Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.026
Filtrar
1.
Methods Mol Biol ; 2813: 167-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888778

RESUMO

Quantification of Mycobacterium tuberculosis (Mtb) growth dynamics in cell-based in vitro infection models is traditionally carried out by measurement of colony forming units (CFU). However, Mtb being an extremely slow growing organism (16-24 h doubling time), this approach requires at least 3 weeks of incubation to obtain measurable readouts. In this chapter, we describe an alternative approach based on time-lapse microscopy and quantitative image analysis that allows faster quantification of Mtb growth dynamics in host cells. In addition, this approach provides the capability to capture other readouts from the same experimental setup, such as host cell viability, bacterial localization as well as the dynamics of propagation of infection between the host cells.


Assuntos
Microscopia de Fluorescência , Mycobacterium tuberculosis , Imagem com Lapso de Tempo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Microscopia de Fluorescência/métodos , Humanos , Tuberculose/microbiologia , Processamento de Imagem Assistida por Computador/métodos , Interações Hospedeiro-Patógeno
2.
Sci Rep ; 14(1): 12664, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830985

RESUMO

Arabidopsis root is a classic model system in plant cell and molecular biology. The sensitivity of plant roots to local environmental perturbation challenges data reproducibility and incentivizes further optimization of imaging and phenotyping tools. Here we present RoPod, an easy-to-use toolkit for low-stress live time-lapse imaging of Arabidopsis roots. RoPod comprises a dedicated protocol for plant cultivation and a customizable 3D-printed vessel with integrated microscopy-grade glass that serves simultaneously as a growth and imaging chamber. RoPod reduces impact of sample handling, preserves live samples for prolonged imaging sessions, and facilitates application of treatments during image acquisition. We describe a protocol for RoPods fabrication and provide illustrative application pipelines for monitoring root hair growth and autophagic activity. Furthermore, we showcase how the use of RoPods advanced our understanding of plant autophagy, a major catabolic pathway and a key player in plant fitness. Specifically, we obtained fine time resolution for autophagy response to commonly used chemical modulators of the pathway and revealed previously overlooked cell type-specific changes in the autophagy response. These results will aid a deeper understanding of the physiological role of autophagy and provide valuable guidelines for choosing sampling time during end-point assays currently employed in plant autophagy research.


Assuntos
Arabidopsis , Autofagia , Raízes de Plantas , Imagem com Lapso de Tempo/métodos
3.
Nat Commun ; 15(1): 3918, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724524

RESUMO

Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.


Assuntos
Hibridização in Situ Fluorescente , Células-Tronco Embrionárias Murinas , RNA Mensageiro , Animais , Hibridização in Situ Fluorescente/métodos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Perfilação da Expressão Gênica/métodos , Diferenciação Celular
4.
Methods Mol Biol ; 2800: 203-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709486

RESUMO

Cell tracking is an essential step in extracting cellular signals from moving cells, which is vital for understanding the mechanisms underlying various biological functions and processes, particularly in organs such as the brain and heart. However, cells in living organisms often exhibit extensive and complex movements caused by organ deformation and whole-body motion. These movements pose a challenge in obtaining high-quality time-lapse cell images and tracking the intricate cell movements in the captured images. Recent advances in deep learning techniques provide powerful tools for detecting cells in low-quality images with densely packed cell populations, as well as estimating cell positions for cells undergoing large nonrigid movements. This chapter introduces the challenges of cell tracking in deforming organs and moving animals, outlines the solutions to these challenges, and presents a detailed protocol for data preparation, as well as for performing cell segmentation and tracking using the latest version of 3DeeCellTracker. This protocol is expected to enable researchers to gain deeper insights into organ dynamics and biological processes.


Assuntos
Rastreamento de Células , Aprendizado Profundo , Animais , Rastreamento de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento Celular , Encéfalo/citologia , Imagem com Lapso de Tempo/métodos
5.
Biol Reprod ; 110(6): 1115-1124, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38685607

RESUMO

Time-lapse microscopy for embryos is a non-invasive technology used to characterize early embryo development. This study employs time-lapse microscopy and machine learning to elucidate changes in embryonic growth kinetics with maternal aging. We analyzed morphokinetic parameters of embryos from young and aged C57BL6/NJ mice via continuous imaging. Our findings show that aged embryos accelerated through cleavage stages (from 5-cells) to morula compared to younger counterparts, with no significant differences observed in later stages of blastulation. Unsupervised machine learning identified two distinct clusters comprising of embryos from aged or young donors. Moreover, in supervised learning, the extreme gradient boosting algorithm successfully predicted the age-related phenotype with 0.78 accuracy, 0.81 precision, and 0.83 recall following hyperparameter tuning. These results highlight two main scientific insights: maternal aging affects embryonic development pace, and artificial intelligence can differentiate between embryos from aged and young maternal mice by a non-invasive approach. Thus, machine learning can be used to identify morphokinetics phenotypes for further studies. This study has potential for future applications in selecting human embryos for embryo transfer, without or in complement with preimplantation genetic testing.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Imagem com Lapso de Tempo , Animais , Camundongos , Imagem com Lapso de Tempo/métodos , Feminino , Desenvolvimento Embrionário/fisiologia , Embrião de Mamíferos/diagnóstico por imagem , Envelhecimento , Gravidez
6.
Hum Reprod ; 39(6): 1197-1207, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38600621

RESUMO

STUDY QUESTION: Can generative artificial intelligence (AI) models produce high-fidelity images of human blastocysts? SUMMARY ANSWER: Generative AI models exhibit the capability to generate high-fidelity human blastocyst images, thereby providing substantial training datasets crucial for the development of robust AI models. WHAT IS KNOWN ALREADY: The integration of AI into IVF procedures holds the potential to enhance objectivity and automate embryo selection for transfer. However, the effectiveness of AI is limited by data scarcity and ethical concerns related to patient data privacy. Generative adversarial networks (GAN) have emerged as a promising approach to alleviate data limitations by generating synthetic data that closely approximate real images. STUDY DESIGN, SIZE, DURATION: Blastocyst images were included as training data from a public dataset of time-lapse microscopy (TLM) videos (n = 136). A style-based GAN was fine-tuned as the generative model. PARTICIPANTS/MATERIALS, SETTING, METHODS: We curated a total of 972 blastocyst images as training data, where frames were captured within the time window of 110-120 h post-insemination at 1-h intervals from TLM videos. We configured the style-based GAN model with data augmentation (AUG) and pretrained weights (Pretrained-T: with translation equivariance; Pretrained-R: with translation and rotation equivariance) to compare their optimization on image synthesis. We then applied quantitative metrics including Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) to assess the quality and fidelity of the generated images. Subsequently, we evaluated qualitative performance by measuring the intelligence behavior of the model through the visual Turing test. To this end, 60 individuals with diverse backgrounds and expertise in clinical embryology and IVF evaluated the quality of synthetic embryo images. MAIN RESULTS AND THE ROLE OF CHANCE: During the training process, we observed consistent improvement of image quality that was measured by FID and KID scores. Pretrained and AUG + Pretrained initiated with remarkably lower FID and KID values compared to both Baseline and AUG + Baseline models. Following 5000 training iterations, the AUG + Pretrained-R model showed the highest performance of the evaluated five configurations with FID and KID scores of 15.2 and 0.004, respectively. Subsequently, we carried out the visual Turing test, such that IVF embryologists, IVF laboratory technicians, and non-experts evaluated the synthetic blastocyst-stage embryo images and obtained similar performance in specificity with marginal differences in accuracy and sensitivity. LIMITATIONS, REASONS FOR CAUTION: In this study, we primarily focused the training data on blastocyst images as IVF embryos are primarily assessed in blastocyst stage. However, generation of an array of images in different preimplantation stages offers further insights into the development of preimplantation embryos and IVF success. In addition, we resized training images to a resolution of 256 × 256 pixels to moderate the computational costs of training the style-based GAN models. Further research is needed to involve a more extensive and diverse dataset from the formation of the zygote to the blastocyst stage, e.g. video generation, and the use of improved image resolution to facilitate the development of comprehensive AI algorithms and to produce higher-quality images. WIDER IMPLICATIONS OF THE FINDINGS: Generative AI models hold promising potential in generating high-fidelity human blastocyst images, which allows the development of robust AI models as it can provide sufficient training datasets while safeguarding patient data privacy. Additionally, this may help to produce sufficient embryo imaging training data with different (rare) abnormal features, such as embryonic arrest, tripolar cell division to avoid class imbalances and reach to even datasets. Thus, generative models may offer a compelling opportunity to transform embryo selection procedures and substantially enhance IVF outcomes. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Horizon 2020 innovation grant (ERIN, grant no. EU952516) and a Horizon Europe grant (NESTOR, grant no. 101120075) of the European Commission to A.S. and M.Z.E., the Estonian Research Council (grant no. PRG1076) to A.S., and the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) to M.Z.E. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Inteligência Artificial , Blastocisto , Humanos , Imagem com Lapso de Tempo/métodos , Processamento de Imagem Assistida por Computador/métodos , Fertilização in vitro/métodos , Feminino
7.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526071

RESUMO

During the development of the cerebral cortex, neurons and glial cells originate in the ventricular zone lining the ventricle and migrate toward the brain surface. This process is crucial for proper brain function, and its dysregulation can result in neurodevelopmental and psychiatric disorders after birth. In fact, many genes responsible for these diseases have been found to be involved in this process, and therefore, revealing how these mutations affect cellular dynamics is important for understanding the pathogenesis of these diseases. This protocol introduces a technique for time-lapse imaging of migrating neurons and glial progenitors in brain slices obtained from mouse embryos. Cells are labeled with fluorescent proteins using in utero electroporation, which visualizes individual cells migrating from the ventricular zone with a high signal-to-noise ratio. Moreover, this in vivo gene transfer system enables us to easily perform gain-of-function or loss-of-function experiments on the given genes by co-electroporation of their expression or knockdown/knockout vectors. Using this protocol, the migratory behavior and migration speed of individual cells, information that is never obtained from fixed brains, can be analyzed.


Assuntos
Neuroglia , Neurônios , Humanos , Animais , Camundongos , Imagem com Lapso de Tempo/métodos , Movimento Celular/fisiologia , Neurônios/fisiologia , Encéfalo , Córtex Cerebral , Eletroporação/métodos
8.
J Ovarian Res ; 17(1): 63, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491534

RESUMO

BACKGROUND: Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) methods were developed in order to assist embryologists with automatized and objective predictive models able to standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify relevant patterns associated with the prediction of blastocyst development stage on day 5. METHODS: We retrospectively analysed the morphokinetics of 575 embryos obtained from 80 women who underwent IVF at our Unit. Embryo morphokinetics was registered using the Geri plus® time-lapse system. Overall, 30 clinical, morphological and morphokinetic variables related to women and embryos were recorded and combined. Some embryos reached the expanded blastocyst stage on day 5 (BL Group, n = 210), some others did not (nBL Group, n = 365). RESULTS: The novel EmbryoMLSelection framework was developed following four-steps: Feature Selection, Rules Extraction, Rules Selection and Rules Evaluation. Six rules composed by a combination of 8 variables were finally selected, and provided a predictive power described by an AUC of 0.84 and an accuracy of 81%. CONCLUSIONS: We provided herein a new feature-signature able to identify with an high performance embryos with the best developmental competence to reach the expanded blastocyst stage on day 5. Clear and clinically relevant cut-offs were identified for each considered variable, providing an objective tool for early embryo developmental assessment.


Assuntos
Inteligência Artificial , Desenvolvimento Embrionário , Feminino , Humanos , Estudos Retrospectivos , Blastocisto , Aprendizado de Máquina , Técnicas de Cultura Embrionária/métodos , Imagem com Lapso de Tempo/métodos
9.
J Assist Reprod Genet ; 41(4): 967-978, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470553

RESUMO

PURPOSE: To study the effectiveness of whole-scenario embryo identification using a self-supervised learning encoder (WISE) in in vitro fertilization (IVF) on time-lapse, cross-device, and cryo-thawed scenarios. METHODS: WISE was based on the vision transformer (ViT) architecture and masked autoencoders (MAE), a self-supervised learning (SSL) method. To train WISE, we prepared three datasets including the SSL pre-training dataset, the time-lapse identification dataset, and the cross-device identification dataset. To identify whether pairs of images were from the same embryos in different scenarios in the downstream identification tasks, embryo images including time-lapse and microscope images were first pre-processed through object detection, cropping, padding, and resizing, and then fed into WISE to get predictions. RESULTS: WISE could accurately identify embryos in the three scenarios. The accuracy was 99.89% on the time-lapse identification dataset, and 83.55% on the cross-device identification dataset. Besides, we subdivided a cryo-thawed evaluation set from the cross-device test set to have a better estimation of how WISE performs in the real-world, and it reached an accuracy of 82.22%. There were approximately 10% improvements in cross-device and cryo-thawed identification tasks after the SSL method was applied. Besides, WISE demonstrated improvements in the accuracy of 9.5%, 12%, and 18% over embryologists in the three scenarios. CONCLUSION: SSL methods can improve embryo identification accuracy even when dealing with cross-device and cryo-thawed paired images. The study is the first to apply SSL in embryo identification, and the results show the promise of WISE for future application in embryo witnessing.


Assuntos
Fertilização in vitro , Imagem com Lapso de Tempo , Humanos , Fertilização in vitro/métodos , Feminino , Imagem com Lapso de Tempo/métodos , Aprendizado de Máquina Supervisionado , Embrião de Mamíferos , Gravidez , Processamento de Imagem Assistida por Computador/métodos , Blastocisto/citologia , Blastocisto/fisiologia , Transferência Embrionária/métodos , Criopreservação/métodos
10.
Nat Methods ; 21(2): 311-321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177507

RESUMO

Time-lapse fluorescence microscopy is key to unraveling biological development and function; however, living systems, by their nature, permit only limited interrogation and contain untapped information that can only be captured by more invasive methods. Deep-tissue live imaging presents a particular challenge owing to the spectral range of live-cell imaging probes/fluorescent proteins, which offer only modest optical penetration into scattering tissues. Herein, we employ convolutional neural networks to augment live-imaging data with deep-tissue images taken on fixed samples. We demonstrate that convolutional neural networks may be used to restore deep-tissue contrast in GFP-based time-lapse imaging using paired final-state datasets acquired using near-infrared dyes, an approach termed InfraRed-mediated Image Restoration (IR2). Notably, the networks are remarkably robust over a wide range of developmental times. We employ IR2 to enhance the information content of green fluorescent protein time-lapse images of zebrafish and Drosophila embryo/larval development and demonstrate its quantitative potential in increasing the fidelity of cell tracking/lineaging in developing pescoids. Thus, IR2 is poised to extend live imaging to depths otherwise inaccessible.


Assuntos
Drosophila , Peixe-Zebra , Animais , Imagem com Lapso de Tempo/métodos , Microscopia de Fluorescência , Proteínas de Fluorescência Verde/genética
11.
Fertil Steril ; 121(5): 730-736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185198

RESUMO

In this review, we take a fresh look at embryo assessment and selection methods from the perspective of diagnosis and prognosis. On the basis of a systematic search in the literature, we examined the evidence on the prognostic value of different embryo assessment methods, including morphological assessment, blastocyst culture, time-lapse imaging, artificial intelligence, and preimplantation genetic testing for aneuploidy.


Assuntos
Técnicas de Cultura Embrionária , Transferência Embrionária , Fertilização in vitro , Diagnóstico Pré-Implantação , Humanos , Fertilização in vitro/métodos , Feminino , Diagnóstico Pré-Implantação/métodos , Gravidez , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária/métodos , Resultado do Tratamento , Imagem com Lapso de Tempo/métodos , Valor Preditivo dos Testes , Infertilidade/terapia , Infertilidade/diagnóstico , Infertilidade/fisiopatologia , Blastocisto , Testes Genéticos/métodos , Aneuploidia , Taxa de Gravidez , Prognóstico
12.
Reprod Biomed Online ; 48(1): 103570, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952277

RESUMO

The Association for the Study of Reproductive Biology (ASEBIR) Interest Group in Embryology (in Spanish 'Grupo de Interés de Embriología') reviewed key morphokinetic parameters to assess the contribution of time-lapse technology (TLT) to the ASEBIR grading system. Embryo grading based on morphological characteristics is the most widely used method in human assisted reproduction laboratories. The introduction and implementation of TLT has provided a large amount of information that can be used as a complementary tool for morphological embryo evaluation and selection. As part of IVF treatments, embryologists grade embryos to decide which embryos to transfer or freeze. At the present, the embryo grading system developed by ASEBIR does not consider dynamic events observed through TLT. Laboratories that are using TLT consider those parameters as complementary data for embryo selection. The aim of this review was to evaluate review time-specific morphological changes during embryo development that are not included in the ASEBIR scoring system, and to consider them as candidates to add to the scoring system.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Humanos , Imagem com Lapso de Tempo/métodos , Transferência Embrionária/métodos , Biologia , Técnicas de Cultura Embrionária , Implantação do Embrião , Fertilização in vitro/métodos , Blastocisto
13.
J Assist Reprod Genet ; 41(2): 239-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37880512

RESUMO

With the rising demand for in vitro fertilization (IVF) cycles, there is a growing need for innovative techniques to optimize procedure outcomes. One such technique is time-lapse system (TLS) for embryo incubation, which minimizes environmental changes in the embryo culture process. TLS also significantly advances predicting embryo quality, a crucial determinant of IVF cycle success. However, the current subjective nature of embryo assessments is due to inter- and intra-observer subjectivity, resulting in highly variable results. To address this challenge, reproductive medicine has gradually turned to artificial intelligence (AI) to establish a standardized and objective approach, aiming to achieve higher success rates. Extensive research is underway investigating the utilization of AI in TLS to predict multiple outcomes. These studies explore the application of popular AI algorithms, their specific implementations, and the achieved advancements in TLS. This review aims to provide an overview of the advances in AI algorithms and their particular applications within the context of TLS and the potential challenges and opportunities for further advancements in reproductive medicine.


Assuntos
Inteligência Artificial , Medicina Reprodutiva , Humanos , Imagem com Lapso de Tempo/métodos , Fertilização in vitro/métodos , Algoritmos
14.
F S Sci ; 5(1): 50-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820865

RESUMO

OBJECTIVE: To evaluate the degree of agreement of embryo ranking between embryologists and eight artificial intelligence (AI) algorithms. DESIGN: Retrospective study. PATIENT(S): A total of 100 cycles with at least eight embryos were selected from the Weill Cornell Medicine database. For each embryo, the full-length time-lapse (TL) videos, as well as a single embryo image at 120 hours, were given to five embryologists and eight AI algorithms for ranking. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Kendall rank correlation coefficient (Kendall's τ). RESULT(S): Embryologists had a high degree of agreement in the overall ranking of 100 cycles with an average Kendall's tau (K-τ) of 0.70, slightly lower than the interembryologist agreement when using a single image or video (average K-τ = 0.78). Overall agreement between embryologists and the AI algorithms was significantly lower (average K-τ = 0.53) and similar to the observed low inter-AI algorithm agreement (average K-τ = 0.47). Notably, two of the eight algorithms had a very low agreement with other ranking methodologies (average K-τ = 0.05) and between each other (K-τ = 0.01). The average agreement in selecting the best-quality embryo (1/8 in 100 cycles with an expected agreement by random chance of 12.5%; confidence interval [CI]95: 6%-19%) was 59.5% among embryologists and 40.3% for six AI algorithms. The incidence of the agreement for the two algorithms with the low overall agreement was 11.7%. Agreement on selecting the same top two embryos/cycle (expected agreement by random chance corresponds to 25.0%; CI95: 17%-32%) was 73.5% among embryologists and 56.0% among AI methods excluding two discordant algorithms, which had an average agreement of 24.4%, the expected range of agreement by random chance. Intraembryologist ranking agreement (single image vs. video) was 71.7% and 77.8% for single and top two embryos, respectively. Analysis of average raw scores indicated that cycles with low diversity of embryo quality generally resulted in a lower overall agreement between the methods (embryologists and AI models). CONCLUSION(S): To our knowledge, this is the first study that evaluates the level of agreement in ranking embryo quality between different AI algorithms and embryologists. The different concordance methods were consistent and indicated that the highest agreement was intraembryologist agreement, followed by interembryologist agreement. In contrast, the agreement between some of the AI algorithms and embryologists was similar to the inter-AI algorithm agreement, which also showed a wide range of pairwise concordance. Specifically, two AI models showed intra- and interagreement at the level expected from random selection.


Assuntos
Inteligência Artificial , Embrião de Mamíferos , Estudos Retrospectivos , Imagem com Lapso de Tempo/métodos , Algoritmos
15.
Sci Rep ; 13(1): 16490, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779165

RESUMO

Manual dish preparation for IVF in human fertility clinics or animal laboratories heavily relies on embryologists' experience, which can lead to occupational illness due to long-term and monotonous operation. Therefore, introducing an automated technique to replace traditional methods is crucial for improving working efficiency and reducing work burden for embryologists. In the current study in the mouse, both manual and automated methods were used to prepare IVF or embryo culture dishes. A one-way analysis of variance was conducted to compare several factors, including preparation time, qualified rates, media osmolality of dishes, fertilization rates, and embryonic development to assess the efficiency and potential of automated preparation. The results showed that automation system significantly reduced the required time and increased the efficiencies and qualified rates of dish preparation, especially for embryo culture dishes, without significantly altering medium osmolalities. There were no significant differences between two preparations in fertilization rates and embryo development in mice. Thus, automated dish preparation can improve working efficiency and qualified rates while maintaining fertilization rates and subsequent embryonic development without compromising osmolality stability of medium. It presents a superior alternative to manual preparation, reducing the workload of embryologists and facilitating the standardization of operational procedures.


Assuntos
Técnicas de Cultura Embrionária , Fertilização in vitro , Humanos , Gravidez , Animais , Feminino , Fertilização in vitro/métodos , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário , Imagem com Lapso de Tempo/métodos , Concentração Osmolar , Meios de Cultura
16.
Sci Data ; 10(1): 677, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794110

RESUMO

Detecting and tracking multiple moving objects in a video is a challenging task. For living cells, the task becomes even more arduous as cells change their morphology over time, can partially overlap, and mitosis leads to new cells. Differently from fluorescence microscopy, label-free techniques can be easily applied to almost all cell lines, reducing sample preparation complexity and phototoxicity. In this study, we present ALFI, a dataset of images and annotations for label-free microscopy, made publicly available to the scientific community, that notably extends the current panorama of expertly labeled data for detection and tracking of cultured living nontransformed and cancer human cells. It consists of 29 time-lapse image sequences from HeLa, U2OS, and hTERT RPE-1 cells under different experimental conditions, acquired by differential interference contrast microscopy, for a total of 237.9 hours. It contains various annotations (pixel-wise segmentation masks, object-wise bounding boxes, tracking information). The dataset is useful for testing and comparing methods for identifying interphase and mitotic events and reconstructing their lineage, and for discriminating different cellular phenotypes.


Assuntos
Ciclo Celular , Rastreamento de Células , Imagem com Lapso de Tempo , Humanos , Rastreamento de Células/métodos , Células HeLa , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem com Lapso de Tempo/métodos
17.
J Obstet Gynaecol Res ; 49(12): 2792-2803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778750

RESUMO

AIM: To explore the effect of embryo selection using the time-lapse monitoring (TLM) system compared with conventional morphological selection (CMS) on in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes. METHODS: We searched PubMed, Ovid-Embase, and The Cochrane Library for the following studies: At Comparison 1, embryo selection using TLM images in a TLM incubator based on morphology versus embryo selection using CMS in a conventional incubator based on morphology; at Comparison 2, embryo selection using TLM based on morphokinetics versus embryo selection using CMS based on morphology. The primary outcomes were the live birth rate (LBR), ongoing pregnancy rate (OPR), clinical pregnancy rate (CPR), and implantation rate (IR), and the secondary outcome was the miscarriage rate (MR). RESULTS: A total of 14 randomized control trials (RCTs) were included. Both based on morphology, TLM incubators increased the IR (risk ratio [RR]: 1.10; 95% confidence interval [CI]: 1.01, 1.18; I2 = 0%, moderate-quality evidence) compared to conventional incubators. Low- to moderate-quality evidence suggests that TLM incubators did not improve LBR, OPR, CPR, and MR compared to conventional incubators. In addition, low- to moderate-quality evidence indicates that embryo selection using TLM based on morphokinetics did not improve LBR, OPR, CPR, IR, or MR compared to CMS based on morphology. CONCLUSIONS: Low- to moderate-quality evidence suggests that neither TLM incubators nor embryo selection using TLM based on morphokinetics improved clinical outcomes (LBR, OPR, CPR, and MR) compared with CMS based on morphology. TLM is still an investigational procedure for IVF/ICSI practice.


Assuntos
Aborto Espontâneo , Injeções de Esperma Intracitoplásmicas , Gravidez , Feminino , Humanos , Taxa de Gravidez , Imagem com Lapso de Tempo/métodos , Nascido Vivo , Fertilização in vitro
18.
Biol Reprod ; 109(6): 812-820, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37688580

RESUMO

Embryo morphokinetic analysis through time-lapse embryo imaging is envisioned as a method to improve selection of developmentally competent embryos. Morphokinetic analysis could be utilized to evaluate the effects of experimental manipulation on pre-implantation embryo development. The objectives of this study were to establish a normative morphokinetic database for in vitro fertilized rhesus macaque embryos and to assess the impact of atypical initial cleavage patterns on subsequent embryo development and formation of embryo outgrowths. The cleavage pattern and the timing of embryo developmental events were annotated retrospectively for unmanipulated in vitro fertilized rhesus macaque blastocysts produced over four breeding seasons. Approximately 50% of the blastocysts analyzed had an abnormal early cleavage event. The time to the initiation of embryo compaction and the time to completion of hatching was significantly delayed in blastocysts with an abnormal early cleavage event compared to blastocysts that had cleaved normally. Embryo hatching, attachment to an extracellular matrix, and growth during the implantation stage in vitro was not impacted by the initial cleavage pattern. These data establish normative morphokinetic parameters for in vitro fertilized rhesus macaque embryos and suggest that cleavage anomalies may not impact embryo implantation rates following embryo transfer.


Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Animais , Macaca mulatta , Estudos Retrospectivos , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Embrião de Mamíferos , Implantação do Embrião , Blastocisto , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura Embrionária/veterinária , Técnicas de Cultura Embrionária/métodos
19.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37773981

RESUMO

MOTIVATION: Reliable label-free methods are needed for detecting and profiling apoptotic events in time-lapse cell-cell interaction assays. Prior studies relied on fluorescent markers of apoptosis, e.g. Annexin-V, that provide an inconsistent and late indication of apoptotic onset for human melanoma cells. Our motivation is to improve the detection of apoptosis by directly detecting apoptotic bodies in a label-free manner. RESULTS: Our trained ResNet50 network identified nanowells containing apoptotic bodies with 92% accuracy and predicted the onset of apoptosis with an error of one frame (5 min/frame). Our apoptotic body segmentation yielded an IoU accuracy of 75%, allowing associative identification of apoptotic cells. Our method detected apoptosis events, 70% of which were not detected by Annexin-V staining. AVAILABILITY AND IMPLEMENTATION: Open-source code and sample data provided at https://github.com/kwu14victor/ApoBDproject.


Assuntos
Vesículas Extracelulares , Redes Neurais de Computação , Humanos , Microscopia de Vídeo , Imagem com Lapso de Tempo/métodos , Anexinas
20.
Cell Rep Methods ; 3(6): 100500, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426758

RESUMO

Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of fundamental cellular processes at the single-cell level with high temporal resolution. Successful application of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individual cells over several time points. However, segmentation and tracking of single cells remain challenging for the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging modalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model, termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-contrast live microscopy images with higher precision than existing models. We showcase the application of DeepSea by analyzing cell size regulation in embryonic stem cells.


Assuntos
Aprendizado Profundo , Microscopia , Imagem com Lapso de Tempo/métodos , Microscopia de Contraste de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA