RESUMO
BACKGROUND: Mucopolysaccharidosis type I is a lysosomal storage disease resulting from a deficiency in alpha-L-iduronidase (IDUA), which causes the accumulation of partially degraded dermatan sulfate and heparan sulfate. This retrospective study, spanning eight years, analyzed data from 45 MPSI patients. The report aimed to explore the potential origin of the p.P533R mutation in the Maghrebin population by constructing a single-nucleotide polymorphism haplotype around the IDUA gene, in order to propose a molecular proof of a founder effect of the MPSI/p.P533R allele. PATIENTS AND METHODS: All of the studied patients were from Libya (2), Mauritania (1) Morocco (21) and Tunisia (21) with first cousins being the most frequent union. The diagnosis of MPSI patients often involves the combination of urinary screening, leukocyte IDUA activity determination, and DNA molecular analysis. In our study, to identify the common p.P533R mutation, we performed both DNA sequencing and tetra-primer ARMS PCR assay. Additionally, Haploview was used to determine the specific haplotype that cosegregates with the p.P533R mutation. Controls were genotyped to ensure that all the SNPs were in Hardy-Weinberg equilibrium. RESULTS: In the present report we confirmed the very strong impact of consanguinity on the incidence of MPSI disease. Furthermore, studied families of mixed ancestry shared common and specific haplotype, which was observed in studied populations, suggesting the presence of a founder effect in the North Africa. CONCLUSION: The p.P533R missense mutation was identified in each patient originated from Libya, Mauritania, Morocco and Tunisia. Furthermore, these MPSI patients exhibited the same IDUA haplotype. The occurrence of a shared AAGGGTG haplotype, among North African populations may be attributed to substantial historical gene exchange between these groups, likely stemming from migration, inter-ethnic marriage, or other forms of interaction throughout history.
Assuntos
Efeito Fundador , Haplótipos , Iduronidase , Mucopolissacaridose I , Polimorfismo de Nucleotídeo Único , Humanos , Mucopolissacaridose I/genética , África do Norte , Iduronidase/genética , Masculino , Feminino , Mutação , Pré-Escolar , Criança , Alelos , LactenteRESUMO
Enzymopathy disorders are the result of missing or defective enzymes. Among these enzymopathies, mucopolysaccharidosis type I is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), which ultimately causes toxic buildup of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T (Tm) cells migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm cells as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm cells leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm cells take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS, although only minimal improved cognition was observed. Our study indicates that genetically engineered Tm cells hold great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.
Assuntos
Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Glicosaminoglicanos , Iduronidase , Mucopolissacaridose I , Linfócitos T , Terapia de Reposição de Enzimas/métodos , Animais , Iduronidase/genética , Iduronidase/metabolismo , Humanos , Camundongos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/genética , Glicosaminoglicanos/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Memória ImunológicaRESUMO
Mucopolysaccharidosis type I (MPS I) is a rare genetic disorder caused by mutations in the IDUA gene, leading to alpha-L-iduronidase enzyme deficiency and resulting in the accumulation of glycosaminoglycans (GAG; heparan and dermatan sulfate) in lysosomes. The consequent GAG accumulation within cells leads to organ dysfunction and a range of debilitating symptoms. Enzyme replacement therapy (ERT) is the prevailing treatment, but its limitations (including high cost, time requirements, inefficiency in treatment of central nervous system (CNS), and immunogenicity) necessitate exploration of alternative therapeutic strategies. This research propose a novel approach leveraging the synergistic effects of ERT and resveratrol-induced autophagy. Resveratrol, with its immunomodulatory and GAG degradation-stimulating properties, holds a promise in mitigating immune responses triggered by ERT. Moreover, its ability to penetrate the blood-brain barrier presents a potential solution for addressing CNS manifestations. This study employed cells from MPS I patients to investigate the combined effects of resveratrol and the enzyme. Evaluation of the therapeutic impact involved assessing GAG accumulation, enzyme testing, and examining lysosome functionality and the autophagy process through fluorescence microscopy and Western blotting. The combined therapy stimulated the lysosomal mannose-6-phosphate receptor (M6PR) and lysosome biogenesis through the transcription factor EB (TFEB). Additionally, initial block of autophagy in autophagosome formation was relieved after the combined therapy and resveratrol alone. Together with increased enzyme activity through stimulation of the receptor, this synergistic therapy can be considered a new potential treatment for MPS I patients, improving their overall quality of life.
Assuntos
Sinergismo Farmacológico , Terapia de Reposição de Enzimas , Mucopolissacaridose I , Resveratrol , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Resveratrol/uso terapêutico , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Humanos , Terapia de Reposição de Enzimas/métodos , Iduronidase/genética , Iduronidase/uso terapêutico , Iduronidase/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células Cultivadas , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismoRESUMO
BACKGROUND: Mucopolysaccharidosis type I (MPS-I) is a rare autosomal recessive genetic lysosomal storage disorder that is caused by pathogenic variants of the α-L-iduronidase (IDUA) gene. This study aimed to identify the genetic causes of MPS-I in a Chinese patient and construct a minigene of IDUA to analyze its variants upon splicing. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the potential causative variants. Single-nucleotide polymorphism (SNP) array was subsequently performed to confirm uniparental disomy (UPD). Minigene assay was performed to analyze the effect on splicing of mRNA. We meanwhile explored the conservative analysis and protein homology simulation. RESULTS: A novel homozygous splicing mutation of IDUA, c.159-9T>A, was identified in an individual presenting with overlapping features of MPS-I. Interestingly, only the father and sisters, but not the mother, carried the variant in a heterozygous state. WES and SNP array analyses validated paternal UPD on chromosome 4. Minigene splicing revealed two aberrant splicing events: exon 2 skipping and intron 1 retention. Moreover, the specific structure of the mutant protein obviously changed according to the results of the homologous model. CONCLUSIONS: This study describes a rare autosomal recessive disorder with paternal UPD of chromosome 4 leading to the homozygosity of the IDUA splicing variant in patients with MPS-I for the first time. This study expands the variant spectrum of IDUA and provides insights into the splicing system, facilitating its enhanced diagnosis and treatment.
Assuntos
Cromossomos Humanos Par 4 , Homozigoto , Iduronidase , Mucopolissacaridose I , Splicing de RNA , Dissomia Uniparental , Humanos , Dissomia Uniparental/genética , Dissomia Uniparental/patologia , Iduronidase/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Masculino , Cromossomos Humanos Par 4/genética , Feminino , Polimorfismo de Nucleotídeo Único , Mutação , População do Leste AsiáticoRESUMO
Mucopolysaccharidosis type I (MPS I) is caused by a lack of the lysosomal enzyme α-L-iduronidase (IDUA), responsible for the degradation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate, leading to multisystemic signs and symptoms. Enzyme replacement therapy (ERT) is a treatment that consists of weekly intravenous administrations of laronidase, a recombinant version of IDUA. However, ERT has limited access to certain tissues, such as bone, cartilage, and brain, and laronidase fails to trespass the BBB. In this sense, this study reports the development and characterization of laronidase-loaded liposomes for the treatment of MPS I mice. Liposomal complexes were obtained by the thin film formation method followed by microfluidization. The main characterization results showed mean vesicle size of 103.0 ± 3.3 nm, monodisperse populations of vesicles, zeta potential around + 30.0 ± 2.1 mV, and mucoadhesion strength of 5.69 ± 0.14 mN. Treatment of MPS I mice fibroblasts showed significant increase in enzyme activity. Nasal administration of complexes to MPS I mice resulted in significant increase in laronidase activity in the brain cortex, heart, lungs, kidneys, eyes, and serum. The overall results demonstrate the feasibility of nasal administration of laronidase-loaded liposomes to deliver enzyme in difficult-to-reach tissues, circumventing ERT issues and bringing hope as a potential treatment for MPS I.
Assuntos
Administração Intranasal , Encéfalo , Terapia de Reposição de Enzimas , Iduronidase , Lipossomos , Mucopolissacaridose I , Animais , Iduronidase/administração & dosagem , Mucopolissacaridose I/tratamento farmacológico , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Terapia de Reposição de Enzimas/métodos , Camundongos , Distribuição Tecidual , Fibroblastos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BLRESUMO
Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disease caused by lowered activity of the enzyme alpha-L-iduronidase (IDUA). Current therapeutic options show limited efficacy and do not treat some important aspects of the disease. Therefore, it may be advantageous to identify strategies that could improve the efficacy of existing treatments. Pharmacological chaperones are small molecules that protect proteins from degradation, and their use in combination with enzyme replacement therapy (ERT) has been proposed as an alternative therapeutic strategy. Using the SEE-Tx® proprietary computational drug discovery platform, a new allosteric ligand binding cavity in IDUA was identified distal from the active site. Virtual high-throughput screening of approximately 5 million compounds using the SEE-Tx® docking platform identified a subset of small molecules that bound to the druggable cavity and functioned as novel allosteric chaperones of IDUA. Experimental validation by differential scanning fluorimetry showed an overall hit rate of 11.4%. Biophysical studies showed that one exemplary hit molecule GT-01803 bound to (Kd = 22 µM) and stabilized recombinant human IDUA (rhIDUA) in a dose-dependent manner. Co-administration of rhIDUA and GT-01803 increased IDUA activity in patient-derived fibroblasts. Preliminary in vivo studies have shown that GT-01803 improved the pharmacokinetic (PK) profile of rhIDUA, increasing plasma levels in a dose-dependent manner. Furthermore, GT-01803 also increased IDUA enzymatic activity in bone marrow tissue, which benefits least from standard ERT. Oral bioavailability of GT-01803 was found to be good (50%). Overall, the discovery and validation of a novel allosteric chaperone for rhIDUA presents a promising strategy to enhance the efficacy of existing treatments for MPS I. The compound's ability to increase rhIDUA activity in patient-derived fibroblasts and its good oral bioavailability underscore its potential as a potent adjunct to ERT, particularly for addressing aspects of the disease less responsive to standard treatment.
Assuntos
Iduronidase , Mucopolissacaridose I , Iduronidase/metabolismo , Iduronidase/genética , Mucopolissacaridose I/tratamento farmacológico , Humanos , Regulação Alostérica/efeitos dos fármacos , Animais , Camundongos , Terapia de Reposição de Enzimas/métodos , Descoberta de Drogas , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Estabilidade Enzimática , Simulação de Acoplamento MolecularRESUMO
Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.
Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Íntrons , Células Mieloides , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Transgenes , Animais , Edição de Genes/métodos , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Mieloides/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Diferenciação Celular/genética , Terapia Genética/métodos , Iduronidase/genética , Iduronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Expressão Gênica , Linhagem da Célula/genética , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/genéticaRESUMO
Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.
Assuntos
Disostoses , Mucopolissacaridose I , Animais , Humanos , Criança , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Mucopolissacaridose I/terapia , Iduronidase/genética , Iduronidase/metabolismo , Medula Óssea/patologia , Reprodutibilidade dos TestesRESUMO
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.
Assuntos
Mucopolissacaridose I , Feminino , Camundongos , Animais , Mucopolissacaridose I/tratamento farmacológico , Iduronidase/uso terapêutico , Genisteína/farmacologia , Genisteína/uso terapêutico , Encéfalo , Barreira Hematoencefálica , Glicosaminoglicanos/uso terapêutico , Trombina/uso terapêutico , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodosRESUMO
Mucopolysaccharidosis type I (MPS I) causes systemic accumulation of glycosaminoglycans due to a genetic deficiency of α-L-iduronidase (IDUA), which results in progressive systemic symptoms affecting multiple organs, including the central nervous system (CNS). Because the blood-brain barrier (BBB) prevents enzymes from reaching the brain, enzyme replacement therapy is effective only against the somatic symptoms. Hematopoietic stem cell transplantation can address the CNS symptoms, but the risk of complications limits its applicability. We have developed a novel genetically modified protein consisting of IDUA fused with humanized anti-human transferrin receptor antibody (lepunafusp alfa; JR-171), which has been shown in nonclinical studies to be distributed to major organs, including the brain, bringing about systemic reductions in heparan sulfate (HS) and dermatan sulfate concentrations. Subsequently, a first-in-human study was conducted to evaluate the safety, pharmacokinetics, and exploratory efficacy of JR-171 in 18 patients with MPS I. No notable safety issues were observed. Plasma drug concentration increased dose dependently and reached its maximum approximately 4 h after the end of drug administration. Decreased HS in the cerebrospinal fluid suggested successful delivery of JR-171 across the BBB, while suppressed urine and serum concentrations of the substrates indicated that its somatic efficacy was comparable to that of laronidase.
Assuntos
Mucopolissacaridose I , Humanos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/tratamento farmacológico , Iduronidase/efeitos adversos , Iduronidase/genética , Iduronidase/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/genética , Heparitina Sulfato/metabolismoRESUMO
This study was designed to screen 6 lysosomal storage diseases (LSDs) in neonates using tandem mass spectrometry (MS/MS), and establish cutoff values for these LSDs with 3000 dried blood spots (DBS) samples. Cutoff values for α-L-iduronidase (IDUA), α-galactosidase (GLA), acid beta glucosidase (ABG), ß-galactocerebrosidase (GALC), acid sphingomyelinase (ASM), and acid alpha glucosidase (GAA) were as follows: GLA, > 2.06 µmol/L·h; ABG, > 1.78 µmol/L·h; ASM, > 0.99 µmol/L·h; IDUA, > 1.33 µmol/L·h; GALC, > 0.84 µmol/L·h; and GAA, > 2.06 µmol/L·h. There were 30 positives in initial MS/MS screening test, and 15 samples were still positive with repeat testing. Their parents/guardians were recontacted and DBS samples were collected again for test. Only 1 child showed abnormal GAA enzyme activity after recontacting process, and was diagnosed with Pompe disease after genetic screening. Eventually, cutoff values of 6 specific enzyme activities were established and MS/MS is effective for early LSDs screening.
Assuntos
Doenças por Armazenamento dos Lisossomos , Triagem Neonatal , Espectrometria de Massas em Tandem , alfa-Glucosidases , Humanos , Espectrometria de Massas em Tandem/métodos , Recém-Nascido , Triagem Neonatal/métodos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/sangue , alfa-Glucosidases/sangue , alfa-Glucosidases/análise , Feminino , alfa-Galactosidase/sangue , alfa-Galactosidase/análise , Masculino , Teste em Amostras de Sangue Seco/métodos , Iduronidase/sangue , Iduronidase/análise , Galactosilceramidase/sangue , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/análiseRESUMO
A crucial design feature for the therapeutic success of antibody-drug conjugates (ADCs) is the linker that connects the antibody with the drug. Linkers must be stable in circulation and efficiently release the drug inside the target cell, thereby having a fundamental impact on ADC pharmacokinetics and efficacy. The variety of enzymatically cleavable linkers applied in ADCs is limited, and some are believed to be associated with unwanted side effects due to the expression of cleavage-mediating enzymes in nonmalignant cells. Based on a bioinformatic screen of lysosomal enzymes, we identified α-l-iduronidase (IduA) as an interesting candidate for ADC linker cleavage because of its low expression in normal tissues and its overexpression in several tumor types. In the present study, we report a novel IduA-cleavable ADC linker using exatecan and duocarmycin as payloads. We showed the functionality of our linker system in cleavage assays using recombinant IduA or cell lysates and compared it to established ADC linkers. Subsequently, we coupled iduronide-exatecan via interchain cysteines or iduronide-duocarmycin via microbial transglutaminase (mTG) to an anti-CEACAM5 (aCEA5) antibody. The generated iduronide-exatecan ADC showed high serum stability and similar target-dependent tumor cell killing in the subnanomolar range but reduced toxicity on nonmalignant cells compared to an analogous cathepsin B-activatable valine-citrulline-exatecan ADC. Finally, in vivo antitumor activity could be demonstrated for an IduA-cleavable duocarmycin ADC. The presented results emphasize the potential of iduronide linkers for ADC development and represent a tool for further balancing out tumor selectivity and safety.
Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Iduronidase , Duocarmicinas , Anticorpos Monoclonais , Linhagem Celular TumoralRESUMO
OBJECTIVE: To report on the first 3 years of mucopolysaccharidosis type I (MPS I) newborn screening (NBS) in the large and diverse state of California. STUDY DESIGN: The California Genetic Disease Screening Program began universal NBS for MPS I on August 29, 2018. The screening uses a 2-tiered approach: an α-L-iduronidase (IDUA) enzyme activity assay followed by DNA sequencing for variants in the IDUA gene. RESULTS: As of August 29, 2021, 1â295â515 California newborns were screened for MPS I. In tier 1 of screening, 329 (0.025%) had an IDUA enzyme measurement below the cutoff and underwent tier-2 IDUA DNA sequencing. After tier 2, 146 (0.011%) newborns were screen positive, all of whom were referred to a metabolic Special Care Center for follow-up. After long-term follow-up, 7 cases were resolved as severe MPS I (Hurler syndrome) and 2 cases as attenuated MPS I for an MPS I birth prevalence of 1/143â946. DNA sequencing identified 107 unique IDUA variants among a total of 524 variants; 65% were known pseudodeficiency alleles, 25% were variants of uncertain significance, and 10% were pathogenic variants. CONCLUSIONS: As a result of a 2-tiered NBS approach, 7 newborns diagnosed with Hurler syndrome had received early treatment for MPS I. Continuation of California's long-term follow-up program will be crucial for further understanding the complex genotype-phenotype relationships of MPS I.
Assuntos
Mucopolissacaridose I , Humanos , Recém-Nascido , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/genética , Triagem Neonatal , Iduronidase/genética , Testes Genéticos , AlelosRESUMO
Mucopolysaccharidosis Type I (MPSI) is a rare inherited lysosomal storage disease that arises due to mutations in the IDUA gene. Defective alpha-L-iduronidase (IDUA) enzyme is unable to break down glucosaminoglycans (GAGs) within the lysosomes and, as a result, there is systemic accumulation of undegraded products in lysosomes throughout the body leading to multi-system disease. Here, we characterised the skeletal/craniofacial, neuromuscular and behavioural outcomes of the MPSI Idua-W392X mouse model. We demonstrate that Idua-W392X mice have gross craniofacial abnormalities, showed signs of kyphosis, and show signs of hypoactivity compared to wild-type mice. X-ray imaging analysis revealed significantly shorter and wider tibias and femurs, significantly wider snouts, increased skull width and significantly thicker zygomatic arch bones in Idua-W392X female mice compared to wild-type mice at 9 and 10.5 months of age. Idua-W392X mice display decreased muscle strength, especially in the forelimbs, which is already apparent from 3 months of age. Female Idua-W392X mice display hypoactivity in the open-field test from 9 months of age and anxiety-like behaviour at 10 months of age. As these behaviours have been identified in Hurler children, the MPSI Idua-W392X mouse model may be important for the investigation of new therapeutic approaches for MPSI-Hurler.
Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose I , Criança , Camundongos , Feminino , Humanos , Animais , Mucopolissacaridose I/terapia , Iduronidase/genética , Iduronidase/uso terapêutico , Fenótipo , AnsiedadeRESUMO
Mucopolysaccharidoses (MPS) are a group of rare congenital metabolic disorders caused by the deficiency or low activity of enzymes required for glycosaminoglycans degradation. Mutations in the α-l-iduronidase gene (IDUA) are associated with mucopolysaccharidosis type I (MPS I). Our study here aims to identify an MPS-related gene mutation in a typical patient with MPS and to further explore the possible pathogenic mechanism. We identified a homozygous c. 2T>C (p.M1T) change in IDUA as the pathogenic mutation in this individual (both parents were identified as carriers of the mutation), with IDUA enzyme activity significantly decreased. We further established an MPS I-related zebrafish model using IDUA-specific morpholino (MO) to suppress gene expression, and found that IDUA-MO zebrafish exhibited characteristic disease phenotypes with deficiency of IDUA. Transcriptome profiling of zebrafish larvae revealed 487 genes that were significantly altered when IDUA was depleted. TP53 signaling and LC3/GABARAP family protein-mediated autophagy were significantly upregulated in IDUA-MO zebrafish larvae. Moreover, leukotriene A4 hydrolase-mediated arachidonic acid metabolism was also upregulated. Introduction of wild-type human IDUA mRNA rescued developmental defects and aberrant signaling in IDUA-MO zebrafish larvae. In conclusion, our study provides potential therapeutic targets for the treatment of MPS I.
Assuntos
Mucopolissacaridose I , Animais , Humanos , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Iduronidase/genética , Iduronidase/metabolismo , Peixe-Zebra/genética , População do Leste Asiático , MutaçãoRESUMO
Mucopolysaccharidosis I-Hurler (MPS I-H) is caused by the loss of α-L-iduronidase, a lysosomal enzyme that degrades glycosaminoglycans. Current therapies cannot treat many MPS I-H manifestations. In this study, triamterene, an FDA-approved, antihypertensive diuretic, was found to suppress translation termination at a nonsense mutation associated with MPS I-H. Triamterene rescued enough α-L-iduronidase function to normalize glycosaminoglycan storage in cell and animal models. This new function of triamterene operates through premature termination codon (PTC) dependent mechanisms that are unaffected by epithelial sodium channel activity, the target of triamterene's diuretic function. Triamterene represents a potential non-invasive treatment for MPS I-H patients carrying a PTC.
Assuntos
Mucopolissacaridose I , Animais , Mucopolissacaridose I/genética , Iduronidase , Triantereno , Códon sem Sentido , Diuréticos , Glicosaminoglicanos/metabolismoRESUMO
Mucopolysaccharidosis type I (MPS I) is a rare lysosomal storage disease caused by α-L-iduronidase enzyme deficiency, resulting in glycosaminoglycan (GAG) accumulation in various cell types, including ocular tissues. Ocular manifestations in humans are common with significant pathological changes including corneal opacification, retinopathy, optic nerve swelling and atrophy, and glaucoma. Available treatments for MPS I are suboptimal and there is limited to no effect in treating the ocular disease. The goal of this study was to characterize the clinical and pathological features of ocular disease in a line of MPS I affected dogs, including changes not previously reported. A total of 22 dogs were studied; 12 MPS I were affected and 10 were unaffected. A subset of each underwent complete ophthalmic examination including slit lamp biomicroscopy, indirect ophthalmoscopy, rebound tonometry, and ultrasonic pachymetry. Globes were evaluated microscopically for morphological changes and GAG accumulation. Clinical corneal abnormalities in affected dogs included edema, neovascularization, fibrosis, and marked stromal thickening. Intraocular pressures were within reference interval for affected and unaffected dogs. Microscopically, vacuolated cells containing alcian blue positive inclusions were detected within the corneal stroma, iris, ciliary body, sclera, and optic nerve meninges of affected dogs. Ganglioside accumulation was identified by luxol fast blue staining in rare retinal ganglion cells. Increased lysosomal integral membrane protein-2 expression was demonstrated within the retina of affected animals when compared to unaffected controls. Results of this study further characterize ocular pathology in the canine model of MPS I and provide foundational data for future therapeutic efficacy studies.
Assuntos
Oftalmopatias , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose I , Doenças Retinianas , Humanos , Cães , Animais , Mucopolissacaridose I/terapia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Glicosaminoglicanos/metabolismo , Iduronidase/uso terapêuticoRESUMO
Synthesis of a series of l-iduronic acid (IdoA)- and imino-IdoA-typed C-glycosides for modulating α-l-iduronidase (IDUA) activity is described. In an enzyme inhibition study, IdoA-typed C-glycosides were more potent than imino-IdoA analogs, with the most potent IdoA-typed C-glycoside 27c showing an IC50 value of 1 µM. On the other hand, co-treatment of 12 with rh-α-IDUA in mucopolysaccharidosis type I (MPS I) fibroblasts exhibited a nearly 3-fold increase of the IDUA activity, resulting in a clear reduction of the accumulated heparan sulfate (HS) compared to the exogenous enzyme treatment alone. This is the first report of small molecules facilitating IDUA stabilization, enhancing enzyme activity, and reducing accumulated HS in MPS I cell-based assays, which reveals that small molecules as rh-α-IDUA stabilizers to improve enzyme replacement therapy (ERT) efficacy toward MPS I is feasible and promising.
Assuntos
Mucopolissacaridose I , Humanos , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Iduronidase/farmacologia , Iduronidase/metabolismo , Heparitina Sulfato/farmacologia , Fibroblastos/metabolismo , GlicosídeosRESUMO
The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.