Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Microb Ecol ; 87(1): 94, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008061

RESUMO

Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.


Assuntos
Phaseolus , Doenças das Plantas , Raízes de Plantas , Rhizoctonia , Serratia marcescens , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Serratia marcescens/fisiologia , Serratia marcescens/metabolismo , Rhizoctonia/fisiologia , Raízes de Plantas/microbiologia , Agentes de Controle Biológico/farmacologia , Controle Biológico de Vetores , Antibiose , Hypocreales/fisiologia , Hypocreales/metabolismo , Egito , Compostagem , Microbiologia do Solo
2.
Arch Microbiol ; 206(7): 286, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829426

RESUMO

Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.


Assuntos
Ascomicetos , Lactuca , Filogenia , Doenças das Plantas , Lactuca/microbiologia , Ascomicetos/genética , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rizosfera , Antibiose , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/isolamento & purificação , Microbiologia do Solo , Trichoderma/genética , Trichoderma/isolamento & purificação , Trichoderma/fisiologia , Trichoderma/metabolismo
3.
Curr Microbiol ; 81(8): 227, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879855

RESUMO

Microbial degradation of keratin is characterized by its inherent safety, remarkable efficiency, and the production of copious degradation products. All these attributes contribute to the effective management of waste materials at high value-added and in a sustainable manner. Microbial degradation of keratin materials remains unclear, however, with variations observed in the degradation genes and pathways among different microorganisms. In this study, we sequenced the transcriptome of Purpureocillium lilacinum GZAC18-2JMP mycelia on control medium and the medium containing 1% feather powder, analyzed the differentially expressed genes, and revealed the degradation mechanism of chicken feathers by P. lilacinum GZAC18-2JMP. The results showed that the chicken feather degradation rate of P. lilacinum GZAC18-2JMP reached 64% after 216 h of incubation in the fermentation medium, reaching a peak value of 148.9 µg·mL-1 at 192 h, and the keratinase enzyme activity reached a peak value of 211 U·mL-1 at 168 h, which revealed that P. lilacinum GZAC18-2JMP had a better keratin degradation effect. A total of 1001 differentially expressed genes (DEGs) were identified from the transcriptome database, including 475 upregulated genes and 577 downregulated genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the DEGs revealed that the metabolic pathways related to keratin degradation were mainly sulfur metabolism, ABC transporters, and amino acid metabolism. Therefore, the results of this study provide an opportunity to gain further insight into keratin degradation and promote the biotransformation of feather wastes.


Assuntos
Plumas , Hypocreales , Queratinas , Transcriptoma , Queratinas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Animais , Plumas/metabolismo , Galinhas , Perfilação da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Micélio/genética , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Fermentação , Biodegradação Ambiental
4.
Curr Microbiol ; 81(6): 161, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700667

RESUMO

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.


Assuntos
Biocombustíveis , Celulose , Etanol , Fermentação , Saccharum , Saccharum/metabolismo , Etanol/metabolismo , Celulose/metabolismo , Gerenciamento de Resíduos/métodos , Agricultura , Xilose/metabolismo , Vitis/microbiologia , Hypocreales/metabolismo
5.
Microb Cell Fact ; 23(1): 150, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790055

RESUMO

BACKGROUND: Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS: Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS: Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 µmol guaiacol and 3.82 µmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION: Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.


Assuntos
Compostos Azo , Corantes , Lacase , Temperatura , Lacase/metabolismo , Lacase/química , Lacase/isolamento & purificação , Compostos Azo/metabolismo , Corantes/metabolismo , Corantes/química , Cinética , Concentração de Íons de Hidrogênio , Vermelho Congo/metabolismo , Concentração Osmolar , Hypocreales/enzimologia , Hypocreales/metabolismo , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação
6.
Microbiol Res ; 285: 127740, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795408

RESUMO

Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.


Assuntos
Abietanos , Cálcio , Endófitos , Peróxido de Hidrogênio , Raízes de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/microbiologia , Peróxido de Hidrogênio/metabolismo , Abietanos/biossíntese , Abietanos/metabolismo , Endófitos/metabolismo , Endófitos/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Lantânio/farmacologia , Lantânio/metabolismo , Regulação da Expressão Gênica de Plantas , Hypocreales/metabolismo , Hypocreales/genética
7.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776824

RESUMO

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Assuntos
Resistência à Doença , Flavonoides , Doenças das Plantas , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Flavonoides/metabolismo , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hypocreales/metabolismo , Resistência Sistêmica Adquirida da Planta
8.
Sci Rep ; 14(1): 12540, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822034

RESUMO

Cyclosporine A (CyA) holds significant importance as a strategic immunosuppressive drug for organ transplant patients. In this study, we aimed to produce pure and cost-effective Cyclosporine A (CyA) by fermenting a culture medium containing dairy sludge, using Tolypocladium inflatum PTCC 5253. Following the fermentation stage, ethyl acetate extraction and fast protein liquid chromatography were employed for sample purification. The initial evaluation of the effectiveness of CyA obtained from these processes was performed through bioassay, wherein the antimicrobial clear zone diameter was found to be larger compared to the sample obtained from the fermentation culture. The concentration of CyA was determined using high-performance liquid chromatography, yielding values of 334 mg/L, 456 mg/L, and 578 mg/L for the fermented, extracted, and purified samples, respectively. Further analysis utilizing liquid chromatography tandem mass spectrometry (LC/MS/MS) confirmed a purity of 91.9% and proper agreement with the standard sample based on the ion intensity of Z/m 1205. To validate the structure of CyA, nuclear magnetic resonance spectroscopy, Fourier-transform infrared (FT-IR), and Raman spectroscopy were employed. X-ray diffraction and differential scanning calorimetry analyses demonstrated that the purified CyA exhibited a crystal structure similar to the standard sample, characterized by two broad peaks at 2θ = 9° and 20°, and comparable glass transition temperatures (57-68 °C for the purified sample; 53-64 °C for the standard sample). Dynamic light scattering analysis confirmed a uniform particle size distribution in both the purified and standard samples. The zeta potentials of the purified and standard samples were determined to be - 25.8 ± 0.16 and - 23.63 ± 0.12 mV, respectively. Our results demonstrate that dairy sludge can serve as a suitable culture medium for the production of (CyA).


Assuntos
Ciclosporina , Fermentação , Resíduos Industriais , Ciclosporina/química , Resíduos Industriais/análise , Hypocreales/química , Hypocreales/metabolismo , Agricultura , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Environ Pollut ; 355: 124102, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710362

RESUMO

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.


Assuntos
Biodegradação Ambiental , Cádmio , Fertilizantes , Metais Pesados , Nitrogênio , Poluentes do Solo , Fertilizantes/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Cádmio/metabolismo , Metais Pesados/metabolismo , Chumbo/metabolismo , Solo/química , Hypocreales/metabolismo
10.
Sci Rep ; 14(1): 12535, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821999

RESUMO

Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL-1 and at ≥ 50 µg mL-1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm-1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm-1 in the AgNPs treated samples. The second region (1700-1450 cm-1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm-1 in the AgNPs treated samples. The third region (1300-900 cm-1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm-1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).


Assuntos
Manihot , Nanopartículas Metálicas , Doenças das Plantas , Raízes de Plantas , Prata , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Doenças das Plantas/microbiologia , Manihot/microbiologia , Manihot/química , Raízes de Plantas/microbiologia , Fusarium/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Hypocreales/metabolismo , Hypocreales/efeitos dos fármacos , Trichoderma/metabolismo
11.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720294

RESUMO

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Hypocreales/metabolismo , Rutina/farmacologia , Rutina/química , Acremonium , Gencitabina , Dissacarídeos/farmacologia , Dissacarídeos/química
12.
Sci Rep ; 14(1): 9625, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671155

RESUMO

The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.


Assuntos
Carbono , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Carbono/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Celulose/metabolismo , Celulose/biossíntese , Metabolismo Secundário
13.
Proc Natl Acad Sci U S A ; 121(18): e2322567121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648472

RESUMO

Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.


Assuntos
Celobiose , Celulase , Celulose , Hypocreales , Celobiose/metabolismo , Celulase/metabolismo , Celulase/antagonistas & inibidores , Celulose/metabolismo , Hypocreales/enzimologia , Hypocreales/metabolismo , Imagem Individual de Molécula/métodos , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química
14.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664812

RESUMO

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , Acetilação
15.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564658

RESUMO

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Assuntos
Reagentes de Ligações Cruzadas , Expressão Gênica , Globulinas , Hypocreales , Monofenol Mono-Oxigenase , Proteínas Recombinantes , Proteínas de Soja , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Reagentes de Ligações Cruzadas/isolamento & purificação , Reagentes de Ligações Cruzadas/metabolismo , Hypocreales/classificação , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Globulinas/química , Globulinas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Eletroporação , Celulose , Sulfato de Amônio , Cromatografia em Gel , Precipitação Fracionada , Emulsões/química , Emulsões/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estabilidade Proteica , Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas , Óleos/química , Água/química
16.
J Hazard Mater ; 471: 134299, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631252

RESUMO

Trichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.). A total of 4059 differentially expressed genes (DEGs) were obtained, including 2110 up-regulated and 1949 down-regulated DEGs in P vs TM+P. COG and KOG analysis indicated that DEGs were mainly enriched in signal transduction mechanisms. We then focused on the pesticide detoxification pathway and screened out cytochrome P450 CYP736A12 as a putative gene for functional analysis. We suppressed the expression of CYP736A12 in tomato plants by virus-induced gene silencing and analyzed tissue-specific phoxim residues, oxidative stress markers, glutathione pool, GST activity and related gene expression. Silencing CYP736A12 significantly increased phoxim residue and induced oxidative stress in tomato plants, by attenuating the TM-induced increased activity of antioxidant and detoxification enzymes, redox homeostasis and transcripts of detoxification genes including CYP724B2, GSH1, GSH2, GR, GPX, GST1, GST2, GST3, and ABC. The study revealed a critical mechanism by which TM promotes the metabolism of phoxim in tomato roots, which can be useful for further understanding the Trichoderma-induced xenobiotic detoxification and improving food safety.


Assuntos
Sistema Enzimático do Citocromo P-450 , Compostos Organotiofosforados , Raízes de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Compostos Organotiofosforados/toxicidade , Compostos Organotiofosforados/metabolismo , Resíduos de Praguicidas/toxicidade , Resíduos de Praguicidas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hypocreales/metabolismo , Hypocreales/genética
17.
J Agric Food Chem ; 72(12): 6315-6326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470442

RESUMO

Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.


Assuntos
Herbicidas , Hypocreales , Peptaibols/química , Peptaibols/farmacologia , Herbicidas/farmacologia , Aminoácidos/metabolismo , Espectrometria de Massas , Hypocreales/metabolismo
18.
J Agric Food Chem ; 72(12): 6402-6413, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491989

RESUMO

Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including ß-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.


Assuntos
Antibacterianos , Hypocreales , Animais , Antibacterianos/química , Hypocreales/metabolismo , Peptídeos Cíclicos/metabolismo , Peixes/metabolismo
19.
Fitoterapia ; 175: 105917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508501

RESUMO

The aim of this work is to explore the effects of herbal medicine on secondary metabolites of microorganisms during fermentation. Clonostachys rogersoniana was found to metabolize only small amounts of polyketide glycosides rogerson B and C on fresh potatoes, but after replacing the medium to the medicinal plant Rubus delavayi Franch., the type and content of the metabolized polyketones showed significant changes. The sugars and glycosides in R. delavayi are probably responsible for the changes in secondary metabolites. Six polyketide glycosides including a new metabolite, rogerson F, and two potential antitumor compounds, TMC-151C and TMC-151D, were isolated from the extract of R. delavayi fermented by C. rogersoniana. In addition, 13C labeling experiments were used to trace the biosynthesis process of these compounds. TMC-151C and TMC-151D showed significant cytotoxic activity against PANC-1, K562 and HCT116 cancer cells but had no obvious cytotoxic activity against BEAS-2B human normal lung epithelial cells. The yields of TMC-151C and TMC-151D reached 14.37 ± 1.52 g/kg and 1.98 ± 0.43 g/kg, respectively, after fermentation at 28 °C for 30 days. This is the first study to confirm that herbal medicine can induce microbes to metabolize active compounds. And the technology of fermenting medicinal materials can bring more economic value to medicinal plants.


Assuntos
Fermentação , Hypocreales , Policetídeos , Policetídeos/metabolismo , Policetídeos/farmacologia , Humanos , Linhagem Celular Tumoral , Hypocreales/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Estrutura Molecular , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Plantas Medicinais/química , Metabolismo Secundário , China
20.
Protein J ; 43(3): 503-512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488956

RESUMO

Metallothioneins are a group of cysteine-rich proteins that play an important role in the homeostasis and detoxification of heavy metals. The objective of this research was to explore the significance of metallothionein in Trichoderma harzianum tolerance to zinc. At the inhibitory concentration of 1000 ppm, the fungus adsorbed 16.7 ± 0.4 mg/g of metal. The HPLC and SDS-PAGE electrophoresis data suggested that the fungus production of metallothionein was twice as high in the presence of zinc as in the control group. The examination of the genes; metallothionein expression activator (MEA) and Cu fist revealed that the MEA, with a C2H2 zinc finger domain, increased significantly in the presence of zinc. It was observed that in T. harzianum, the enhanced expression of the metallothionein gene was managed by the metallothionein activator under zinc overload conditions. According to our knowledge, this is the first report on the role of metallothionein in the resistance of T. harzianum to zinc.


Assuntos
Proteínas Fúngicas , Metalotioneína , Zinco , Metalotioneína/metabolismo , Metalotioneína/genética , Metalotioneína/química , Zinco/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Hypocreales/metabolismo , Hypocreales/genética , Hypocreales/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...