendelian randomization. This review focuses on the bioinformatics methods and technologies used in PAH research, summarizing their current applications in the study of disease mechanisms, diagnosis, and prognosis assessment. Additionally, it analyzes the existing challenges faced by bioinformatics and its potential applications in the clinical and basic research fields of PAH in the future.


Assuntos
Biologia Computacional , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/etiologia
13.
J Affect Disord ; 356: 356-362, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621510

RESUMO

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) often present with anxiety, depression and cognitive deterioration. Structural changes in the cerebral cortex in PAH patients have also been reported in observational studies. METHODS: PAH genome-wide association (GWAS) including 162,962 European individuals was used to assess genetically determined PAH. GWAS summary statistics were obtained for cognitive performance, depression, anxiety and alterations in cortical thickness (TH) or surface area (SA) of the brain cortex, respectively. Two-sample Mendelian randomization (MR) was performed. Finally, sensitivity analyses including Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and funnel plot was performed. RESULTS: PAH had no causal relationship with depression, anxiety, and cognitive performance. At the global level, PAH was not associated with SA or TH of the brain cortex; at the functional regional level, PAH increased TH of insula (P = 0.015), pars triangularis (P = 0.037) and pars opercularis (P = 0.010) without global weighted. After global weighted, PAH increased TH of insula (P = 0.004), pars triangularis (P = 0.032), pars opercularis (P = 0.007) and rostral middle frontal gyrus (P = 0.022) while reducing TH of inferior parietal (P = 0.004), superior parietal (P = 0.031) and lateral occipital gyrus (P = 0.033). No heterogeneity and pleiotropy were detected. LIMITATIONS: The enrolled patients were all European and the causal relationship between PAH and the structure of the cerebral cortex in other populations remains unknown. CONCLUSION: Causal relationship between PAH and the brain cortical structure was implied, thus providing novel insights into the PAH associated neuropsychiatric symptoms.


Assuntos
Ansiedade , Córtex Cerebral , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Ansiedade/genética , Depressão/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Masculino , Feminino , Cognição/fisiologia , Imageamento por Ressonância Magnética , Adulto , Pessoa de Meia-Idade
14.
Cardiovasc Res ; 120(7): 756-768, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38626311

RESUMO

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.


Assuntos
Células Endoteliais , Poliaminas , Animais , Humanos , Poliaminas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/enzimologia , Proliferação de Células , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/enzimologia , Hipertensão Arterial Pulmonar/patologia , Apoptose , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Endossomos/metabolismo , Transporte Biológico , Modelos Animais de Doenças , Células Cultivadas , Fenótipo , Camundongos Endogâmicos C57BL , Camundongos
15.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652537

RESUMO

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-ß and further enhanced by hypoxia. The effect of TGF-ß was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.


Assuntos
Proteína Homeobox Nkx-2.5 , Músculo Liso Vascular , Remodelação Vascular , Animais , Camundongos , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Remodelação Vascular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Masculino , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/etiologia , Feminino , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proliferação de Células/genética , Pessoa de Meia-Idade , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia
16.
J Am Heart Assoc ; 13(6): e032256, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456412

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) exhibits phenotypic heterogeneity and variable response to therapy. The metabolome has been implicated in the pathogenesis of PAH, but previous works have lacked power to implicate specific metabolites. Mendelian randomization (MR) is a method for causal inference between exposures and outcomes. METHODS AND RESULTS: Using genome-wide association study summary statistics, we implemented MR analysis to test for potential causal relationships between serum concentration of 575 metabolites and PAH. Five metabolites were causally associated with the risk of PAH after multiple testing correction. Next, we measured serum concentration of candidate metabolites in an independent clinical cohort of 449 patients with PAH to check whether metabolite concentrations are correlated with markers of disease severity. Of the 5 candidates nominated by our MR work, serine was negatively associated and homostachydrine was positively associated with clinical severity of PAH via direct measurement in this independent clinical cohort. Finally we used conditional and orthogonal approaches to explore the biology underlying our lead metabolites. Rare variant burden testing was carried out using whole exome sequencing data from 578 PAH cases and 361 675 controls. Multivariable MR is an extension of MR that uses a single set of instrumental single-nucleotide polymorphisms to measure multiple exposures; multivariable MR is used to determine interdependence between the effects of different exposures on a single outcome. Rare variant analysis demonstrated that loss-of-function mutations within activating transcription factor 4, a transcription factor responsible for upregulation of serine synthesis under conditions of serine starvation, are associated with higher risk for PAH. Homostachydrine is a xenobiotic metabolite that is structurally related to l-proline betaine, which has previously been linked to modulation of inflammation and tissue remodeling in PAH. Our multivariable MR analysis suggests that the effect of l-proline betaine is actually mediated indirectly via homostachydrine. CONCLUSIONS: Our data present a method for study of the metabolome in the context of PAH, and suggests several candidates for further evaluation and translational research.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Seguimentos , Hipertensão Pulmonar Primária Familiar/genética , Serina
17.
Eur Respir J ; 63(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514094

RESUMO

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Telangiectasia Hemorrágica Hereditária , Humanos , Masculino , Feminino , Adulto , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar Primária Familiar , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Fenótipo , Fator 2 de Diferenciação de Crescimento/genética , Estudos Multicêntricos como Assunto
18.
Comput Biol Med ; 173: 108372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552277

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by abnormal early activation of pulmonary arterial smooth muscle cells (PASMCs), yet the underlying mechanisms remain to be elucidated. METHODS: Normal and PAH gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database and analyzed using gene set enrichment analysis (GSEA) to uncover the underlying mechanisms. Weighted gene co-expression network analysis (WGCNA) and machine learning methods were deployed to further filter hub genes. A number of immune infiltration analysis methods were applied to explore the immune landscape of PAH. Enzyme-linked immunosorbent assay (ELISA) was employed to compare MACC1 levels between PAH and normal subjects. The important role of MACC1 in the progression of PAH was verified through Western blot and real-time qPCR, among others. RESULTS: 39 up-regulated and 7 down-regulated genes were identified by 'limma' and 'RRA' packages. WGCNA and machine learning further narrowed down the list to 4 hub genes, with MACC1 showing strong diagnostic capacity. In vivo and in vitro experiments revealed that MACC1 was highsly associated with malignant features of PASMCs in PAH. CONCLUSIONS: These findings suggest that targeting MACC1 may offer a promising therapeutic strategy for treating PAH, and further clinical studies are warranted to evaluate its efficacy.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Biomarcadores , Proliferação de Células/genética , Biologia Computacional , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Transdução de Sinais , Transativadores/genética
19.
Hypertens Res ; 47(5): 1273-1287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438725

RESUMO

m6A (N6­methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.


Assuntos
Adenosina , Adenosina/análogos & derivados , Hipertensão Arterial Pulmonar , Humanos , Metilação , Adenosina/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Metilação de RNA
20.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473983

RESUMO

Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar Primária Familiar/genética , Mutação de Sentido Incorreto , Hemodinâmica , Deleção de Sequência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Mutação , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Fator 2 de Diferenciação de Crescimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA