Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.774
Filtrar
1.
Radiother Oncol ; 196: 110326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735536

RESUMO

PURPOSE: The oxygen depletion hypothesis has been proposed as a rationale to explain the observed phenomenon of FLASH-radiotherapy (FLASH-RT) sparing normal tissues while simultaneously maintaining tumor control. In this study we examined the distribution of DNA Damage Response (DDR) markers in irradiated 3D multicellular spheroids to explore the relationship between FLASH-RT protection and radiolytic-oxygen-consumption (ROC) in tissues. METHODS: Studies were performed using a Varian Truebeam linear accelerator delivering 10 MeV electrons with an average dose rate above 50 Gy/s. Irradiations were carried out on 3D spheroids maintained under a range of O2 and temperature conditions to control O2 consumption and create gradients representative of in vivo tissues. RESULTS: Staining for pDNA-PK (Ser2056) produced a linear radiation dose response whereas γH2AX (Ser139) showed saturation with increasing dose. Using the pDNA-PK staining, radiation response was then characterised for FLASH compared to standard-dose-rates as a function of depth into the spheroids. At 4 °C, chosen to minimize the development of metabolic oxygen gradients within the tissues, FLASH protection could be observed at all distances under oxygen conditions of 0.3-1 % O2. Whereas at 37 °C a FLASH-protective effect was limited to the outer cell layers of tissues, an effect only observed at 3 % O2. Modelling of changes in the pDNA-PK-based oxygen enhancement ratio (OER) yielded a tissue ROC g0-value estimate of 0.73 ± 0.25 µM/Gy with a km of 5.4 µM at FLASH dose rates. CONCLUSIONS: DNA damage response markers are sensitive to the effects of transient oxygen depletion during FLASH radiotherapy. Findings support the rationale that well-oxygenated tissues would benefit more from FLASH-dose-rate protection relative to poorly-oxygenated tissues.


Assuntos
Dano ao DNA , Esferoides Celulares , Dano ao DNA/efeitos da radiação , Humanos , Esferoides Celulares/efeitos da radiação , Histonas/metabolismo , Histonas/análise , Consumo de Oxigênio/efeitos da radiação , Relação Dose-Resposta à Radiação , Tratamentos com Preservação do Órgão/métodos
2.
J Biomed Opt ; 29(6): 066501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799979

RESUMO

Significance: Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale. Aim: Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data. Approach: We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler. Results: For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging. Conclusions: We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.


Assuntos
Aprendizado Profundo , Imagem Individual de Molécula , Animais , Imagem Individual de Molécula/métodos , Humanos , Chlorocebus aethiops , Células COS , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/análise , Algoritmos , Histonas/química , Histonas/análise
3.
Funct Integr Genomics ; 24(2): 76, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38656411

RESUMO

Stroke is a leading cause of death and disability, and genetic risk factors play a significant role in its development. Unfortunately, effective therapies for stroke are currently limited. Early detection and diagnosis are critical for improving outcomes and developing new treatment strategies. In this study, we aimed to identify potential biomarkers and effective prevention and treatment strategies for stroke by conducting transcriptome and single-cell analyses. Our analysis included screening for biomarkers, functional enrichment analysis, immune infiltration, cell-cell communication, and single-cell metabolism. Through differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network construction, we identified HIST2H2AC as a potential biomarker for stroke. Our study also highlighted the diagnostic role of HIST2H2AC in stroke, its relationship with immune cells in the stroke environment, and our improved understanding of metabolic pathways after stroke. Overall, our research provided important insights into the pathogenesis of stroke, including potential biomarkers and treatment strategies that can be explored further to improve outcomes for stroke patients.


Assuntos
Biomarcadores , Histonas , Acidente Vascular Cerebral , Humanos , Biomarcadores/análise , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas , Análise de Célula Única , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/metabolismo , Transcriptoma , Histonas/análise
4.
J Cardiothorac Surg ; 19(1): 129, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491551

RESUMO

OBJECTIVE: Previous studies have reported that neutrophil extracellular traps (NETs) have been identified to be involved in thrombosis, but the clinical value in chronic heart failure (CHF) patients with venous thrombosis is unclear. This study focused on the expression level of NETs in the peripheral blood of patients with CHF complicated with venous thrombosis and its clinical value. METHODS: 80 patients with CHF were included and divided into 2 groups according to the occurrence of venous thrombosis, and the expression levels of NETs in peripheral venous blood and lesion veins of the patients were detected through fluorescent staining. Myeloperoxidase-DNA (MPO-DNA) and citrullinated histone H3 (CitH3), markers of NETs, were detected by enzyme linked immunosorbent assay kit. The receiver operating characteristic (ROC) curve was used to analyze the value of peripheral venous blood NETs in the diagnosis of venous thrombosis in CHF patients, while the relationship between NETs in peripheral and lesion veins was analyzed by a unitary linear regression model. RESULTS: The results showed that the concentration of NETs, MPO-DNA, and CitH3 in CHF patients combined with venous thrombosis was markedly higher than that in patients without venous thrombosis, and the concentration of NETs, MPO-DNA, and CitH3 in lesion venous blood was notably higher than that in peripheral venous blood. Binary logistics regression analysis showed that NETs in peripheral venous blood were an independent risk factor for venous thrombosis in patients with heart failure. The unitary linear regression model fitted well, indicating a notable positive correlation between NETs concentrations in peripheral and lesion veins. The area under the ROC curve for diagnosing venous thrombosis was 0.85, indicating that peripheral blood NETs concentration levels could effectively predict venous thrombosis in CHF patients. CONCLUSION: The expression level of NETs was high in the peripheral blood of CHF patients combined with venous thrombosis and was the highest in lesion venous blood. NETs levels in peripheral blood had the value of diagnosing venous thrombosis in CHF patients, and the concentrations of NETs in peripheral and lesion veins are markedly positively correlated.


Assuntos
Armadilhas Extracelulares , Insuficiência Cardíaca , Trombose Venosa , Humanos , Armadilhas Extracelulares/química , Armadilhas Extracelulares/metabolismo , Relevância Clínica , Neutrófilos , Histonas/análise , Histonas/metabolismo , Trombose Venosa/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , DNA
5.
Monoclon Antib Immunodiagn Immunother ; 43(2): 75-80, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502827

RESUMO

H2b3b is one of the histone H2b isoforms that differs from canonical H2b by five to six amino acids. Previously, we identified H3t as the testis-specific histone H3 variant located in histone cluster 3, which is also the site of H2b3b. In this study, we produced monoclonal antibodies against H2b3b, using the iliac rat lymph node method for rat antibody and the immunochamber method for rabbit antibody. Immunoblot analysis confirmed that our antibodies could specifically discriminate between H2b3b and canonical H2b. Moreover, immunostaining revealed colocalization with a testicular stem cell marker, Plzf, but not with a meiotic marker, Sycp. This indicated that H2b3b is expressed in spermatogenic cells before meiosis. Our monoclonal antibodies enable further studies to reveal specific functions of H2b3b during spermatogenesis. We also hope that the established method will lead to the production of antibodies that can identify other H2b isoforms.


Assuntos
Anticorpos Monoclonais , Histonas , Masculino , Coelhos , Ratos , Animais , Histonas/análise , Histonas/química , Histonas/metabolismo , Testículo/química , Testículo/metabolismo , Espermatogênese , Isoformas de Proteínas/metabolismo
6.
Virchows Arch ; 484(1): 47-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882821

RESUMO

Oral epithelial dysplasia (OED) is diagnosed and graded using a range of histological features, making grading subjective and challenging. Mitotic counting and phosphohistone-H3 (PHH3) staining have been used for the prognostication of various malignancies; however, their importance in OED remains unexplored. This study conducts a quantitative analysis of mitotic activity in OED using both haematoxylin and eosin (H&E)-stained slides and immunohistochemical (IHC) staining for PHH3. Specifically, the diagnostic and prognostic importance of mitotic number, mitotic type and intra-epithelial location is evaluated. Whole slide images (WSI) of OED (n = 60) and non-dysplastic tissue (n = 8) were prepared for analysis. Five-year follow-up data was collected. The total number of mitosis (TNOM), mitosis type and intra-epithelial location was manually evaluated on H&E images and a digital mitotic count performed on PHH3-stained WSI. Statistical associations between these features and OED grade, malignant transformation and OED recurrence were determined. Mitosis count increased with grade severity (H&E: p < 0.005; IHC: p < 0.05), and grade-based differences were seen for mitosis type and location (p < 0.05). The ratio of normal-to-abnormal mitoses was higher in OED (1.61) than control (1.25) and reduced with grade severity. TNOM, type and location were better predictors when combined with histological grading, with the most prognostic models demonstrating an AUROC of 0.81 for transformation and 0.78 for recurrence, exceeding conventional grading. Mitosis quantification and PHH3 staining can be an adjunct to conventional H&E assessment and grading for the prediction of OED prognosis. Validation on larger multicentre cohorts is needed to establish these findings.


Assuntos
Biomarcadores Tumorais , Histonas , Humanos , Histonas/análise , Prognóstico , Índice Mitótico/métodos , Biomarcadores Tumorais/análise , Gradação de Tumores , Mitose , Fosforilação
7.
PeerJ ; 11: e16590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107577

RESUMO

Background: The pathological mechanism of heat stroke (HS) involves the acute phase response, unbalanced immunological/inflammatory reactions, and coagulation initiation, especially platelet activation. Although exosomes contain proteins involved in these biological processes, their protein cargo levels and potential roles in HS remain unknown. This study explored the serum exosome protein expression patterns after HS and their potential roles in the pathogenesis of HS. Methods: Blood samples were collected from ten patients diagnosed with HS upon admission to the intensive care unit (six with severe HS and four with mild HS). Samples from six healthy volunteers were included as control. Using ultracentrifugation, exosomes were prudently isolated, and their protein contents were profiled using liquid chromatography-tandem mass spectrometry analysis with isobaric tags for relative and absolute quantification-based proteomics. Results: Compared with healthy volunteers, patients with HS showed significant changes in the levels of 33 exosomal proteins (23 upregulated and 10 downregulated). The most upregulated proteins included serum amyloid A-1 (SAA-1), von Willebrand factor (vWF), S100A8, and histone H3. In addition, SAA-1, vWF, platelet membrane glycoprotein, S100A8, and histone H3 were more enriched in the exosomes from patients with severe HS than from those with mild HS. Gene ontology analysis revealed that the HS-modulated exosomal proteins were mostly related to inflammatory response, including the acute-phase response, platelet activation/degranulation, and innate immune response. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of proteins in the IL-17 signaling pathway, platelet activation, neutrophil extracellular trap formation, Fc epsilon RI signaling pathway, chemokine signaling pathway, and NOD-like receptor signaling pathway, among others. Several serum exosomal proteins, including SAA-1, vWF, and S100A8, which are related to the acute phase, inflammatory response, and platelet activation, were confirmed to be elevated in patients with HS, and were significantly correlated with disease severity, organ dysfunction, and death. Conclusion: Overall, this study explores the potential role of the serum exosomal proteome in the inflammatory response and platelet activation in HS, suggests the pathological mechanisms underlying HS-induced injuries, and recommends reliable exosomal biomarkers for predicting HS prognosis.


Assuntos
Exossomos , Golpe de Calor , Insolação , Humanos , Reação de Fase Aguda/metabolismo , Histonas/análise , Exossomos/química , Fator de von Willebrand/análise , Proteômica/métodos , Proteínas Sanguíneas/análise , Ativação Plaquetária , Golpe de Calor/metabolismo
8.
J Vis Exp ; (183)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604167

RESUMO

Flat cultures of mammalian cells are a widely used in vitro approach for understanding cell physiology, but this system is limited in modeling solid tissues due to unnaturally rapid cell replication. This is particularly challenging when modeling mature chromatin, as fast replicating cells are frequently involved in DNA replication and have a heterogeneous polyploid population. Presented below is a workflow for modeling, treating, and analyzing quiescent chromatin modifications using a three-dimensional (3D) cell culture system. Using this protocol, hepatocellular carcinoma cell lines are grown as reproducible 3D spheroids in an incubator providing active nutrient diffusion and low shearing forces. Treatment with sodium butyrate and sodium succinate induced an increase in histone acetylation and succinylation, respectively. Increases in levels of histone acetylation and succinylation are associated with a more open chromatin state. Spheroids are then collected for isolation of cell nuclei, from which histone proteins are extracted for the analysis of their post-translational modifications. Histone analysis is performed via liquid chromatography coupled online with tandem mass spectrometry, followed by an in-house computational pipeline. Finally, examples of data representation to investigate the frequency and occurrence of combinatorial histone marks are shown.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Histonas , Fígado , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos , Cromatina/fisiologia , Cromatografia Líquida , Histonas/análise , Histonas/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Esferoides Celulares/metabolismo
9.
J Histochem Cytochem ; 70(3): 237-250, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35057663

RESUMO

Epithelial proliferation in the rat mammary gland is recommended in regulatory guidelines as an endpoint for assessment of the in vivo carcinogenic potential of insulin analogues. Epithelial proliferation is traditionally assessed by immunohistochemical staining of a proliferation marker, for example, 5-bromo-2'-deoxyuridine (BrdU) or Ki67, followed by labor-intensive manual counting of positive and negative cells. The aim of this study was to develop and validate an approach for image analysis based on artificial intelligence, which can be used for quantification of proliferation in rat mammary gland, independent of the choice of proliferation marker. Furthermore, the aim was to compare the markers BrdU, Ki67, and phosphorylated histone H3 (PHH3). A sequence of image analysis applications were developed, which allowed for quantification of proliferative activity in the mammary gland epithelium. These endpoints agreed well with manually counted labeling indices, with correlation coefficients in the range ≈0.92-0.93. In addition, all three proliferation markers were significantly correlated and could detect the variation in epithelial proliferation during the estrous cycle. In conclusion, image analysis can be used to quantify epithelial proliferation in the rat mammary gland and thereby replace time-consuming manual counting. Furthermore, BrdU, Ki67, and PHH3 can be used interchangeably to assess proliferation.


Assuntos
Inteligência Artificial , Bromodesoxiuridina/análise , Epitélio/química , Histonas/análise , Antígeno Ki-67/análise , Glândulas Mamárias Animais/química , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células , Epitélio/metabolismo , Feminino , Histonas/metabolismo , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Biol Reprod ; 106(1): 132-144, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34849582

RESUMO

The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, have been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodeling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterized tissue specific expression and cellular localization patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.


Assuntos
Epigênese Genética/fisiologia , Lagartos/fisiologia , Processos de Determinação Sexual/fisiologia , Temperatura , Animais , Montagem e Desmontagem da Cromatina/genética , Feminino , Gônadas/química , Histonas/análise , Imuno-Histoquímica/métodos , Imuno-Histoquímica/veterinária , Histona Desmetilases com o Domínio Jumonji/análise , Lagartos/genética , Masculino , Metilação , Proteínas de Ligação a RNA/análise , Processos de Determinação Sexual/genética
11.
Science ; 374(6569): eabi7489, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762468

RESUMO

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.


Assuntos
Arabidopsis/genética , Centrômero/genética , Cromossomos de Plantas/genética , Epigênese Genética , Arabidopsis/ultraestrutura , Centrômero/química , Metilação de DNA , DNA Satélite , Evolução Molecular , Genoma de Planta , Histonas/análise , Meiose , Recombinação Genética , Retroelementos , Análise de Sequência de DNA
12.
Cell Rep ; 37(1): 109769, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610319

RESUMO

The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.


Assuntos
Encéfalo/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Metaboloma/fisiologia , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Comportamento Alimentar , Feminino , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/análise , Longevidade , Masculino , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
13.
World Neurosurg ; 155: e630-e636, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478890

RESUMO

BACKGROUND: Cerebral arteriovenous malformations (cAVMs) represent tangles of abnormal vasculature without intervening capillaries. High-pressure vascular channels due to abnormal arterial and venous shunts can lead to rupture. Multiple pathways are involved in the pathobiology of cAVMs including inflammation and genetic factors such as KRAS mutations. Neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs), plays a multifunctional role in infection, inflammation, thrombosis, intracranial aneurysms, and tumor progression. However, the relationship between NETs and the pathobiology of cAVMs remains unknown. We tested whether NETs play a role in the pathobiology of cAVMs. METHODS: We analyzed samples from patients who had undergone surgery for cAVM and immunohistochemically investigated expression of citrullinated histone H3 (CitH3) as a marker of NETs. CitH3 expression was compared among samples from cAVM patients, epilepsy patients, and normal human brain tissue. Expressions of thrombotic and inflammatory markers were also examined immunohistochemically in samples from cAVM patients. RESULTS: Expression of CitH3 derived from neutrophils was observed intravascularly in all cAVM samples but not other samples. Nidi of AVMs showed migration of many Iba-I-positive cells adjacent to the endothelium and endothelial COX2 expression, accompanied by expression of IL-6 and IL-8 in the endothelium and intravascular neutrophils. Unexpectedly, expression of CitH3 was not necessarily localized to the vascular wall and thrombus. CONCLUSIONS: Our results offer the first evidence of intravascular expression of NETs, which might be associated with vascular inflammation in cAVMs.


Assuntos
Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/cirurgia , Armadilhas Extracelulares/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , Malformações Arteriovenosas Intracranianas/cirurgia , Neutrófilos/metabolismo , Adulto , Criança , Citrulinação/fisiologia , Armadilhas Extracelulares/química , Feminino , Histonas/análise , Histonas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/química , Adulto Jovem
14.
Nucleic Acids Res ; 49(18): 10431-10447, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551439

RESUMO

Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.


Assuntos
Arabidopsis/genética , Resposta ao Choque Térmico/genética , Retroelementos , Transcriptoma , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Citidina/análogos & derivados , Citidina/toxicidade , Epigênese Genética , Éxons , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Código das Histonas , Histonas/análise , Fenótipo
15.
Clin Epigenetics ; 13(1): 182, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565452

RESUMO

BACKGROUND: Stunting is a condition in which a child does not reach their full growth potential due to chronic undernutrition. It arises during the first 2 years of a child's life and is associated with developmental deficiencies and life-long health problems. Current interventions provide some benefit, but new approaches to prevention and treatment grounded in a molecular understanding of stunting are needed. Epigenetic analyses are critical as they can provide insight into how signals from a poor environment lead to changes in cell function. RESULTS: Here we profiled histone H3 acetylation on lysine 27 (H3K27ac) in peripheral blood mononuclear cells (PBMCs) of 18-week-old (n = 14) and 1-year-old children (n = 22) living in an urban slum in Dhaka, Bangladesh. We show that 18-week-old children destined to become stunted have elevated levels of H3K27ac overall, functional analysis of which indicates activation of the immune system and stress response pathways as a primary response to a poor environment with high pathogen load. Conversely, overt stunting at 1-year-of age is associated with globally reduced H3K27ac that is indicative of metabolic rewiring and downregulation of the immune system and DNA repair pathways that are likely secondary responses to chronic exposure to a poor environment with limited nutrients. Among processes altered in 1-year-old children, we identified one-carbon metabolism, the significance of which is supported by integrative analysis with results from histone H3 trimethylation on lysine 4 (H3K4me3). Together, these results suggest altered one-carbon metabolism in this population of stunted children. CONCLUSIONS: The epigenomes of stunted children undergo two global changes in H3K27ac within their first year of life, which are associated with probable initial hyperactive immune responses followed by reduced metabolic capacity. Limitation of one-carbon metabolites may play a key role in the development of stunting. Trial registration ClinicalTrials.gov NCT01375647. Registered 17 June 2011, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01375647 .


Assuntos
Histonas/análise , Lisina/análise , Desnutrição/sangue , Acetilação/efeitos dos fármacos , Pré-Escolar , Feminino , Histonas/metabolismo , Humanos , Lactente , Lisina/metabolismo , Masculino , Desnutrição/fisiopatologia , Transferases de Grupo de Um Carbono/metabolismo
16.
Nucleic Acids Res ; 49(21): e125, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34534335

RESUMO

The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. But it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissues of interest are limited. Here, we present FFPE tissue with antibody-guided chromatin tagmentation with sequencing (FACT-seq), the first highly sensitive method to efficiently profile histone modifications in FFPE tissues by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We proved a very small piece of FFPE tissue section containing ∼4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. H3K27ac FACT-seq revealed disease-specific super enhancers in the archived FFPE human colorectal and human glioblastoma cancer tissue. In summary, FACT-seq allows decoding the histone modifications in archival FFPE tissues with high sensitivity and help researchers to better understand epigenetic regulation in cancer and human disease.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Histonas/análise , Animais , Linhagem Celular , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Proteína Estafilocócica A/metabolismo , Transposases/metabolismo
17.
Cancer Med ; 10(21): 7712-7725, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34545699

RESUMO

This study investigates whether a chronotherapeutic treatment of hepatocellular carcinoma (HCC) may improve treatment efficacy and mitigate side effects on non-tumoral liver (NTL). HCC was induced in Per2::luc mice which were irradiated at four time points of the day. Proliferation and DNA-double strand breaks were analyzed in irradiated and nonirradiated animals by detection of Ki67 and γ-H2AX. Prior to whole animal experiments, organotypic slice cultures were investigated to determine the dosage to be used in whole animal experiments. Irradiation was most effective at the proliferation peaks in HCC at ZT02 (early inactivity phase) and ZT20 (late activity phase). Irradiation effects on NTL were minimal at ZT20. As compared with NTL, nonirradiated HCC revealed disruption in daily variation and downregulation of all investigated clock genes except Per1. Irradiation affected rhythmic clock gene expression in NTL and HCC at all ZTs except at ZT20 (late activity phase). Irradiation at ZT20 had no effect on total leukocyte numbers. Our results indicate ZT20 as the optimal time point for irradiation of HCC in mice at which the ratio between efficacy of tumor treatment and toxic side effects was maximal. Translational studies are now needed to evaluate whether the late activity phase is the optimal time point for irradiation of HCC in man.


Assuntos
Carcinoma Hepatocelular/radioterapia , Cronoterapia , Neoplasias Hepáticas/radioterapia , Animais , Contagem de Células Sanguíneas , Proteínas CLOCK/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Dano ao DNA , Regulação para Baixo , Expressão Gênica , Histonas/análise , Antígeno Ki-67/análise , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Fatores de Tempo
18.
Arch Toxicol ; 95(11): 3559-3573, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510228

RESUMO

Amongst all toxicological endpoints, carcinogenicity might pose the greatest concern. Genetic damage has been considered an important underlying mechanism for the carcinogenicity of chemical substances. The demand for in vitro genotoxic tests as alternative approaches is growing rapidly with the implementation of new regulations for compounds. However, currently available in vitro genotoxicity tests are often limited by relatively high false positive rates. Moreover, few studies have explored carcinogenicity potential by in vitro genotoxicity testing due to the shortage of suitable toxicological biomarkers to link gene damage with cancer risk. γ-H2AX is a recently acknowledged attractive endpoint (biomarker) for evaluating DNA damage and can simultaneously reflect the DNA damage response and repair of cells. We previously reported an ultrasensitive and reliable method, namely stable-isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), for detecting cellular γ-H2AX and evaluating genotoxic chemicals. More importantly, our method can dynamically monitor the specific processes of genotoxic compounds affecting DNA damage and repair reflected by the amount of γ-H2AX. To clarify the possibility of using this method to assess the potential carcinogenicity of genotoxic chemicals, we applied it to a set of 69 model compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), with already-characterized genotoxic potential. Compared to conventional in vitro genotoxicity assays, including the Ames test, the γ-H2AX assay by MS has high accuracy (94-96%) due to high sensitivity and specificity (88% and 100%, respectively). The dynamic profiles of model compounds after exposure in HepG2 cells were explored, and a mathematical approach was employed to simulate and quantitatively model the DNA repair kinetics of genotoxic carcinogens (GCs) based on γ-H2AX time-effect curves up to 8 h. Two crucial parameters, i.e., k (rate of γ-H2AX decay) and t50 (time required for γ-H2AX from maximum decrease to half) estimated by the least squares method, were achieved. An open web server to help researchers calculate these two key parameters and profile simulated curves of the tested compound is available online ( http://ccb1.bmi.ac.cn:81/shiny-server/sample-apps/prediction1/ ). We detected a positive association between carcinogenic levels and k and t50 values of γ-H2AX in tested GCs, validating the potential of using this MS-based γ-H2AX in vitro assay to help preliminarily evaluate carcinogenicity and assess genotoxicity. This approach may be used alone or integrated into an existing battery of in vitro genetic toxicity tests.


Assuntos
Testes de Carcinogenicidade/métodos , Histonas/análise , Testes de Mutagenicidade/métodos , Biomarcadores/análise , Cromatografia Líquida , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
19.
Mod Pathol ; 34(12): 2183-2191, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34376807

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a catalytic component of the polycomb repressive complex 2 (PRC2) which reduces gene expression via trimethylation of a lysine residue of histone 3 (H3K27me3). Expression of EZH2 has not been assessed systematically in mantle cell lymphoma (MCL). Expression of EZH2 was assessed by immunohistochemistry in 166 patients with MCL. We also assessed other PRC2 components and H3K27me3. Fifty-seven (38%) of MCL patients were positive for EZH2 using 40% cutoff. EZH2 expression was associated with aggressive histologic variants (65% vs. 29%, p < 0.001), high Ki-67 proliferation rate (median, 72% vs. 19%, p < 0.001), and p53 overexpression (43% vs. 2%, p < 0.001). EZH2 expression did not correlate with expression of other PRC2 components (EED and SUZ12), H3K27me3, MHC-I, and MHC-II. Patients with EZH2 expression (EZH2+) had a poorer overall survival (OS) compared with patients without EZH2 expression (EZH2-) (median OS: 3.9 years versus 9.4 years, respectively, p < 0.001). EZH2 expression also predicted a poorer prognosis in MCL patients with classic histology (median OS, 4.6 years for EZH2+ and 9.6 years for EZH2-negative, respectively, p < 0.001) as well as aggressive histology (median OS, 3.7 years for EZH2+ and 7.9 years for EZH2-negative, respectively, p = 0.046). However, EZH2 expression did not independently correlate with overall survival in a multivariate analysis. Gene expression analysis and pathway enrichment analysis demonstrated a significant enrichment in cell cycle and mitotic transition pathways in MCL with EZH2 expression. EZH2 expression detected by immunohistochemistry is present in 38% of MCL cases and it is associated with high proliferation rate, p53 overexpression, aggressive histologic variants, and poorer OS. Based on gene expression profiling data, EZH2 expression could potentiate cell cycle machinery in MCL. These data suggest that assessment of EZH2 expression could be useful to stratify MCL patients into low- and high-risk groups.


Assuntos
Biomarcadores Tumorais/análise , Proteína Potenciadora do Homólogo 2 de Zeste/análise , Linfoma de Célula do Manto/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histonas/análise , Humanos , Imuno-Histoquímica , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/mortalidade , Linfoma de Célula do Manto/terapia , Masculino , Metilação , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo , Transcriptoma , Resultado do Tratamento
20.
Sci Rep ; 11(1): 15701, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344929

RESUMO

Coronavirus disease 19 (COVID-19) presents with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels and evolution of the damage associated molecular patterns (DAMPS) cell free DNA (cfDNA), extracellular histone H3 (H3) and neutrophil elastase (NE), and the immune modulators GAS6 and AXL in relation to clinical parameters, ICU scoring systems and mortality in patients (n = 100) with severe COVID-19. cfDNA, H3, NE, GAS6 and AXL were increased in COVID-19 patients compared to controls. These measures associated with occurrence of clinical events and intensive care unit acquired weakness (ICUAW). cfDNA and GAS6 decreased in time in patients surviving to 30 days post ICU admission. A decrease of 27.2 ng/mL cfDNA during ICU stay associated with patient survival, whereas levels of GAS6 decreasing more than 4.0 ng/mL associated with survival. The presence of H3 in plasma was a common feature of COVID-19 patients, detected in 38% of the patients at ICU admission. NETosis markers cfDNA, H3 and NE correlated well with parameters of tissue damage and neutrophil counts. Furthermore, cfDNA correlated with lowest p/f ratio and a lowering in cfDNA was observed in patients with ventilator-free days.


Assuntos
Biomarcadores/sangue , COVID-19/patologia , Idoso , COVID-19/mortalidade , COVID-19/virologia , Ácidos Nucleicos Livres/sangue , Estado Terminal , Feminino , Histonas/análise , Histonas/sangue , Humanos , Unidades de Terapia Intensiva , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Estimativa de Kaplan-Meier , Elastase de Leucócito/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...