Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011558

RESUMO

Immunoglobulins (Igs) have a crucial role in humoral immunity. Two recent studies have reported a high-frequency Neanderthal-introgressed haplotype throughout Eurasia and a high-frequency Neanderthal-introgressed haplotype specific to southern East Asia at the immunoglobulin heavy-chain (IGH) gene locus on chromosome 14q32.33. Surprisingly, we found the previously reported high-frequency Neanderthal-introgressed haplotype does not exist throughout Eurasia. Instead, our study identified two distinct high-frequency haplotypes of putative Neanderthal origin in East Asia and Europe, although they shared introgressed alleles. Notably, the alleles of putative Neanderthal origin reduced the expression of IGHG1 and increased the expression of IGHG2 and IGHG3 in various tissues. These putatively introgressed alleles also affected the production of IgG1 upon antigen stimulation and increased the risk of systemic lupus erythematosus. Additionally, the greatest genetic differentiation across the whole genome between southern and northern East Asians was observed for the East Asian haplotype of putative Neanderthal origin. The frequency decreased from southern to northern East Asia and correlated positively with the genome-wide proportion of southern East Asian ancestry, indicating that this putative positive selection likely occurred in the common ancestor of southern East Asian populations before the admixture with northern East Asian populations.


Assuntos
Haplótipos , Homem de Neandertal , Homem de Neandertal/genética , Animais , Humanos , Europa (Continente) , Ásia Oriental , Povo Asiático/genética , Cadeias Pesadas de Imunoglobulinas/genética , População Branca/genética , Evolução Molecular , Introgressão Genética , Seleção Genética , População do Leste Asiático
2.
Science ; 385(6705): eadi1768, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991054

RESUMO

Although it is well known that the ancestors of modern humans and Neanderthals admixed, the effects of gene flow on the Neanderthal genome are not well understood. We develop methods to estimate the amount of human-introgressed sequences in Neanderthals and apply it to whole-genome sequence data from 2000 modern humans and three Neanderthals. We estimate that Neanderthals have 2.5 to 3.7% human ancestry, and we leverage human-introgressed sequences in Neanderthals to revise estimates of Neanderthal ancestry in modern humans, show that Neanderthal population sizes were significantly smaller than previously estimated, and identify two distinct waves of modern human gene flow into Neanderthals. Our data provide insights into the genetic legacy of recurrent gene flow between modern humans and Neanderthals.


Assuntos
Fluxo Gênico , Genoma Humano , Homem de Neandertal , Animais , Humanos , Introgressão Genética , Homem de Neandertal/genética , Densidade Demográfica , Sequenciamento Completo do Genoma , Extinção Biológica
3.
Science ; 385(6705): 132-133, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991073

RESUMO

Study of genes modern humans gave Neanderthals helps explain their end.


Assuntos
Extinção Biológica , Homem de Neandertal , Animais , Humanos , Fósseis , Homem de Neandertal/genética , DNA Antigo
4.
Science ; 385(6706): 240-241, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39024443

RESUMO

200,000-year-old DNA shows our now-extinct cousins mated with Neanderthals.


Assuntos
DNA Antigo , Genoma Humano , Homem de Neandertal , Animais , Feminino , Humanos , Masculino , Fósseis , Homem de Neandertal/genética , Sibéria
5.
Sci Rep ; 14(1): 15058, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956433

RESUMO

Since the COVID-19 pandemic, the diversity of clinical manifestations in patients has been a tremendous challenge. It seems that genetic variations, as one of the players, contribute to the variety of symptoms. Genome-wide association studies have demonstrated the influence of certain genomic regions on the disease prognosis. Particularly, a haplotype at 3p21.31 locus, inherited from Neanderthals, showed an association with COVID-19 severity. Despite several studies regarding this haplotype, some key variants are not sufficiently addressed. In the present study, we investigated the association of rs17713054 at 3p21.31 with COVID-19 severity. We analyzed the genotype of 251 Iranian COVID-19 patients (151 patients with asymptomatic to mild form as control and 100 patients with severe to critical symptoms without any comorbidities as case group) using the ARMS-PCR method. Results demonstrated that the A allele confers an almost twofold increased risk for COVID-19 severity (P value = 0.008). The AA genotype also raises the risk by more than 11 times following the recessive model (P value = 0.013). In conclusion, the A allele in rs17713054 was a risk allele in Iranian patients and was independently associated with COVID-19 severity. More studies are beneficial to confirm these findings in other populations and to develop strategies for risk assessment, prevention, and personalized medicine.


Assuntos
COVID-19 , Predisposição Genética para Doença , Homem de Neandertal , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/genética , COVID-19/virologia , COVID-19/epidemiologia , Irã (Geográfico)/epidemiologia , Homem de Neandertal/genética , Masculino , Feminino , Pessoa de Meia-Idade , Animais , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adulto , Haplótipos , Cromossomos Humanos Par 3/genética , Alelos , Estudo de Associação Genômica Ampla , Genótipo , Idoso
6.
Microbiol Spectr ; 12(8): e0266223, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916350

RESUMO

This study aimed to investigate the presence of antimicrobial resistance determinants (ARDs) in the Neanderthal microbiome through meticulous analysis of metagenomic data derived directly from dental calculus and fecal sediments across diverse Neanderthal sites in Europe. Employing a targeted locus mapping approach followed by a consensus strategy instead of an assembly-first approach, we aimed to identify and characterize ARDs within these ancient microbial communities. A comprehensive and redundant ARD database was constructed by amalgamating data from various antibiotic resistance gene repositories. Our results highlighted the efficacy of the KMA tool in providing a robust alignment of ancient metagenomic reads to the antibiotic resistance gene database. Notably, the KMA tool identified a limited number of ARDs, with only the 23S ribosomal gene from the dental calculus sample of Neanderthal remains at Goyet Troisieme Caverne exhibiting ancient DNA (aDNA) characteristics. Despite not identifying ARDs with typical ancient DNA damage patterns or negative distance proportions, our findings suggest a nuanced identification of putative antimicrobial resistance determinants in the Neanderthal microbiome's genetic repertoire based on the taxonomy-habitat correlation. Nevertheless, our findings are limited by factors such as environmental DNA contamination, DNA fragmentation, and cytosine deamination of aDNA. The study underscores the necessity for refined methodologies to unlock the genomic assets of prehistoric populations, fostering a comprehensive understanding of the intricate dynamics shaping the microbial landscape across history. IMPORTANCE: The results of our analysis demonstrate the challenges in identifying determinants of antibiotic resistance within the endogenous microbiome of Neanderthals. Despite the comprehensive investigation of multiple studies and the utilization of advanced analytical techniques, the detection of antibiotic resistance determinants in the ancient microbial communities proved to be particularly difficult. However, our analysis did reveal the presence of some authentic ancient conservative genes, indicating the preservation of certain genetic elements over time. These findings raise intriguing questions about the factors influencing the presence or absence of antibiotic resistance in ancient microbial communities. It could be speculated that the spread of current antibiotic resistance, which has reached alarming levels in modern times, is primarily driven by anthropogenic factors such as the widespread use and misuse of antibiotics in medical and agricultural practices.


Assuntos
Antibacterianos , Bactérias , DNA Antigo , Metagenômica , Microbiota , Homem de Neandertal , Animais , Microbiota/genética , Microbiota/efeitos dos fármacos , Homem de Neandertal/genética , Homem de Neandertal/microbiologia , DNA Antigo/análise , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Fezes/microbiologia , Metagenoma , Resistência Microbiana a Medicamentos/genética , Europa (Continente) , Fósseis/microbiologia
7.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932149

RESUMO

DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.


Assuntos
DNA Antigo , Genoma Viral , Homem de Neandertal , Animais , Homem de Neandertal/genética , Homem de Neandertal/virologia , DNA Antigo/análise , Evolução Molecular , DNA Viral/genética , Análise de Sequência de DNA/métodos , Humanos , Filogenia , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Fósseis/virologia
8.
Proc Natl Acad Sci U S A ; 121(26): e2405889121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889149

RESUMO

Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.


Assuntos
Haplótipos , Homem de Neandertal , Papua Nova Guiné , Humanos , Animais , Homem de Neandertal/genética , Adaptação Fisiológica/genética , Genética Populacional
9.
Ann Hum Biol ; 51(1): 2341727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38771659

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent COVID-19 has spread world-wide and become pandemic with about 7 million deaths reported so far. Interethnic variability of the disease has been described, but a significant part of the differences remain unexplained and may be attributable to genetic factors. AIM: To analyse genetic factors potentially influencing COVID-19 susceptibility and severity in European Roma minority. SUBJECTS AND METHODS: Two genetic determinants, within OAS-1 (2-prime,5-prime-oligoadenylate synthetase 1, a key protein in the defence against viral infection; it activates RNases that degrade viral RNAs; rs4767027 has been analysed) and LZTFL1 (leucine zipper transcription factor-like 1, expressed in the lung respiratory epithelium; rs35044562 has been analysed) genes were screened in a population-sample of Czech Roma (N = 302) and majority population (N = 2,559). RESULTS: For both polymorphisms, Roma subjects were more likely carriers of at least one risky allele for both rs4767027-C (p < 0.001) and rs35044562-G (p < 0.00001) polymorphism. There were only 5.3% Roma subjects without at least one risky allele in comparison with 10.1% in the majority population (p < 0.01). CONCLUSIONS: It is possible that different genetic background plays an important role in increased prevalence of COVID-19 in the Roma minority.


Assuntos
COVID-19 , Homem de Neandertal , Roma (Grupo Étnico) , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiologia , Roma (Grupo Étnico)/genética , Masculino , Feminino , Animais , Homem de Neandertal/genética , Mutação , Pessoa de Meia-Idade , República Tcheca/epidemiologia , Adulto , Prevalência , 2',5'-Oligoadenilato Sintetase/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Idoso
10.
Proc Natl Acad Sci U S A ; 121(22): e2402159121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739836

RESUMO

The aryl hydrocarbon receptor (AHR) is a transcription factor that has many functions in mammals. Its best known function is that it binds aromatic hydrocarbons and induces the expression of cytochrome P450 genes, which encode enzymes that metabolize aromatic hydrocarbons and other substrates. All present-day humans carry an amino acid substitution at position 381 in the AHR that occurred after the divergence of modern humans from Neandertals and Denisovans. Previous studies that have expressed the ancestral and modern versions of AHR from expression vectors have yielded conflicting results with regard to their activities. Here, we use genome editing to modify the endogenous AHR gene so that it encodes to the ancestral, Neandertal-like AHR protein in human cells. In the absence of exogenous ligands, the expression of AHR target genes is higher in cells expressing the ancestral AHR than in cells expressing the modern AHR, and similar to the expression in chimpanzee cells. Furthermore, the modern human AHR needs higher doses of three ligands than the ancestral AHR to induce the expression of target genes. Thus, the ability of AHR to induce the expression of many of its target genes is reduced in modern humans.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Edição de Genes , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Edição de Genes/métodos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Evolução Molecular , Pan troglodytes/genética , Homem de Neandertal/genética , Ligantes
11.
Hum Genomics ; 18(1): 53, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802968

RESUMO

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Assuntos
Evolução Molecular , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Homem de Neandertal , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Animais , Homem de Neandertal/genética , Seleção Genética/genética , Hominidae/genética , Haplótipos/genética , Densidade Óssea/genética , Genoma Humano/genética
12.
Am J Hum Genet ; 111(5): 939-953, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608674

RESUMO

Changes in gene regulatory elements play critical roles in human phenotypic divergence. However, identifying the base-pair changes responsible for the distinctive morphology of Homo sapiens remains challenging. Here, we report a noncoding single-nucleotide polymorphism (SNP), rs41298798, as a potential causal variant contributing to the morphology of the skull base and vertebral structures found in Homo sapiens. Screening for differentially regulated genes between Homo sapiens and extinct relatives revealed 13 candidate genes associated with basicranial development, with TBX1, implicated in DiGeorge syndrome, playing a pivotal role. Epigenetic markers and in silico analyses prioritized rs41298798 within a TBX1 intron for functional validation. CRISPR editing revealed that the 41-base-pair region surrounding rs41298798 modulates gene expression at 22q11.21. The derived allele of rs41298798 acts as an allele-specific enhancer mediated by E2F1, resulting in increased TBX1 expression levels compared to the ancestral allele. Tbx1-knockout mice exhibited skull base and vertebral abnormalities similar to those seen in DiGeorge syndrome. Phenotypic differences associated with TBX1 deficiency are observed between Homo sapiens and Neanderthals (Homo neanderthalensis). In conclusion, the regulatory divergence of TBX1 contributes to the formation of skull base and vertebral structures found in Homo sapiens.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas com Domínio T , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Humanos , Animais , Camundongos , Síndrome de DiGeorge/genética , Homem de Neandertal/genética , Camundongos Knockout , Crânio/anatomia & histologia , Alelos , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/anormalidades , Cromossomos Humanos Par 22/genética , Fenótipo
13.
Hum Mol Genet ; 33(13): 1152-1163, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38558123

RESUMO

Neanderthal and Denisovan hybridisation with modern humans has generated a non-random genomic distribution of introgressed regions, the result of drift and selection dynamics. Cross-species genomic incompatibility and more efficient removal of slightly deleterious archaic variants have been proposed as selection-based processes involved in the post-hybridisation purge of archaic introgressed regions. Both scenarios require the presence of functionally different alleles across Homo species onto which selection operated differently according to which populations hosted them, but only a few of these variants have been pinpointed so far. In order to identify functionally divergent archaic variants removed in humans, we focused on mitonuclear genes, which are underrepresented in the genomic landscape of archaic humans. We searched for non-synonymous, fixed, archaic-derived variants present in mitonuclear genes, rare or absent in human populations. We then compared the functional impact of archaic and human variants in the model organism Saccharomyces cerevisiae. Notably, a variant within the mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) gene exhibited a significant decrease in respiratory activity and a substantial reduction of Cox2 levels, a proxy for mitochondrial protein biosynthesis, coupled with the accumulation of the YARS2 protein precursor and a lower amount of mature enzyme. Our work suggests that this variant is associated with mitochondrial functionality impairment, thus contributing to the purging of archaic introgression in YARS2. While different molecular mechanisms may have impacted other mitonuclear genes, our approach can be extended to the functional screening of mitonuclear genetic variants present across species and populations.


Assuntos
Homem de Neandertal , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Homem de Neandertal/genética , Animais , Variação Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Alelos , Introgressão Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612593

RESUMO

The genetic contributions of Neanderthals to the modern human genome have been evidenced by the comparison of present-day human genomes with paleogenomes. Neanderthal signatures in extant human genomes are attributed to intercrosses between Neanderthals and archaic anatomically modern humans (AMHs). Although Neanderthal signatures are well documented in the nuclear genome, it has been proposed that there is no contribution of Neanderthal mitochondrial DNA to contemporary human genomes. Here we show that modern human mitochondrial genomes contain 66 potential Neanderthal signatures, or Neanderthal single nucleotide variants (N-SNVs), of which 36 lie in coding regions and 7 result in nonsynonymous changes. Seven N-SNVs are associated with traits such as cycling vomiting syndrome, Alzheimer's disease and Parkinson's disease, and two N-SNVs are associated with intelligence quotient. Based on recombination tests, principal component analysis (PCA) and the complete absence of these N-SNVs in 41 archaic AMH mitogenomes, we conclude that convergent evolution, and not recombination, explains the presence of N-SNVs in present-day human mitogenomes.


Assuntos
Doença de Alzheimer , Genoma Mitocondrial , Homem de Neandertal , Humanos , Animais , Homem de Neandertal/genética , Mutação , Nucleotídeos
15.
Gut ; 73(6): 1008-1014, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458749

RESUMO

OBJECTIVE: Fat deposition is modulated by environmental factors and genetic predisposition. Genome-wide association studies identified PNPLA3 p.I148M (rs738409) as a common variant that increases risk of developing liver steatosis. When and how this variant evolved in humans has not been studied to date. DESIGN: Here we analyse ancient DNA to track the history of this allele throughout human history. In total, 6444 published ancient (modern humans, Neanderthal, Denisovan) and 3943 published present day genomes were used for analysis after extracting genotype calls for PNPLA3 p.I148M. To quantify changes through time, logistic and, by grouping individuals according to geography and age, linear regression analyses were performed. RESULTS: We find that archaic human individuals (Neanderthal, Denisovan) exclusively carried a fixed PNPLA3 risk allele, whereas allele frequencies in modern human populations range from very low in Africa to >50% in Mesoamerica. Over the last 15 000 years, distributions of ancestral and derived alleles roughly match the present day distribution. Logistic regression analyses did not yield signals of natural selection during the last 10 000 years. CONCLUSION: Archaic human individuals exclusively carried a fixed PNPLA3 allele associated with fatty liver, whereas allele frequencies in modern human populations are variable even in the oldest samples. Our observation might underscore the advantage of fat storage in cold climate and particularly for Neanderthal under ice age conditions. The absent signals of natural selection during modern human history does not support the thrifty gene hypothesis in case of PNPLA3 p.I148M.


Assuntos
Aciltransferases , Alelos , Fígado Gorduroso , Homem de Neandertal , Fosfolipases A2 Independentes de Cálcio , Animais , Humanos , Aciltransferases/genética , DNA Antigo/análise , Fígado Gorduroso/genética , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Homem de Neandertal/genética , Fosfolipases A2 Independentes de Cálcio/genética
16.
Proc Natl Acad Sci U S A ; 121(12): e2309168121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489387

RESUMO

Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the evolutionary dynamics within hybrid populations that underlie these patterns have been lacking. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of ancestry variation at varying spatial genomic scales through time. Here, we develop methods based on the Discrete Wavelet Transform to study the genomic scale of local ancestry variation and its association with recombination rates and show that these methods capture temporal dynamics of drift and genome-wide selection after hybridization. We apply these methods to published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across systems, upward of 20% of variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. Signatures of selection at fine genomic scales suggest selection over longer time scales; however, we suggest that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from contiguous segments of genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available and can help shed light on generalities of the genomic consequences of interspecific hybridization.


Assuntos
Genoma , Homem de Neandertal , Animais , Humanos , Genoma/genética , Genômica , Hibridização Genética , Hibridização de Ácido Nucleico , Haplótipos , Homem de Neandertal/genética , Seleção Genética
17.
Kidney Int ; 105(4): 791-798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367960

RESUMO

Class 2 HLA and PLA2R1 alleles are exceptionally strong genetic risk factors for membranous nephropathy (MN), leading, through an unknown mechanism, to a targeted autoimmune response. Introgressed archaic haplotypes (introduced from an archaic human genome into the modern human genome) might influence phenotypes through gene dysregulation. Here, we investigated the genomic region surrounding the PLA2R1 gene. We reconstructed the phylogeny of Neanderthal and modern haplotypes in this region and calculated the probability of the observed clustering being the result of introgression or common descent. We imputed variants for the participants in our previous genome-wide association study and we compared the distribution of Neanderthal variants between MN cases and controls. The region associated with the lead MN risk locus in the PLA2R1 gene was confirmed and showed that, within a 507 kb region enriched in introgressed sequence, a stringently defined 105 kb haplotype, intersecting the coding regions for PLA2R1 and ITGB6, is inherited from Neanderthals. Thus, introgressed Neanderthal haplotypes overlapping PLA2R1 are differentially represented in MN cases and controls, with enrichment In controls suggesting a protective effect.


Assuntos
Glomerulonefrite Membranosa , Homem de Neandertal , Humanos , Animais , Homem de Neandertal/genética , Haplótipos , Glomerulonefrite Membranosa/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Receptores da Fosfolipase A2/genética
18.
Cell ; 187(5): 1047-1058, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38367615

RESUMO

Modern human ancestors diverged from the ancestors of Neandertals and Denisovans about 600,000 years ago. Until about 40,000 years ago, these three groups existed in parallel, occasionally met, and exchanged genes. A critical question is why modern humans, and not the other two groups, survived, became numerous, and developed complex cultures. Here, we discuss genetic differences among the groups and some of their functional consequences. As more present-day genome sequences become available from diverse groups, we predict that very few, if any, differences will distinguish all modern humans from all Neandertals and Denisovans. We propose that the genetic basis of what constitutes a modern human is best thought of as a combination of genetic features, where perhaps none of them is present in each and every present-day individual.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Homem de Neandertal/genética , Pesquisa , Hominidae/genética , Genética Humana
19.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377343

RESUMO

Cis-regulatory elements have an important role in human adaptation to the living environment. However, the lag in population genomic cohort studies and epigenomic studies, hinders the research in the adaptive analysis of cis-regulatory elements in human populations. In this study, we collected 4,013 unrelated individuals and performed a comprehensive analysis of adaptive selection of genome-wide cis-regulatory elements in the Han Chinese. In total, 12.34% of genomic regions are under the influence of adaptive selection, where 1.00% of enhancers and 2.06% of promoters are under positive selection, and 0.06% of enhancers and 0.02% of promoters are under balancing selection. Gene ontology enrichment analysis of these cis-regulatory elements under adaptive selection reveals that many positive selections in the Han Chinese occur in pathways involved in cell-cell adhesion processes, and many balancing selections are related to immune processes. Two classes of adaptive cis-regulatory elements related to cell adhesion were in-depth analyzed, one is the adaptive enhancers derived from neanderthal introgression, leads to lower hyaluronidase level in skin, and brings better performance on UV-radiation resistance to the Han Chinese. Another one is the cis-regulatory elements regulating wound healing, and the results suggest the positive selection inhibits coagulation and promotes angiogenesis and wound healing in the Han Chinese. Finally, we found that many pathogenic alleles, such as risky alleles of type 2 diabetes or schizophrenia, remain in the population due to the hitchhiking effect of positive selections. Our findings will help deepen our understanding of the adaptive evolution of genome regulation in the Han Chinese.


Assuntos
Diabetes Mellitus Tipo 2 , Homem de Neandertal , Humanos , Animais , Diabetes Mellitus Tipo 2/genética , Seleção Genética , Sequências Reguladoras de Ácido Nucleico , Regiões Promotoras Genéticas , Homem de Neandertal/genética , China , Elementos Facilitadores Genéticos
20.
BMC Genom Data ; 25(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166646

RESUMO

BACKGROUND: We tackle the problem of estimating species TMRCAs (Time to Most Recent Common Ancestor), given a genome sequence from each species and a large known phylogenetic tree with a known structure (typically from one of the species). The number of transitions at each site from the first sequence to the other is assumed to be Poisson distributed, and only the parity of the number of transitions is observed. The detailed phylogenetic tree contains information about the transition rates in each site. We use this formulation to develop and analyze multiple estimators of the species' TMRCA. To test our methods, we use mtDNA substitution statistics from the well-established Phylotree as a baseline for data simulation such that the substitution rate per site mimics the real-world observed rates. RESULTS: We evaluate our methods using simulated data and compare them to the Bayesian optimizing software BEAST2, showing that our proposed estimators are accurate for a wide range of TMRCAs and significantly outperform BEAST2. We then apply the proposed estimators on Neanderthal, Denisovan, and Chimpanzee mtDNA genomes to better estimate their TMRCA with modern humans and find that their TMRCA is substantially later, compared to values cited recently in the literature. CONCLUSIONS: Our methods utilize the transition statistics from the entire known human mtDNA phylogenetic tree (Phylotree), eliminating the requirement to reconstruct a tree encompassing the specific sequences of interest. Moreover, they demonstrate notable improvement in both running speed and accuracy compared to BEAST2, particularly for earlier TMRCAs like the human-Chimpanzee split. Our results date the human - Neanderthal TMRCA to be [Formula: see text] years ago, considerably later than values cited in other recent studies.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Homem de Neandertal/genética , Filogenia , Pan troglodytes/genética , Teorema de Bayes , Hominidae/genética , DNA Mitocondrial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...