Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1406531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39398330

RESUMO

Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.


Assuntos
Metabolismo Energético , Humanos , Animais , Metabolismo Energético/fisiologia , Hormônios Peptídicos/metabolismo , Reprodução/fisiologia , Doenças Metabólicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(42): e2414582121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39383005

RESUMO

Phtheirospermum japonicum is a hemiparasitic plant of the Orobanchaceae, the largest family of parasitic plants. It extracts water and nutrients from other plants through haustoria along its roots. Haustoriogenesis, the formation of haustoria, is initiated by host-derived haustorium-inducing factors (HIFs). The first step in haustoriogenesis is the development of parasitically inactive protohaustoria. Here, we report that an endogenous peptide hormone, CLAVATA3/Embryo Surrounding Region 1 (PjCLE1), is sufficient to induce protohaustorium formation. PjCLE1 hyperactivated HIF-responses and caused prolific protohaustoria formation. PjCLE1 expression and activation by the subtilisin-type protease PjSBT1.2.3 occur in fully developed, mature haustoria, suggesting that PjCLE1 acts as an internal signal produced by mature haustoria to stimulate additional protohaustorium formation for effective extraction of resources from hosts. PjCLE1 is similar in sequence to CLEs regulating nodulation in legumes and part of a regulatory system for haustoria formation in parasitic plants.


Assuntos
Orobanchaceae , Hormônios Peptídicos , Proteínas de Plantas , Orobanchaceae/metabolismo , Orobanchaceae/genética , Hormônios Peptídicos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia
3.
Arch Dermatol Res ; 316(10): 698, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417889

RESUMO

Basal cell carcinoma (BCC) is a slowly progressive, locally aggressive and rarely metastasizing cancer, and although its mortality is low, its morbidity and cost of disease are high. While BCC is more common, cutaneous malignant melanoma (CMM) is significant due to its higher mortality rate. These patients can be treated, but recurrence, metastasis and mortality may occur in such patients. Various environmental, phenotypic and genotypic factors, especially ultraviolet (UV) radiations, play a role in the etiology of BCC and CMM. Histopathological examination continues to be the "gold standard" in their diagnosis. Spexin (SPX) and DARS2 are newly discovered proteins linked to many diseases, including cancer. These proteins may have an effect on the development and expression of skin cancers such as BCC and CMM. In this study, we evaluated the potential of SPX and DARS2 expressions as immunohistochemical biomarkers in the differential diagnosis of BCC and CMM. This study was conducted retrospectively using samples taken from the pathology laboratory. A total of 180 patient samples were used. The control group consisted of healthy skin tissues of the patients, and the other groups consisted of BCC and CMM tissues of the same patients. Tissue samples of all three groups were evaluated immunohistochemically with SPX and DARS2. The immunoreactivity of SPX was found to be higher in BCC and CMM tissue samples than in healthy skin tissues in the control group. DARS2 immunoreactivity was found to be higher in CMM tissues compared to the other two groups, and statistically significant in BCC tissues when compared with healthy control group tissues. SPX can be used as an immunohistochemical biomarker in the diagnosis of BCC and CMM. Since DARS2 expression is statistically more significant in CMM tissues than in BCC tissues, it can be used in differential diagnosis.


Assuntos
Biomarcadores Tumorais , Carcinoma Basocelular , Melanoma Maligno Cutâneo , Melanoma , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico , Melanoma/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Pessoa de Meia-Idade , Masculino , Diagnóstico Diferencial , Estudos Retrospectivos , Idoso , Adulto , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/análise , Imuno-Histoquímica , Pele/patologia , Pele/metabolismo , Elafina
4.
ACS Nano ; 18(42): 28999-29007, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39388343

RESUMO

Peptide hormones are decorated with post-translational modifications (PTMs) that are crucial for receptor recognition. Tyrosine sulfation on plant peptide hormones is, for example, essential for plant growth and development. Measuring the occurrence and position of sulfotyrosine is, however, compromised by major technical challenges during isolation and detection. Nanopores can sensitively detect protein PTMs at the single-molecule level. By translocating PTM variants of the plant pentapeptide hormone phytosulfokine (PSK) through a nanopore, we here demonstrate the accurate identification of sulfation and phosphorylation on the two tyrosine residues of PSK. Sulfation can be clearly detected and distinguished (>90%) from phosphorylation on the same residue. Moreover, the presence or absence of PTMs on the two close-by tyrosine residues can be accurately determined (>96% accuracy). Our findings demonstrate the extraordinary sensitivity of nanopore protein measurements, providing a powerful tool for identifying position-specific sulfation on peptide hormones and promising wider applications to identify protein PTMs.


Assuntos
Nanoporos , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/química , Tirosina/química , Tirosina/metabolismo , Sulfatos/química , Sulfatos/metabolismo , Fosforilação
5.
Gen Comp Endocrinol ; 359: 114629, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39426688

RESUMO

Spexin (SPX1) is a novel neuropeptide composed of 14 amino acids and well conserved across vertebrates, and it has been implicated in various physiological functions via galanin receptor 2 (GALR2) and GALR3. However, the detailed signaling pathways mediating its actions in target cells are still largely unknown. Accordingly, we addressed this issue in the present study using yellowtail kingfish as a model. SPX1 significantly increased CRE-luc activity in COS-7 cells expressing its cognate receptors GALR2a and GALR2b, and this stimulatory effect was attenuated by two inhibitors of the PKA pathway. Similarly, an evident induction of SRE-luc activity was observed when COS-7 cells transfected with GALR1b, GALR2a, GALR2b, GALR type 1, or GALR type 2 were challenged with SPX1, and two blockers of the PKC pathway suppressed this stimulatory action. Moreover, SPX1 markedly elevated NFAT-RE-luc activity in COS-7 cells expressing GALR1a, GALR2a, or GALR2b, and this promotion was inhibited by two antagonists of the Ca2+ route. Overall, our results have revealed that activation of six yellowtail kingfish galanin receptors by the SPX1 peptide may occur with different downstream signaling events, which could account for its pleotropic functions.


Assuntos
Perciformes , Receptores de Galanina , Animais , Receptores de Galanina/metabolismo , Chlorocebus aethiops , Células COS , Perciformes/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética
6.
BMC Vet Res ; 20(1): 486, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455994

RESUMO

BACKGROUND: Nesfatin-1 is a neuropeptide that regulates the hypothalamic-pituitary-gonadal axis and may play a role in uterus function. It is co-expressed with other peptides, such as phoenixin, which can influence sex hormone secretion. Our previous research has confirmed that phoenixin-14 is involved in the development of cystic endometrial hyperplasia (CEH) and pyometra in dogs. Therefore, based on the similarities and interactions between these neuropeptides, we hypothesized that nesfatin-1 might also regulate the reproductive system in dogs. This study aimed to determine the expression of nesfatin-1 and its interaction with phoenixin-14 in dogs with CEH or pyometra compared to healthy females, and concerning animals' body condition score (BCS 4-5/9 vs. BCS > 5/9). RESULTS: The analysis of nesfatin-1 in the uterus of bitches consisted of qPCR, western blot and immunofluorescence assays, and ELISAs. The results showed significantly higher nesfatin-1 encoding gene, nucleobindin-2 mRNA (Nucb2) and nesfatin-1 protein expression in overweight females and those suffering from CEH or pyometra compared to healthy animals. The immunoreactivity of nesfatin-1 was elevated in the uteri of bitches with higher BCS > 5/9. Moreover, nesfatin-1 blood concentrations increased in all examined overweight bitches. In the case of phoenixin signals, we found opposite results, regardless of the female body condition score. CONCLUSION: The etiology of CEH and pyometra are not fully known, although we have expanded the level of knowledge with respect to the possible interaction of nesfatin-1 and phoenixin in female dogs' uteri. They interact oppositely. With increasing female body weight, the expression of nesfatin-1 in the uterus and its peripheral blood concentration increased. However, for female dogs affected by CEH and pyometra, a decreased level of phoenixin-14, irrespective of their body condition score is characteristic. This knowledge could be crucial in the development of biomarkers for these conditions, which may lead to earlier recognition.


Assuntos
Doenças do Cão , Hiperplasia Endometrial , Nucleobindinas , Piometra , Animais , Feminino , Nucleobindinas/genética , Nucleobindinas/sangue , Cães , Doenças do Cão/sangue , Doenças do Cão/metabolismo , Hiperplasia Endometrial/veterinária , Hiperplasia Endometrial/metabolismo , Hiperplasia Endometrial/sangue , Piometra/veterinária , Piometra/sangue , Piometra/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/sangue , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Útero/metabolismo , Hormônios Peptídicos/sangue , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
7.
Pharmacol Res ; 208: 107399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39245191

RESUMO

One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Metabolismo Energético , Hipotálamo , Obesidade , Hormônios Peptídicos , Humanos , Hipotálamo/metabolismo , Animais , Hormônios Peptídicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Melanocortinas/metabolismo
8.
Life Sci ; 356: 123032, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217720

RESUMO

Acute kidney injury (AKI) has emerged as a global health crisis, surpassing mortality rates associated with several cancers and heart failure. The lack of effective therapies, coupled with challenges in diagnosis and the high cost of kidney transplantation, underscores the urgent need to explore novel therapeutic targets and strategies for AKI. Understanding the intricate pathophysiology of AKI is paramount in this endeavor. The components of the apelinergic system-namely, apelin and elabela/toddler, along with their receptor-are prominently expressed in various kidney cells and have garnered significant attention in renal research. Recent studies have highlighted the renoprotective role of the apelinergic system in AKI. This system exerts its protective effects by modulating several pathophysiological processes, including reducing endoplasmic reticulum (ER) stress, improving mitochondrial dynamics, inhibiting inflammation and apoptosis, promoting diuresis through vasodilation of renal vasculature, and counteracting the effects of reactive oxygen species (ROS). Despite these advancements, the precise involvement of the apelinergic system in the progression of AKI remains unclear. Furthermore, the therapeutic potential of apelin-13 in AKI is not fully understood. This review aims to elucidate the role of the apelinergic system in AKI and its interactions with key pathomechanisms involved in the progression of AKI. Additionally, we discuss the current clinical status of exogenous apelin-13 therapy, providing insights that will guide future research on apelin against AKI.


Assuntos
Injúria Renal Aguda , Apelina , Injúria Renal Aguda/metabolismo , Humanos , Apelina/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Hormônios Peptídicos/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Espécies Reativas de Oxigênio/metabolismo , Receptores de Apelina/metabolismo , Rim/metabolismo , Rim/patologia
9.
Peptides ; 180: 171281, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111593

RESUMO

Spexin (SPX) is a 14-amino-acid peptide that plays an important role in the regulation of metabolism and energy homeostasis. It is well known that a variety of bioactive molecules released into the circulation by organs and tissues in response to acute and chronic exercise, known as exerkines, mediate the benefits of exercise by improving metabolic health. However, it is unclear whether acute exercise affects SPX levels in the circulation and peripheral tissues. This study aimed to determine whether acute treadmill exercise induces plasma SPX levels, as well as mRNA expression and immunostaining of SPX in skeletal muscle, adipose tissue, and liver. Male Sprague Dawley rats were divided into sedentary and acute exercise groups. Plasma, soleus (SOL), extensor digitorum longus (EDL), adipose tissue, and liver samples were collected at six time points (0, 1, 3, 6, 12, and 24 h) following 60 min of acute treadmill exercise at a speed of 25 m/min and 0 % grade. Acute exercise increased plasma SPX levels and induced mRNA expression of Spx in the SOL, EDL, and liver. Immunohistochemical analysis demonstrated that acute exercise led to a decrease in SPX immunostaining in the liver. Taken together, these findings suggest that SPX increases in response to acute exercise as a potential exerkine candidate, and the liver may be one of the sources of acute exercise-induced plasma SPX levels in rats. However, a comprehensive analysis is needed to fully elucidate the systemic response of SPX to acute exercise, as well as the tissue from which SPX is secreted.


Assuntos
Fígado , Músculo Esquelético , Hormônios Peptídicos , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Ratos , Fígado/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/sangue , Tecido Adiposo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
J Neuroinflammation ; 21(1): 192, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095838

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS: The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS: Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION: Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Camundongos Knockout , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/etiologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Sinapses/patologia , Sinapses/efeitos dos fármacos , Hormônios Peptídicos/metabolismo , Pessoa de Meia-Idade , Feminino
11.
JCI Insight ; 9(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171527

RESUMO

Fuel substrate switching between carbohydrates and fat is essential for maintaining metabolic homeostasis. During aerobic exercise, the predominant energy source gradually shifts from carbohydrates to fat. While it is well known that exercise mobilizes fat storage from adipose tissues, it remains largely obscure how circulating lipids are distributed tissue-specifically according to distinct energy requirements. Here, we demonstrate that aerobic exercise is linked to nutrient availability to regulate tissue-specific activities of lipoprotein lipase (LPL), the key enzyme catabolizing circulating triglyceride (TG) for tissue uptake, through the differential actions of angiopoietin-like (ANGPTL) proteins. Exercise reduced the tissue binding of ANGPTL3 protein, increasing LPL activity and TG uptake in the heart and skeletal muscle in the postprandial state specifically. Mechanistically, exercise suppressed insulin secretion, attenuating hepatic Angptl8 transcription through the PI3K/mTOR/CEBPα pathway, which is imperative for the tissue binding of its partner ANGPTL3. Constitutive expression of ANGPTL8 hampered lipid utilization and resulted in cardiac dysfunction in response to exercise. Conversely, exercise promoted the expression of ANGPTL4 in white adipose tissues, overriding the regulatory actions of ANGPTL8/ANGPTL3 in suppressing adipose LPL activity, thereby diverting circulating TG away from storage. Collectively, our findings show an overlooked bifurcated ANGPTL-LPL network that orchestrates fuel switching in response to aerobic exercise.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Lipase Lipoproteica , Músculo Esquelético , Período Pós-Prandial , Triglicerídeos , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Triglicerídeos/metabolismo , Animais , Camundongos , Lipase Lipoproteica/metabolismo , Músculo Esquelético/metabolismo , Proteína 3 Semelhante a Angiopoietina/metabolismo , Masculino , Humanos , Condicionamento Físico Animal/fisiologia , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Hormônios Peptídicos/metabolismo , Miocárdio/metabolismo , Exercício Físico/fisiologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
12.
J Lipid Res ; 65(8): 100595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39019343

RESUMO

Liver injury is closely related to poor outcomes in sepsis patients. Current studies indicate that sepsis is accompanied by metabolic disorders, especially those related to lipid metabolism. It is highly important to explore the mechanism of abnormal liver lipid metabolism during sepsis. As a key regulator of glucose and lipid metabolism, angiopoietin-like 8 (ANGPTL8) is involved in the regulation of multiple chronic metabolic diseases. In the present study, severe liver lipid deposition and lipid peroxidation were observed in the early stages of lipopolysaccharide (LPS) induced liver injury. LPS promotes the expression of ANGPTL8 both in vivo and in vitro. Knockout of Angptl8 reduced hepatic lipid accumulation and lipid peroxidation, improved fatty acid oxidation and liver function, and increased the survival rate of septic mice by activating the PGC1α/PPARα pathway. We also found that the expression of ANGPTL8 induced by LPS depends on TNF-α, and that inhibiting the TNF-α pathway reduces LPS-induced hepatic lipid deposition and lipid peroxidation. However, knocking out Angptl8 improved the survival rate of septic mice better than inhibiting the TNF-α pathway. Taken together, the results of our study suggest that ANGPTL8 functions as a novel cytokine in LPS-induced liver injury by suppressing the PGC1α/PPARα signaling pathway. Therefore, targeting ANGPTL8 to improve liver lipid metabolism represents an attractive strategy for the management of sepsis patients.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Metabolismo dos Lipídeos , Lipopolissacarídeos , Animais , Camundongos , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/deficiência , Proteínas Semelhantes a Angiopoietina/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Masculino , Camundongos Knockout , Hormônios Peptídicos/metabolismo , Fígado/metabolismo , Fígado/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sepse/metabolismo , Sepse/induzido quimicamente , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Transdução de Sinais
13.
Ann Anat ; 255: 152300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971451

RESUMO

BACKGROUND: Male reproductive functions are regulated in the hypothalamic-pituitary-gonadal (HPG) axis. Any problem in this axis would lead to the deterioration of reproductive functions. The present study aimed to investigate the effects of intracerebroventricular (icv) Spexin (SPX) infusion on the HPG axis in detail. METHODS: 40 Wistar albino rats were divided into four groups: control, sham, SPX 30 nmol and SPX 100 nmol (n=10). 30 nmol/1 µl/hour SPX was administered icv to the rats in the SPX 30 nmol group for 7 days, while rats in the SPX 100 nmol group were administered 100 nmol/1 µl/hour SPX. On the 7th day, the rats were decapitated, blood and tissue samples were collected. Serum LH, FSH and testosterone levels were determined with the ELISA method, GnRH mRNA expression level was determined in hypothalamus with the RT-PCR method. Seminiferous tubule diameter and epithelial thickness were determined with the hematoxylin-eosin staining method. RESULTS: SPX infusion was increased GnRH mRNA expression in the hypothalamus tissue independent of the dose (p<0.05). Serum LH, FSH and testosterone levels in the SPX groups were increased when compared to the control and sham groups independent of the dose (p <0.05). Histological analysis revealed that SPX infusion did not lead to any changes in seminiferous epithelial thickness, while the tubule diameter increased in the SPX groups (p<0.05). CONCLUSION: The study findings demonstrated that icv SPX infusion stimulated the HPG axis and increased the secretion of male reproductive hormones.


Assuntos
Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Sistema Hipotálamo-Hipofisário , Hormônio Luteinizante , Hormônios Peptídicos , Ratos Wistar , Testículo , Testosterona , Animais , Masculino , Ratos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Testosterona/sangue , Hormônio Luteinizante/sangue , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/metabolismo , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/metabolismo , Injeções Intraventriculares , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Infusões Intraventriculares , RNA Mensageiro/metabolismo
14.
Am J Physiol Endocrinol Metab ; 327(3): E313-E327, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017682

RESUMO

Thyroid dysfunction and diabetes mellitus are prevalent endocrine disorders that often coexist and influence each other. The role of spexin (SPX) in diabetes and obesity is well documented, but its connection to thyroid function is less understood. This study investigates the influence of exercise (EX) and SPX on thyroid hypofunction in obese type 2 diabetic rats. Rats were divided into normal control, obese diabetic sedentary, obese diabetic EX, and obese diabetic SPX groups, with subdivisions for M871 and HT-2157 treatment in the latter two groups. High-fat diet together with streptozotocin (STZ) injection induced obesity and diabetes. The EX group underwent swimming, and the SPX group received SPX injections for 8 wk. Results showed significant improvements in thyroid function and metabolic, oxidative, and inflammatory states with EX and SPX treatment. The study also explored the involvement of galanin receptor isoforms (GALR)2/3 in SPX effects on thyroid function. Blocking GALR2/3 receptors partially attenuated the beneficial effects, indicating their interaction. These findings underscore the importance of EX and SPX in modulating thyroid function in obesity and diabetes. Comprehending this interplay could enable the development of new treatment approaches for thyroid disorders associated with obese type 2 diabetes. Additional research is necessary to clarify the exact mechanisms connecting SPX, EX activity, and thyroid function.NEW & NOTEWORTHY This study proves, for the first time, the beneficial effects of SPX on thyroid dysfunction in obese diabetic rats and suggests that SPX mediates the EX effect on thyroid gland and exerts its effect mainly via GALR2.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Obesidade , Hormônios Peptídicos , Condicionamento Físico Animal , Glândula Tireoide , Animais , Ratos , Obesidade/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Masculino , Hormônios Peptídicos/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/efeitos dos fármacos , Ratos Wistar
15.
Exp Cell Res ; 441(2): 114189, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39069151

RESUMO

Vascular smooth muscle cell (VSMCs) is one of the important cell types in artery. VSMCs stiffening may regulate vascular stiffness and contribute to the development of vulnerable plaques. Thrombin, an enzyme in coagulation system, is involved in pathological processes of atherosclerosis. Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) plays an important role in regulating inflammation and may have cardiovascular protective effect. Therefore, the elucidation of the mechanisms underlying ITIH4-mediated VSMCs stiffening helps to provide new ideas and potential targets for the diagnosis and treatment of atherosclerosis. In this study, we used specific ITIH4 expression vector and siRNA methods to transfect VSMCs. Our results found that ITIH4 expression increased VSMCs stiffness, meanwhile, ITIH4 siRNA decreased VSMCs stiffness. ITIH4 increased acetylated α-tubulin and inhibited ERK1/2 and JNK, but not P38 MAPK. ERK inhibitor (PD98059) or JNK inhibitor (SP600125) treatment increased acetylated α-tubulin expression and cell stiffness in VSMCs. ITIH4 was downregulated by thrombin treatment, ITIH4 partly reversed the effect of thrombin on acetylated α-tubulin and VSMCs stiffness. These results indicated that ITIH4 regulated acetylated α-tubulin expression in VSMCs and was against the effects of thrombin on VSMCs stiffness. JNK and ERK signaling pathways were proved to participate in this process.


Assuntos
Sistema de Sinalização das MAP Quinases , Músculo Liso Vascular , Trombina , Trombina/farmacologia , Trombina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos , Células Cultivadas , Ratos , Humanos , Ratos Sprague-Dawley , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/genética
16.
Neuropharmacology ; 258: 110090, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048031

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, which is characterized by the accumulation and aggregation of amyloid in brain. Neuronostatin (NST) is an endogenous peptide hormone that participates in many fundamental neuronal processes. However, the metabolism and function of NST in neurons of AD mice are not known. In this study, by combining the structural analyses, primary cultures, knockout cells, and various assessments, the behavior, histopathology, brain-wide expression and cellular signaling pathways in the APP/PS1 mice were investigated. It was found that NST directly bound to GPR107, which was primarily expressed in neurons. NST modulated the neuronal survivability and neurite outgrowth induced by Aß via GPR107 in neurons. Intracerebroventricular (i.c.v.) administration of NST attenuated learning and memory abilities, reduced the synaptic protein levels of hippocampus, but improved amyloid plaques in the cortex and hippocampus of APP/PS1 mice. NST modulated glucose metabolism of hypothalamus-hippocampus-cortex axis in APP/PS1 mice and decreased ATP levels via the regulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in response to Aß, suppressed energetic metabolism, and mitochondrial function in neurons via GPR107/protein kinase A (PKA) signaling pathway. In summary, our findings suggest that NST regulates neuronal function and brain energetic metabolism in AD mice via the GPR107/PKA signaling pathway, which can be a promising target for the treatment of AD.


Assuntos
Doença de Alzheimer , Metabolismo Energético , Camundongos Transgênicos , Neurônios , Receptores Acoplados a Proteínas G , Animais , Doença de Alzheimer/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Células Cultivadas , Masculino , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
17.
Front Endocrinol (Lausanne) ; 15: 1422711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915898

RESUMO

Spexin (SPX, NPQ) is a 14-amino acid neuroactive peptide identified using bioinformatics. This amino acid sequence of the mature spexin peptide has been highly conserved during species evolution and is widely distributed in the central nervous system and peripheral tissues and organs. Therefore, spexin may play a role in various biological functions. Spexin, the cognate ligand for GALR2/3, acting as a neuromodulator or endocrine signaling factor, can inhibit reproductive performance. However, controversies and gaps in knowledge persist regarding spexin-mediated regulation of animal reproductive functions. This review focuses on the hypothalamic-pituitary-gonadal axis and provides a comprehensive overview of the impact of spexin on reproduction. Through this review, we aim to enhance understanding and obtain in-depth insights into the regulation of reproduction by spexin peptides, thereby providing a scientific basis for future investigations into the molecular mechanisms underlying the influence of spexin on reproductive function. Such investigations hold potential benefits for optimizing farming practices in livestock, poultry, and fish industries.


Assuntos
Hormônios Peptídicos , Reprodução , Vertebrados , Animais , Reprodução/fisiologia , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/fisiologia , Vertebrados/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia
18.
Tissue Cell ; 89: 102444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945090

RESUMO

Injury to internal organs caused by myocardial infarction (MI), although often neglected, is a very serious condition which damages internal organs especially the lungs. Changes in microcirculation can begin with acute lung injury and result in severe respiratory failure. The aim of this study was to create new approaches that will explain the pathophysiology and treatment of the disease by examining the therapeutic effects of vitamin D (VITD) and Nerolidol (NRD) on the injuries of the lungs caused by MI, and their relationship with asprosin / spexin proteins. METHODS: Six groups of seven experimental animals each were constituted. Control, VITD (only 50 IU/day during the experiment), NRD (only 100 mg/kg/day during the experiment), MI (200 mg/kg isoproterenol was administered to rats as a single dose subcutaneously), MI+VITD (200 mg/kg isoproterenol +50 IU/day) and MI+NRD (200 mg/kg isoproterenol +100 mg/kg/day) were the six (6) groups constituted. Tissues were analyzed using histopathological and immunohistochemical methods, whereas serum samples were analyzed using ELISA method. RESULTS: The result of the histopathological study for the MI group showed an observed increase in inflammatory cells, congestion, interalveolar septal thickening, erythrocyteloaded macrophages and fibrosis in the lung tissues. The treatment groups however recorded significant differences with regards to these parameters. In the immunohistochemical analysis, expressions of asprosin and spexin were observed in the smooth muscle structures and interalveolar areas of the vessels and bronchioles of the lung, as well as the bronchiole epithelium. There was no significant difference between the groups in terms of asprosin and spexin expression in the bronchiol epithelium. When immunohistochemical and serum ELISA results were examined, it was observed that asprosin levels increased significantly in the lung tissues of the MI group compared to the control group, decreased significantly in the treatment groups treated with Vitamin D and NRD after MI. While spexin decreased significantly in the MI group compared to the control group, it increased significantly in the MI+VITD group, but did not change in the MI+NRD group. CONCLUSION: It was observed that serious injuries occurred in the lungs due to myocardial infarction and that, VITD and NRD treatments had a curative effect on those injuries. It was also observed that Asprosin and Speksin proteins can have effect on mechanisms of both injury and therapy of the lung. Furthermore, the curative effects of VITD are dependent on the expression of asprosin and spexin; whereas the observation indicated that nerolidol could be effective through asprosin-dependent mechanisms and specisin by independent mechanisms.


Assuntos
Infarto do Miocárdio , Sesquiterpenos , Vitamina D , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Ratos , Vitamina D/farmacologia , Masculino , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Isoproterenol/farmacologia , Ratos Wistar
19.
J Neuroendocrinol ; 36(10): e13398, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38733120

RESUMO

Phoenixin (PNX) is a conserved secreted peptide that was identified 10 years ago with numerous studies published on its pleiotropic functions. PNX is associated with estrous cycle length, protection from a high-fat diet, and reduction of anxiety behavior. However, no study had yet evaluated the impact of deleting PNX in the whole animal. We sought to evaluate a mouse model lacking the PNX parent gene, small integral membrane protein 20 (Smim20), and the resulting effect on reproduction, energy homeostasis, and anxiety. We found that the Smim20 knockout mice had normal fertility and estrous cycle lengths. Consistent with normal fertility, the hypothalamii of the knockout mice showed no changes in the levels of reproduction-related genes, but the male mice had some changes in energy homeostasis-related genes, such as melanocortin receptor 4 (Mc4r). When placed on a high-fat diet, the wildtype and knockout mice responded similarly, but the male heterozygous mice gained slightly less weight. When placed in an open field test box, the female knockout mice traveled less distance in the outer zone, indicating alterations in anxiety or locomotor behavior. In summary, the homozygous knockout of PNX did not alter fertility and modestly alters a few neuroendocrine genes in response to a high-fat diet, especially in the female mice. However, it altered the behavior of mice in an open field test. PNX therefore may not be crucial for reproductive function or weight, however, we cannot rule out possible compensatory mechanisms in the knockout model. Understanding the role of PNX in physiology may ultimately lead to an enhanced understanding of neuroendocrine mechanisms involving this enigmatic peptide.


Assuntos
Ansiedade , Dieta Hiperlipídica , Fertilidade , Animais , Feminino , Masculino , Camundongos , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Metabolismo Energético/genética , Ciclo Estral/fisiologia , Fertilidade/fisiologia , Fertilidade/genética , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
20.
Circulation ; 150(2): 111-127, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38726666

RESUMO

BACKGROUND: G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS: Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS: Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and decreased intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS: Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.


Assuntos
Fibrilação Atrial , Camundongos Knockout , Miócitos Cardíacos , Hormônios Peptídicos , Receptor Tipo 2 de Galanina , Animais , Feminino , Humanos , Masculino , Camundongos , Potenciais de Ação/efeitos dos fármacos , Fibrilação Atrial/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Hormônios Peptídicos/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...