Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Int J Environ Health Res ; 34(11): 3798-3809, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39422220

RESUMO

Perfluoroalkyl and polyfluoroalkyl(PFAS) substances are the most common environmental pollutants, which has an inconsistent association with hyperuricemia across different populations. This study explored the relationship between hyperuricemia and different gender PFAS and PFAS mixtures, using data from two cycles of the NHANES from 2015-2018. Weighted logistic regression results showed that the correlation between individual PFAS and hyperuricemia was significant only in men. Compared to the reference quartile, the fourth quartile of n-PFOA increased the risk of hyperuricemia in men (OR: 2.79, 95% CI: 1.50, 5.18). The Qgcomp model results showed that each quartile increase in the serum concentration of PFAS mixtures was associated with an increased likelihood of hyperuricemia in the total population, with odds ratios (OR) for men and women being 1.74 (95% CI: 1.26, 2.40), and 2.04 (95% CI: 1.35, 3.16), respectively. we concluded that PFAS might increase the risk of hyperuricemia in adults.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hiperuricemia , Inquéritos Nutricionais , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/epidemiologia , Hiperuricemia/sangue , Masculino , Feminino , Adulto , Fluorocarbonos/sangue , Fluorocarbonos/análise , Pessoa de Meia-Idade , Poluentes Ambientais/sangue , Fatores Sexuais , Adulto Jovem , Exposição Ambiental/análise , Exposição Ambiental/efeitos adversos , Idoso
2.
Int J Mycobacteriol ; 13(3): 282-287, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39277890

RESUMO

BACKGROUND: Pyrazinamide is one of the antitubercular drugs used for 2 months in the intensive phase. One of the adverse effects of pyrazinamide is hyperuricemia, with a symptom of arthralgia. This study aims to analyze the incidence of hyperuricemia and arthralgia and their causality in pulmonary tuberculosis (TB) patients undergoing treatment in the intensive phase. METHODS: It was an analytic observational study with a prospective cohort design. Three ml of blood from each pulmonary TB patient was withdrawn to examine uric acid levels before and after 2 months of treatment with pyrazinamide. The Wilcoxon test was used to analyze changes in uric acid levels and the Chi-square test to analyze the association between uric acid levels and arthralgia. Naranjo algorithm is used to analyze the causality of hyperuricemia. RESULTS: Twenty pulmonary TB patients met the inclusion criteria in this study. Eight out of 12 (60%) TB patients showed uric acid levels ≥7 mg/dl and 8 of them (66.6%) showed symptoms of arthralgia. The median uric acid level increased significantly before (5.14 mg/dl) and after 2 months of treatment (7.74 mg/dl), P-value = 0.001. Uric acid levels ≥7 mg/dl were significantly associated with arthralgia (P-value = 0.017; odds ratio 14.00; 95% confidence interval 1.25-156.61). Based on the Naranjo algorithm, those with hyperuricemia, eight and four patients had a total score of 7 and 8, respectively, which are classified as probable. CONCLUSION: Uric acid levels significantly increased during the intensive phase. Pulmonary TB patients with hyperuricemia are a risk factor for arthralgia.


Assuntos
Antituberculosos , Hiperuricemia , Pirazinamida , Tuberculose Pulmonar , Ácido Úrico , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/complicações , Pirazinamida/efeitos adversos , Pirazinamida/uso terapêutico , Masculino , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/complicações , Feminino , Antituberculosos/efeitos adversos , Estudos Prospectivos , Adulto , Pessoa de Meia-Idade , Ácido Úrico/sangue , Artralgia/induzido quimicamente , Idoso , Incidência , Adulto Jovem
3.
Eur J Med Chem ; 279: 116866, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39293244

RESUMO

Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Febuxostat , Ácidos Hidroxâmicos , Nanopartículas , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Concentração de Íons de Hidrogênio , Febuxostat/farmacologia , Febuxostat/química , Camundongos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Relação Dose-Resposta a Droga , Células HL-60 , Masculino , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente
4.
Eur J Med Chem ; 279: 116893, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39348762

RESUMO

Xanthine oxidase (XO) is an important enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid in the catabolism of purines in humans. This makes XO a well-recognized target in alleviating hyperuricemia. The present study adapted a structure-based drug discovery approach to develop potent and low-toxicity XO inhibitors with the chalcone skeleton. We introduced a carboxyl group and a hydroxyl group to the B ring and modified the A ring. 35 chalcone derivatives were designed and synthesized. All the 35 derivatives exhibited higher XO inhibition activities (IC50 = 0.064-0.559 µM) compared with allopurinol (IC50 = 2.588 µM). Their high affinity was attributed to strong hydrogen bond interactions formed between the introduced carboxyl and hydroxyl groups with key amino acid residues in XO. SAR analysis disclosed that carboxyl, hydroxyl, ethyl (12c), methylamino (12h), dimethylamino (12i), indolin (13k), and indol (13l) groups played important roles in improving the whole molecules' inhibition potency against XO. ADME predictions and cytotoxicity assays suggested their pharmacokinetic characteristics and biocompatibility were desirable. Additionally, 12c exhibited a significant hypouricemic effect on potassium oxonate-induced hyperuricemia rats after orally administrated at a dose range of 10-40 mg/kg, representing a promising anti-hyperuricemia potential for further optimization and development.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Animais , Ratos , Humanos , Estrutura Molecular , Relação Dose-Resposta a Droga , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Masculino , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Ratos Sprague-Dawley , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química , Simulação de Acoplamento Molecular
5.
Food Funct ; 15(17): 8823-8834, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39115429

RESUMO

The incidence of hyperuricemia (HUA) shows a gradually increasing trend towards affecting younger individuals, and it can significantly harm the overall health status of the body. Based on a metabolomics perspective, this study reveals the mechanism of the uric acid-lowering action of Prunus salicina Lindl. cv. "furong" polyphenols (PSLP) on a hyperuricemia mouse model induced by hypoxanthine and potassium oxybutyrate. The results demonstrate that PSLP comprise an effective treatment strategy for reducing the levels of serum uric acid (SUA), serum creatinine (SCr) and blood urea nitrogen (BUN) in HUA mice (p < 0.05), wherein the maximum decrease rates are up to 44.50%, 29.46%, and 32.95%, respectively. PSLP are observed to exert a pronounced inhibitory effect on the activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the livers of HUA mice, with reductions of up to 16.36% and 20.13%, respectively. These findings illustrate that PSLP exert a significant uric acid-lowering effect. Subsequent metabolomic analysis of mouse serum identified 28 potential biomarkers for hyperuricemia, whose levels were markedly diminished by PSLP. This process involved alterations in purine, glycine, the pentose phosphate pathway, and galactose metabolism. Twenty-eight potential biomarkers were identified for hyperuricemia by subsequent metabolomic analysis of mouse serum, whose levels were markedly reversed by PSLP intervention. The regulation of HUA by PSLP involved alterations in purine metabolism, glycerolipid metabolism, the pentose phosphate pathway, and galactose metabolism. The mechanism of PSLP ameliorated hyperuricemia might be attributed to reduction of the level of the uric acid precursor ribose-5-phosphate in the pentose phosphate pathway, the inhibition of the activities of uric acid synthase XOD and ADA in purine metabolism, and reduction of the synthesis of the end product uric acid. This study provides a theoretical basis for the development of functional foods based on PSLP, which can potentially reduce uric acid levels.


Assuntos
Hiperuricemia , Hipoxantina , Metabolômica , Polifenóis , Prunus , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Hiperuricemia/induzido quimicamente , Camundongos , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Masculino , Prunus/química , Polifenóis/farmacologia , Hipoxantina/metabolismo , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Hidroxibutiratos , Creatinina/sangue , Biomarcadores/sangue , Ácido Oxônico
6.
Sci Total Environ ; 949: 174923, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047823

RESUMO

Hyperuricemia is prevalent globally and potentially linked to environmental pollution. As a typical persistent organic pollutant, phenanthrene (Phe) poses threats to human health through biomagnification. Although studies have reported Phe-induced toxicities to multiple organs, its impact on uric acid (UA) metabolism remains unclear. In this study, data mining on NHANES 2001-2016 indicated a positive correlation between Phe exposure and the occurrence of hyperuricemia in population. Subsequently, adolescent Balb/c male mice were orally exposed to Phe at a dosage of 10 mg/kg bw every second day for 7 weeks, resulting in dysfunction of intestinal UA excretion and disruption of the intestinal barrier. Utilizing intestinal organoids, 16S rRNA sequencing of gut microbiota, and targeted metabolomic analysis, we further revealed that an imbalance in bile acid metabolism derived from gut microbiota might mediate the intestinal barrier damage. Additionally, the tea extract theabrownin (TB) effectively improved Phe-induced hyperuricemia and intestinal dysfunction at a dose of 320 mg/kg bw per day. In conclusion, this study demonstrates that Phe exposure is positively associated with hyperuricemia and intestinal damage, which provides new insights into the toxic effects induced by Phe. Furthermore, the present study proposes that supplementation with TB would be a healthy and effective improvement strategy for patients with hyperuricemia and intestinal injury caused by environmental factors.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hiperuricemia , Camundongos Endogâmicos BALB C , Fenantrenos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Ácidos e Sais Biliares/metabolismo , Masculino , Humanos
7.
J Ethnopharmacol ; 333: 118488, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38925319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, in addition to hypertension, hyperglycemia, and hyperlipidemia, the prevalence of hyperuricemia (HUA) has increased considerably. Being the fourth major health risk factor, HUA can affect the kidneys and cardiovascular system. Chrysanthemi Indici Flos is a flavonoid-containing traditional Chinese patent medicine that exhibits a uric acid (UA)-lowering effect. However, the mechanisms underlying Chrysanthemi Indici Flos-enriched flavonoid part (CYM.E) mediated alleviation of HUA remain unelucidated. AIM OF THE STUDY: This study aimed to elucidate the efficacy of CYM.E in preventing and treating HUA and its specific effects on UA-related transport proteins, to explore possible mechanism. METHODS: The buddleoside content in CYM.E was determined through high-performance liquid chromatography. HUA was induced in mice models using adenine and potassium oxonate. Subsequently, mice were administered 10 mg/kg allopurinol, and 30, 60, and 90 mg/kg CYM.E to evaluate the effects of CYM.E on the of HUA mice model. Herein, plasma uric acid (UA), creatinine (CR), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) contents, along with serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured. Additionally, xanthine oxidase (XOD) and adenosine deaminase (ADA) activities in the liver were determined. The histomorphologies of the liver and kidney tissues were examined through hematoxylin and eosin staining. The messenger RNA (mRNA) expression of facilitated glucose transporter 9 (GLUT9), organic anion transporter (OAT)1, OAT3, and adenosine triphosphate binding cassette subfamily G2 (ABCG2) in the kidney was assessed by real-time quantitative polymerase chain reaction. Furthermore, the expression of urate transporter 1 (URAT1), GLUT9, OAT1, and OAT3 in the kidney, OAT4, and ABCG2 proteins was determined by immunohistochemistry and western blotting. RESULTS: The buddleoside content in CYM.E was approximately 32.77%. CYM.E improved body weight and autonomous activity in HUA mice. Additionally, it reduced plasma UA, BUN, and CR levels and serum ALT and AST activities, thus improving hepatic and renal functions, which further reduced the plasma UA content. CYM.E reduced histopathological damage to the kidneys. Furthermore, it lowered plasma TC, TG, and LDL-c levels, thereby improving lipid metabolism disorder. CYM.E administration inhibited hepatic XOD and ADA activities and reduced the mRNA expression of renal GLUT9. CYM.E inhibited the protein expression of renal URAT1, GLUT9, and OAT4, and increased the mRNA and protein expression of renal OAT1, OAT3, and ABCG2. Altogether, these results show that CYM.E could inhibit the production and promote reabsorption of UA and its excretion.


Assuntos
Modelos Animais de Doenças , Flavonoides , Hiperuricemia , Transportadores de Ânions Orgânicos , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Ácido Úrico/sangue , Masculino , Flavonoides/farmacologia , Flavonoides/análise , Camundongos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Flores/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Alopurinol/farmacologia , Camundongos Endogâmicos ICR
8.
Biomed Pharmacother ; 177: 116859, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879892

RESUMO

Phellinus igniarius is an important medicinal and edible fungus with diverse biological activities. This study aimed to investigate the effects of aqueous extract from P. igniarius (API) on the treatment of hyperuricemia (HUA) and related kidney damage. The chemical constituents of API were determined. The therapeutic effects of API on HUA and renal injury were assessed in adenine/potassium oxonate (PO)-treated mice. The constituent analysis of API revealed a predominance of polysaccharides (33.4 %), followed by total flavonoids (9.1 %), and total triterpenoids (3.5 %). Compared to control, the adenine/PO treatment greatly elevated serum uric acid (UA) levels but this elevation was attenuated by API. In the liver, the expression and activity of xanthine oxidase (XOD) were increased by HUA which were diminished by API. Furthermore, API was found to enhance the expression of UA transporter ABCG2 in the kidney and intestine of HUA mice, suggesting elevating UA excretion. Additionally, API ameliorated HUA-induced renal injury, as indicated by reduced serum BUN/creatinine levels, decreased glomerular and tubular damage, and lowered fibrotic levels. Network pharmacology analysis predicted that P. igniarius may regulate mitochondrial function to improve HUA-related renal injury. This prediction was then substantialized by the API-induced upregulation of NAD+/NADH ratio, ATP level, SOD2 activity, and expression of SOD2/PCG-1α/PPARγ in the kidney of HUA mice. Our results demonstrate that API may effectively ameliorate HUA by reducing UA production in the liver and enhancing UA excretion in the kidney and intestine, and it might be a potential therapy to HUA-related renal injury.


Assuntos
Adenina , Hiperuricemia , Rim , Ácido Oxônico , Xantina Oxidase , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Masculino , Camundongos , Adenina/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Xantina Oxidase/metabolismo , Basidiomycota/química , Ácido Úrico/sangue , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
9.
J Ethnopharmacol ; 333: 118410, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38848973

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Qiling granules (FQG), derived from the traditional Qiling Decoction with a longstanding clinical history, is utilized for the treatment of hyperuricemia (HUA). FQG is formulated with a combination of seven Chinese herbs based on the principles of traditional Chinese medicine (TCM) theories. Clinical evidence indicates that FQG exhibits favorable therapeutic effects in reducing uric acid (UA) levels and attenuating renal damage. AIM OF THIS STUDY: To elucidate the potential active components and pharmacological mechanism of FQG in the treatment of HUA, and to provide an experimental basis for the development of efficient and low-toxicity TCM for HUA treatment. MATERIALS AND METHODS: A HUA rat model induced by potassium oxonate and adenine was established to initially evaluate the hypouricemic effects of FQG. Chemical analyses were conducted using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to investigate the active components and mechanism of FQG in the treatment of HUA. Potential Xanthine oxidase (XOD) inhibitors were screened from FQG based on ultrafiltration liquid chromatography and mass spectrometry (UF-LC-MS). Molecular docking, surface plasmon resonance (SPR) and circular dichroism (CD) spectroscopy were applied to validate the interactions between the active components and XOD. RESULTS: In comparison to the model group, treatment with FQG significantly decreased serum UA, serum creatinine (CREA), serum blood urea nitrogen (BUN), and liver XOD activity. Additionally, the FQG administration notably ameliorated HUA-induced renal injury in rats. Through the pharmacodynamics of the HUA rat models and network pharmacology, it was found that XOD was a key pathway enzyme in UA metabolism. 18 XOD inhibitors were screened from FQG by UF-LC-MS, and 11 compounds with strong affinity were verified by SPR, molecular docking and CD spectroscopy. CONCLUSION: In summary, flavonoids, organic acids and saponins may be the active components in FQG that alleviate HUA. The primary mechanism of FQG involves inhibiting XOD enzyme activity in the plasma to reduce UA production, alleviating renal tubular epithelial cell necrosis, tubulointerstitial injury, fibrosis, and urate deposition, ultimately exerting a therapeutic effect on HUA.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Xantina Oxidase , Animais , Masculino , Ratos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/farmacologia , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ácido Oxônico , Ratos Sprague-Dawley , Ácido Úrico/sangue , Xantina Oxidase/metabolismo , Xantina Oxidase/antagonistas & inibidores
10.
J Hazard Mater ; 471: 134312, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640681

RESUMO

Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.


Assuntos
Fluorocarbonos , Hiperuricemia , Rim , Ácido Úrico , Humanos , Ácido Úrico/sangue , Hiperuricemia/induzido quimicamente , Hiperuricemia/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Fluorocarbonos/toxicidade , Fluorocarbonos/sangue , Estudos Transversais , Rim/efeitos dos fármacos , Rim/fisiopatologia , Poluentes Ambientais/toxicidade , Poluentes Ambientais/sangue , Exposição Ambiental/efeitos adversos , Inquéritos Nutricionais , Idoso
11.
Tissue Cell ; 88: 102385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678740

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is commonly associated with increased risk of cardiac disease that affects a large number of world populations. OBJECTIVE: This research attempted to investigate the efficacy of fennel seeds extract (FSE) in preventing development of cardiac dysfunction in rats on fructose enriched diet for 3 months, as a model of MetS. MATERIALS & METHODS: Thirty adult Wistar male rats (160-170 g) were assigned into 5 groups including control, vehicle, FSE (200 mg/kg BW) and fructose (60%) fed rats with and without FSE. Following the last treatment, blood pressure, ECG and heart rate were measured. Next, blood and cardiac tissues were taken for biochemical and histological investigations. RESULTS: Feeding fructose exhibited characteristic features of MetS involving, hypertension, abnormal ECG, elevated heart rate, serum glucose, insulin, lipids and insulin resistance, accompanied by abdominal obesity, cardiac hypertrophy and hyperuricemia. Fructose fed rats also showed significant reduction in cardiac antioxidants (GSH, SOD, CAT) with elevation in oxidative stress indices (NADPH oxidase, O2.-, H2O2, MDA, PCO), NF-κß, pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6), adhesion molecules (ICAM-1, VCAM-1) and serum cardiac biomarkers (AST, LDH, CK-MB, cTn-I). Histopathological changes evidenced by destruction of cardiac myofibrils, cytoplasmic vacuolization, and aggregation of inflammatory cells were also detected. Consumption of FSE showed high ability to alleviate fructose-induced hypertension, ECG abnormalities, cardiac hypertrophy, metabolic alterations, oxidative stress, inflammation and histological injury. CONCLUSION: Findings could suggest FSE as a complementary supplement for preventing MetS and associated cardiac outcomes. However, well controlled clinical studies are still needed.


Assuntos
Modelos Animais de Doenças , Foeniculum , Frutose , Hiperuricemia , Inflamação , Síndrome Metabólica , NF-kappa B , Extratos Vegetais , Ratos Wistar , Sementes , Animais , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/tratamento farmacológico , Frutose/efeitos adversos , Extratos Vegetais/farmacologia , Masculino , NF-kappa B/metabolismo , Sementes/química , Ratos , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Foeniculum/química , Inflamação/patologia , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Clin Pharmacol Ther ; 115(6): 1408-1417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38425181

RESUMO

Thiazide diuretics, widely used in hypertension, cause a variety of adverse reactions, including hyperglycemia, hyperuricemia, and electrolyte abnormalities. In this study, we aimed to identify genetic variants that interact with thiazide-use to increase the risk of these adverse reactions. Using UK Biobank data, we first performed genomewide variance quantitative trait locus (vQTL) analysis of ~ 6.2 million SNPs on 95,493 unrelated hypertensive White British participants (24,313 on self-reported bendroflumethiazide treatment at recruitment) for 2 blood (glucose and urate) and 2 urine (potassium and sodium) biomarkers. Second, we conducted direct gene-environment interaction (GEI) tests on the significant (P < 2.5 × 10-9) vQTLs, included a second UK Biobank cohort comprising 13,647 unrelated hypertensive White British participants (3,478 on thiazides other than bendroflumethiazide) and set significance at P = 0.05 divided by the number of vQTL SNPs tested for GEIs. The vQTL analysis identified eight statistically significant SNPs for blood glucose (5 SNPs) and serum urate (3 SNPs), with none being identified for the urinary biomarkers. Two of the SNPs (1 glucose SNP: CDKAL1 intron rs35612982, GEI P = 6.24 × 10-3; and 1 serum urate SNP: SLC2A9 intron rs938564, GEI P = 4.51 × 10-4) demonstrated significant GEI effects in the first, but not the second, cohort. Both genes are biologically plausible candidates, with the SLC2A9-mediated interaction having been previously reported. In conclusion, we used a two-stage approach to detect two biologically plausible genetic loci that can interact with thiazides to increase the risk of thiazide-associated biochemical abnormalities. Understanding how environmental exposures (including medications such as thiazides) and genetics interact, is an important step toward precision medicine and improved patient outcomes.


Assuntos
Hiperglicemia , Hiperuricemia , Polimorfismo de Nucleotídeo Único , Inibidores de Simportadores de Cloreto de Sódio , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/urina , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Hiperglicemia/genética , Hiperglicemia/induzido quimicamente , Hiperglicemia/urina , Hiperglicemia/epidemiologia , Hipertensão/genética , Hipertensão/induzido quimicamente , Hiperuricemia/genética , Hiperuricemia/urina , Hiperuricemia/induzido quimicamente , Potássio/urina , Potássio/sangue , Locos de Características Quantitativas , Sódio/urina , Inibidores de Simportadores de Cloreto de Sódio/efeitos adversos , Biobanco do Reino Unido , Reino Unido/epidemiologia , Ácido Úrico/urina , Ácido Úrico/sangue
13.
Environ Sci Technol ; 58(12): 5290-5298, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38468128

RESUMO

Hyperuricemia is characterized by elevated blood uric acid (UA) levels, which can lead to certain diseases. Epidemiological studies have explored the association between environmental contaminant exposure and hyperuricemia. However, few studies have investigated the role of chemical exposure in the development of hyperuricemia. Here, we sought to investigate the effects of bisphenol exposure on the occurrence of hyperuricemia. Fifteen bisphenol chemicals (BPs) were detected in human serum and urine samples collected from an area with a high incidence of hyperuricemia in China. Serum UA levels positively correlated with urinary bisphenol S (BPS), urinary bisphenol P (BPP), and serum bisphenol F (BPF). The effects of these three chemicals on UA levels in mice were explored at various exposure concentrations. An increase in serum UA levels was observed in BPS- and BPP-exposed mice. The results showed that BPS exposure increased serum UA levels by damaging the structure of the kidneys, whereas BPP exposure increased serum UA levels by disturbing purine metabolism in the liver. Moreover, BPF did not induce an increase in serum UA levels owing to the inhibition of guanine conversion to UA. In summary, we provide evidence of the mechanisms whereby exposure to three BPs disturbs UA homeostasis. These findings provide new insights into the risks of exposure to bisphenol chemicals.


Assuntos
Experimentação Animal , Hiperuricemia , Fenóis , Humanos , Animais , Camundongos , Hiperuricemia/induzido quimicamente , Exposição Ambiental , Compostos Benzidrílicos/toxicidade
14.
BMC Public Health ; 24(1): 370, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317153

RESUMO

BACKGROUND: Recent studies suggested inconclusive associations between bisphenols exposure and hyperuricemia risk. Our objective was to assess the potential association of bisphenol A (BPA) and its substitutes bisphenol S and F (BPS and BPF) exposure with serum uric acid (SUA) levels, hyperuricemia, and gout prevalence among US adults within the NHANES 2013-2016 datasets. METHODS: Multivariable linear and logistic regression models were used to explore the associations of urinary bisphenols concentrations with SUA levels, hyperuricemia, and gout prevalence, in total population and different sex groups. The restricted cubic spline (RCS) model was used to explore the dose-response relationship. RESULTS: In total population, doubling of urinary BPS and ∑BPs concentrations showed associations with an increase of 2.64 µmol/L (95% CI: 0.54, 4.74) and 3.29 µmol/L (95% CI: 0.59, 5.99) in SUA levels, respectively. The RCS model indicated a significantly "J"-shaped dose-response relationship between BPS exposure and SUA levels. Compared to the reference group of urinary BPS, males in the highest quartile displayed a 13.06 µmol/L (95% CI: 0.75, 25.37) rise in SUA levels. For females, doubling of urinary BPS concentrations was associated with a 3.30 µmol/L (95% CI: 0.53, 6.07) increase in SUA levels, with a significant linear dose-response relationship. In total population, doubling of urinary BPA concentrations showed a 1.05-fold (95% CI: 0.97, 1.14) adjusted risk of having hyperuricemia, with an inverted "U" curve. Doubling of urinary ∑BPs concentrations was associated with a 1.05-fold (95% CI: 0.96, 1.14) adjusted risk of hyperuricemia in total population, with a significant monotonic dose-response relationship. In females, doubling of urinary BPS concentrations was associated with a 1.45-fold (95% CI: 1.01, 2.08) adjusted increased risk of having gout, with a "J" shaped relationship. CONCLUSIONS: BPA and BPS exposure to some extent were associated with elevated SUA levels and increased risk of hyperuricemia, with different dose-response relationships and sex differences.


Assuntos
Gota , Hiperuricemia , Fenóis , Sulfonas , Adulto , Humanos , Masculino , Feminino , Hiperuricemia/induzido quimicamente , Hiperuricemia/epidemiologia , Ácido Úrico , Estudos Transversais , Prevalência , Inquéritos Nutricionais , Gota/epidemiologia , Compostos Benzidrílicos
15.
Eur J Pharmacol ; 967: 176356, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325797

RESUMO

Accumulating evidence suggests that excess fructose uptake induces metabolic syndrome and kidney injury. Here, we primarily investigated the influence of catalpol on fructose-induced renal inflammation in mice and explored its potential mechanism. Treatment with catalpol improved insulin sensitivity and hyperuricemia in fructose-fed mice. Hyperuricemia induced by high-fructose diet was associated with increases in the expressions of urate reabsorptive transporter URAT1 and GLUT9. Treatment with catalpol decreased the expressions of URAT1 and GLUT9. Futhermore, treatment with catalpol ameliorated renal inflammatory cell infiltration and podocyte injury, and these beneficial effects were associated with inhibiting the production of inflammatory cytokines including IL-1ß, IL-18, IL-6 and TNF-α. Moreover, fructose-induced uric acid triggers an inflammatory response by activiting NLRP3 inflammasome, which then processes pro-inflammatory cytokines. Treatment with catalpol could inhibit the activation of NLRP3 inflammasome as well. Additionally, TLR4/MyD88 signaling was activated in fructose-fed mice, while treatment with catalpol inhibited this activation along with promoting NF-κB nuclear translocation in fructose-fed mice. Thus, our study demonstrated that catalpol could ameliorate renal inflammation in fructose-fed mice, attributing its beneficial effects to promoting uric acid excretion and inhibit the activation of TLR4/MyD88 signaling.


Assuntos
Hiperuricemia , Glucosídeos Iridoides , Nefrite , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Inflamassomos/metabolismo , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Frutose/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
16.
Nutrients ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257077

RESUMO

Hyperuricemia (HUA) is a prevalent chronic disease, characterized by excessive blood uric acid levels, that poses a significant health risk. In this study, the preventive effects and potential mechanisms of ethanol extracts from Chinese sumac (Rhus chinensis Mill.) fruits on HUA and uric acid nephropathy were comprehensively investigated. The results demonstrated a significant reduction in uric acid levels in hyperuricemia mice after treatment with Chinese sumac fruit extract, especially in the high-dose group, where the blood uric acid level decreased by 39.56%. Visual diagrams of the kidneys and hematoxylin and eosin (H&E)-stained sections showed the extract's effectiveness in protecting against kidney damage caused by excessive uric acid. Further investigation into its mechanism revealed that the extract prevents and treats hyperuricemia by decreasing uric acid production, enhancing uric acid excretion, and mitigating the oxidative stress and inflammatory reactions induced by excessive uric acid in the kidneys. Specifically, the extract markedly decreased xanthine oxidase (XOD) levels and expression in the liver, elevated the expression of uric acid transporters ABCG2, and lowered the expression of uric acid reabsorption proteins URAT1 and SLC2A9. Simultaneously, it significantly elevated the levels of endogenous antioxidant enzymes (SOD and GSH) while reducing the level of malondialdehyde (MDA). Furthermore, the expression of uric-acid-related proteins NLRP3, ACS, and Caspase-3 and the levels of IL-1ß and IL-6 were significantly reduced. The experimental results confirm that Chinese sumac fruit extract can improve HUA and uric acid nephropathy in mice fed a high-purine yeast diet. This finding establishes a theoretical foundation for developing Chinese sumac fruit as a functional food or medicine for preventing and treating HUA.


Assuntos
Ailanthus , Hiperuricemia , Nefropatias , Rhus , Animais , Camundongos , Saccharomyces cerevisiae , Frutas , Ácido Úrico , Hiperuricemia/induzido quimicamente , Hiperuricemia/prevenção & controle , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Extratos Vegetais/farmacologia , Dieta
17.
Phytomedicine ; 124: 155305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176275

RESUMO

BACKGROUND: Hyperuricemia (HUA) is a metabolic disease characterized by a high level of uric acid (UA). The extensive historical application of traditional Chinese medicine (TCM) offers a range of herbs and prescriptions used for the treatment of HUA-related disorders. However, the core herbs in the prescriptions and their mechanisms have not been sufficiently explained. PURPOSE: Our current investigation aimed to estimate the anti-HUA effect and mechanisms of Paeonia veitchii Lynch, an herb with high use frequency identified from data mining of TCM prescriptions. METHODS: Prescriptions for HUA/gout treatment were statistically analyzed through a data mining approach to determine the common nature and use frequency of their composition herbs. The chemical constituents of Paeonia veitchii extract (PVE) were analyzed by UPLC-QTOF-MS/MS, while its UA-lowering effect was further evaluated in adenosine-induced liver cells and potassium oxonate (PO) and hypoxanthine (HX)-induced HUA mice. RESULTS: A total of 225 prescriptions involving 246 herbs were sorted out. The properties, flavors and meridians of the appearing herbs were mainly cold, bitter and liver, respectively, while their efficacy was primarily concentrated on clearing heat and dispelling wind. Further usage frequency analysis yielded the top 20 most commonly used herbs, in which PVE presented significant inhibitory activity (IC50 = 131.33 µg/ml) against xanthine oxidase (XOD), and its constituents showed strong binding with XOD in a molecular docking study and further were experimentally validated through XOD enzymatic inhibition and surface plasmon resonance (SPR). PVE (50 to 200 µg/ml) dose-dependently decreased UA levels by inhibiting XOD expression and activity in BRL 3A liver cells. In HUA mice, oral administration of PVE exhibited a significant UA-lowering effect, which was attributed to the reduction of UA production by inhibiting XOD activity and expression, as well as the enhancement of UA excretion by regulating renal urate transporters (URAT1, GLUT9, OAT1 and ABCG2). Noticeably, all doses of PVE treatment did not cause any liver injury, and displayed a renal protective effect. CONCLUSIONS: Our results first comprehensively clarified the therapeutic effect and mechanisms of PVE against HUA through suppressing UA production and promoting UA excretion with hepatic and renal protection, suggesting that PVE could be a promising UA-lowering candidate with a desirable safety profile for the treatment of HUA and prevention of gout.


Assuntos
Gota , Hiperuricemia , Paeonia , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Rim
18.
Pharmacology ; 109(1): 34-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38011839

RESUMO

INTRODUCTION: Hyperuricemia may be involved in the phenotypic transformation of vascular smooth muscle cells, thus promoting the occurrence of atherosclerosis, and autophagy may be one of the important links, but little is known about the specific molecular mechanism. METHODS: We established a mouse model of hyperuricemia and studied the relationship between changes in autophagy levels and the phenotypic transformation of muscle cells. RESULTS: Our study found that high uric acid levels promote the phenotypic transformation of muscle cells by inhibiting autophagy, thus enhancing their proliferation and migration abilities. If autophagy is restored, phenotypic transformation can be reversed by reducing the levels of the transcription factor Kruppel-like factor 4. CONCLUSION: Uric acid may induce the phenotypic transformation of muscle cells and promote the occurrence of atherosclerosis by disrupting normal autophagy.


Assuntos
Aterosclerose , Hiperuricemia , Camundongos , Animais , Ácido Úrico , Hiperuricemia/induzido quimicamente , Músculo Liso Vascular , Autofagia , Miócitos de Músculo Liso , Aterosclerose/induzido quimicamente , Proliferação de Células , Células Cultivadas
19.
Drug Chem Toxicol ; 47(1): 55-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36789513

RESUMO

Drug induced liver injury, as a sub-type of hepatotoxicity, is rare but practical problem, producing challenges for clinicians. Within the recent two months, two patients with heart failure develop febuxostat-induced acute liver injury during hospital stay. To the best of our knowledge, very few cases of febuxostat-induced hepatotoxicity have been reported up to now. In this paper, two unusual cases of febuxostat-induced acute liver injury are herein described. The medical history, drug treatment, clinical symptoms, liver function tests, diagnosis and prognosis are fully given in this paper. It should be noticed that, two liver injury happen in patients of heart failure with reduced ejection fraction. Whether heart failure is a risk factor of febuxostat related liver injury, deserves further research. This paper reminds the clinicians that more attention should be paid to the acute liver injury caused by febuxostat, and liver function tests are suggested especially for patients of heart failure.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Insuficiência Cardíaca , Hiperuricemia , Humanos , Febuxostat/efeitos adversos , Supressores da Gota/toxicidade , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Fatores de Risco , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Resultado do Tratamento
20.
Avian Pathol ; 53(1): 80-89, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37881947

RESUMO

In this study, an attempt was made to evaluate the relative efficacy of two important anti-gout agents, viz. allopurinol and febuxostat, in the control of hyperuricaemia/gout using a poultry model. A 21-day study was conducted on 48 Vencobb-400 broiler chicks randomly divided into four groups. In one group hyperuricaemia/gout was induced by the oral administration of diclofenac (group D); in two other groups the ameliorative effect of the two drugs under study was investigated by providing both simultaneously, i.e. diclofenac and allopurinol (group DA), diclofenac and febuxostat (group DF); and the fourth group was kept un-induced and untreated as a control (group C). Both allopurinol and febuxostat inhibit xanthine oxidase enzymes, thereby reducing the production of uric acid. The birds kept on diclofenac alone exhibited the highest level of hyperuricaemia, clinical signs of gout, and overt adverse changes in the visceral organs, whereas these changes were lesser in allopurinol- and febuxostat-treated groups. Furthermore, haematological, biochemical, patho-morphological, and ultra-structural studies using transmission electron microscopy were carried out to evaluate the pathology and, thus, the ameliorative effect of allopurinol and febuxostat. The findings proved that allopurinol and febuxostat carry definite ameliorative potential as anti-hyperuricemic and anti-gout agents in poultry, which was better expressed by febuxostat compared to allopurinol.


Assuntos
Gota , Hiperuricemia , Animais , Alopurinol/farmacologia , Galinhas , Diclofenaco/efeitos adversos , Febuxostat/farmacologia , Gota/induzido quimicamente , Gota/tratamento farmacológico , Gota/veterinária , Supressores da Gota/farmacologia , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/veterinária , Aves Domésticas , Resultado do Tratamento , Xantina Oxidase/farmacologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...