RESUMO
Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dosedependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dosedependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcriptionquantitative PCR (RTqPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dosedependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dosedependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dosedependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKIinduced cardiotoxicities.
Assuntos
Cardiotoxicidade , Mesilato de Imatinib , Imidazóis , Miócitos Cardíacos , Piridazinas , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Imidazóis/toxicidade , Piridazinas/efeitos adversos , Piridazinas/farmacologia , Piridazinas/toxicidade , Mesilato de Imatinib/toxicidade , Mesilato de Imatinib/efeitos adversos , Mesilato de Imatinib/farmacologia , Cardiotoxicidade/etiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular , Peptídeo Natriurético Encefálico/metabolismo , Peptídeo Natriurético Encefálico/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , RatosRESUMO
Neonicotinoids are ubiquitous in global surface waters and pose a significant risk to aquatic organisms. However, information is lacking on the variations in sensitivity of organisms at different developmental stages to the neurotoxic neonicotinoids. We established a spectrum of toxicity to zebrafish embryos at four neurodevelopmental stages (1, 3, 6, and 8 h post fertilization [hpf]) and dechorionated embryos at 6 hpf based on external and internal exposure to imidacloprid as a representative neonicotinoid. Embryos at the gastrula stage (6 and 8 hpf) were more sensitive to imidacloprid than embryos at earlier developmental stages. Dechorionated embryos were more sensitive to imidacloprid than embryos with a chorion, suggesting that the chorion offers protection against pollutants. Nine sublethal effects were induced by imidacloprid exposure, among which uninflated swim bladder (USB) was the most sensitive. Water depth and air availability in the exposure chambers were critical factors influencing the occurrence of USB in zebrafish larvae. Internal residues of metabolites accounted for <10% of imidacloprid, indicating that imidacloprid was metabolized in a limited fashion in the embryos. In addition, acute toxicity of the main metabolite 5-hydroxy-imidacloprid was significantly lower than that of imidacloprid, indicating that the observed toxicity in embryos exposed to imidacloprid was mainly induced by the parent compound. Our research offers a fresh perspective on choosing the initial exposure time in zebrafish embryo toxicity tests, particularly for neurotoxicants. Environ Toxicol Chem 2024;43:2398-2408. © 2024 SETAC.
Assuntos
Embrião não Mamífero , Inseticidas , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Imidazóis/toxicidadeRESUMO
Global sensitivity analysis combined with quantitative high-throughput screening (GSA-qHTS) uses random starting points of the trajectories in mixture design, which may lead to potential contingency and a lack of representativeness. Moreover, a scenario in which all factor levels were at stimulatory effects was not considered, thereby hindering a comprehensive understanding of GSA-qHTS. Accordingly, this study innovatively introduced an optimised experimental design, uniform design (UD), to generate non-random and representative sample points with smaller uniformity deviation as starting points of multiple trajectories. By combining UD with the previously optimised one-factor-at-a-time (OAT) method, a novel mixture design method was developed (UD-OAT). The single toxicity tests showed that three pyridinium and five imidazolium ionic liquids (ILs) exerted stimulatory effects on Vibrio qinghaiensis sp.-Q67; thus, four stimulatory effective concentrations of each IL were selected as factor levels. The UD-OAT generated 108 mixture samples with equal frequency and without repetition. High-throughput microplate toxicity analysis revealed that all 108 mixtures exhibited inhibitory effects. Among these, type B mixtures exhibited increasing toxicities that subsequently decreased, unlike type C mixtures, which consistently increased over time. GSA successfully identified three of the eight ILs as important factors influencing the toxicities of the mixtures. When individual ILs produced stimulatory effects, mixtures containing two to three ILs exhibited either stimulatory effects or none. In contrast, mixtures containing five to eight ILs exhibited inhibitory effects, while those containing four ILs showed a transition from stimulatory to inhibitory effects. This study provides a novel mixture design method for studying mixture toxicity and fills the application gap of GSA-qHTS. The phenomenon of individuals being beneficial while mixtures can be harmful challenges traditional mixture risk assessments.
Assuntos
Ensaios de Triagem em Larga Escala , Líquidos Iônicos , Testes de Toxicidade , Vibrio , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Testes de Toxicidade/métodos , Ensaios de Triagem em Larga Escala/métodos , Vibrio/efeitos dos fármacos , Projetos de Pesquisa , Imidazóis/toxicidadeRESUMO
This study investigated the influence of photoaging on a nanoscale metal-organic framework (MOF), truncated rhombic dodecahedron nano-zeolitic imidazolate framework-8 (nZIF-8), focusing on its oxidative stress, inflammation, and implications for pulmonary diseases. We observed significant photodegradation-induced transformations in nZIF-8, characterized by a reduction in particle size from 200.5 to 101.4 nm and notable structural disintegration after prolonged exposure to simulated solar radiation. This alteration resulted in a marked decrease in oxidative cytotoxicity in BEAS-2B cells, which was attributed to changes in surface properties and reduced reactive oxygen species (ROS) production. Gene expression analysis further revealed a decrease in cytotoxic and inflammatory responses, which potentially lowers the risk of chronic obstructive pulmonary disease (COPD). Aged nZIF-8 also showed diminished capacity to induce pro-inflammatory cytokines and influence COPD-related gene expression, reducing its potential to exacerbate COPD pathogenesis. Our findings highlight the critical need for comprehensive safety evaluations of these materials, while considering their long-term environmental and biological impacts. The diminished cytotoxicity and inflammatory potential of aged nZIF-8 highlighted its enhanced suitability for broader applications, indicating that photoaging may lead to safer and more sustainable material utilization.
Assuntos
Estruturas Metalorgânicas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Zeolitas , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/toxicidade , Estruturas Metalorgânicas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Zeolitas/química , Zeolitas/toxicidade , Imidazóis/toxicidade , Imidazóis/química , Sobrevivência Celular/efeitos dos fármacos , Fotólise , Citocinas/metabolismo , Tamanho da Partícula , Nanopartículas/toxicidade , Nanopartículas/químicaRESUMO
Ionic liquids (ILs) have many beneficial properties that are extensively used in various fields. Despite their utility, the phytotoxic aspects of ILs are poorly known. This is especially true at the transcriptomic level and the role of nitric oxide (NO) in this process. Herein, we studied the mechanism by which endogenous NO reduces the toxicity of ILs in Arabidopsis. We examined the effects of two imidazolium-based ILs (IILs) on three Arabidopsis lines, each characterized by distinct endogenous NO levels, using a combination of physiological and transcriptomics methods. IILs impaired seed germination, seedling development, chlorophyll content, and redox homeostasis in Arabidopsis. Notably, 1,3-dibutyl imidazole bromide had greater toxicity than 1-butyl-3-methylimidazolium chloride. Nox1, a mutant with an elevated NO level, had enhanced resistance, while nia1nia2, a mutant with a diminished NO level, had increased susceptibility compared to the wild type. RNA sequencing results suggested that NO mitigates IILs-induced phytotoxicity by modulating the metabolism of chlorophyll and secondary metabolites, and by bolstering the antioxidant defense system. These findings illustrate the complex molecular networks that respond to IIL stress and reveal the potential of endogenous NO as a mitigating factor in plant stress physiology.
Assuntos
Arabidopsis , Germinação , Imidazóis , Líquidos Iônicos , Óxido Nítrico , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Germinação/efeitos dos fármacos , Clorofila/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimentoRESUMO
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Assuntos
Carpas , Imidazóis , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Imidazóis/toxicidade , Superóxido Dismutase/metabolismo , Compostos Organotiofosforados/toxicidade , Catalase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carboxilesterase/metabolismo , Carboxilesterase/genética , Fígado/efeitos dos fármacos , Praguicidas/toxicidadeRESUMO
Azole fungicides are highly suspected endocrine disruptors (EDs) and are frequently detected in surface water. Among them, there are prochloraz (PCZ), a commonly used molecule for ED studies, and imazalil (IMZ), a highly suspected ED. Little is known about their toxicokinetic (TK) behavior in fish. Hence, research suggested that an improved risk assessment could be achieved by gaining insight into their TK behavior. The aim of this study is to understand and model the TK of both substances in different fish species, irrespective of the scheme of exposure. TK data from the literature were retrieved including different modes of exposure (per os and waterborne). In addition, two experiments on zebrafish exposed to either IMZ or PCZ were performed to address the lack of in vivo TK data. A physiologically based kinetic (PBK) model applied to IMZ and PCZ was developed, capable of modeling different exposure scenarios. The parameters of the PBK model were simultaneously calibrated on datasets reporting internal concentration in several organs in three fish species (original and literature datasets) by Bayesian methods (Monte Carlo Markov Chain). Model predictions were then compared to other experimental data (i.e., excluded from the calibration step) to assess the predictive performance of the model. The results strongly suggest that PCZ and IMZ are actively transported across the gills, resulting in a small fraction being effectively absorbed by the fish. The model's results also confirm that both molecules are extensively metabolized by the liver into mainly glucuronate conjugates. Overall, the model performances were satisfying, predicting internal concentrations in several key organs. On average, 90% of experimental data were predicted within a two-fold range. The PBK model allows the understanding of IMZ and PCZ kinetics profiles by accurately predicting internal concentrations in three different fish species regardless of the exposure scenario. This enables a proper understanding of the mechanism of action of EDs at the molecular initiating event (MIE) by predicting bioaccumulation in target organs, thus linking this MIE to a possible adverse outcome.
Assuntos
Imidazóis , Toxicocinética , Poluentes Químicos da Água , Peixe-Zebra , Animais , Imidazóis/farmacocinética , Imidazóis/toxicidade , Peixe-Zebra/metabolismo , Peixes/metabolismo , Fungicidas Industriais/toxicidade , Cinética , Teorema de BayesRESUMO
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Assuntos
Glicina , Glifosato , Neonicotinoides , Nitrocompostos , Proteoma , Animais , Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Glicina/análogos & derivados , Glicina/toxicidade , Nitrocompostos/toxicidade , Imidazóis/toxicidade , Inseticidas/toxicidadeRESUMO
Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.
Assuntos
Aedes , Imidazóis , Inseticidas , Larva , Aedes/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Imidazóis/toxicidade , Imidazóis/farmacologia , Inseticidas/toxicidade , Inseticidas/farmacologia , Humanos , Mosquitos Vetores/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Controle de Mosquitos/métodosRESUMO
1-octyl-3-methylimidazolium bromide ([C8mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5-10â¯mg/L [C8mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C8mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (th, tph2, mao, slc6a3, ache, gad67). Overall, our study determined that [C8mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C8mim]Br.
Assuntos
Ansiedade , Imidazóis , Líquidos Iônicos , Transtornos da Memória , Neurotransmissores , Peixe-Zebra , Animais , Neurotransmissores/metabolismo , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Líquidos Iônicos/toxicidade , Imidazóis/toxicidade , Transtornos da Memória/induzido quimicamente , Memória de Curto Prazo/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
A class of chemical with a potentially important perceived future contribution to the net zero carbon goal (as "green" solvents) is the methylimidazolium ionic liquids (MILs). These solvents are used in industrial processes such as biofuel production yet little is known about their environmental stability or toxicity in man although one MIL - 1-octyl-3-methylimidazolium (M8OI) - has been shown to activate the human estrogen receptor alpha (ERα). The stabilities of the chloride unsubstituted methylimidazolium (MI) and MILs possessing increasing alkyl chain lengths (2C, 1-ethyl-3-methylimidazolium (EMI); 4C, 1-butyl-3-methylimidazolium (BMI); 6C; 1-hexyl-3-methylimidazolium (HMI), 8C, M8OI; 10C, 1-decyl-3-methylimidazolium (DMI)) were examined in river water and a human liver model system. The MILs were also screened for their abilities to activate the human ERα in vitro and induce uterine growth in pre-pubertal rats in vivo. Short chain MILs (EMI, BMI and HMI) underwent negligible metabolism and mineralisation in river water; were not metabolised in a model of human liver metabolism; activated the human ERα in vitro and were estrogenic in vivo in rats. A structure-based computational approach predicted short chain MIL binding to both the estrogen binding site and an additional site on the human estrogen receptor alpha. Longer chain MILs (M8OI and DMI) were metabolised in river water and partially mineralised. Based on structure-activity considerations, some of these environmentally-derived metabolites may however, remain a hazard to the population. MILs therefore have the potential to become forever chemicals with adverse effects to both man, other animals and the environment in general.
Assuntos
Disruptores Endócrinos , Receptor alfa de Estrogênio , Imidazóis , Líquidos Iônicos , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Imidazóis/toxicidade , Imidazóis/química , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Humanos , Receptor alfa de Estrogênio/metabolismo , Animais , Ratos , FemininoRESUMO
Advanced glycation end products (AGEs) are important contributors to the progression of chronic kidney diseases (CKD), including renal fibrosis. Although the relationship between AGEs and renal fibrosis has been well studied, the mechanisms of individual AGE-induced renal injury remain poorly understood. This study investigated the adverse effect of methylglyoxal-derived hydroimidazolone-1 (MG-H1), a methylglyoxal (MG)-derived AGE generated by the glycation of MG and arginine residues, on kidney damage. We aimed to elucidate the molecular mechanisms of MG-H1-mediated renal injury and fibrosis, focusing on the receptor for AGEs (RAGE) signaling and its effects on the Wnt/ß-catenin pathway, MAPK pathway, and inflammatory responses. Our results suggest that the MG-H1/RAGE axis plays a significant role in the pathogenesis of CKD and its downstream events involving MAPK kinase-related factors and inflammatory factors. MG-H1 treatment modulated the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and MAPK proteins (ERK1/2, JNK, and p38).
Assuntos
Fibrose , Imidazóis , Rim , Estresse Oxidativo , Aldeído Pirúvico , Receptor para Produtos Finais de Glicação Avançada , Estresse Oxidativo/efeitos dos fármacos , Animais , Aldeído Pirúvico/toxicidade , Imidazóis/farmacologia , Imidazóis/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Citocinas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Humanos , Camundongos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacosRESUMO
Nanotechnology could improve the effectiveness and functionality of pesticides, but the size effect of nanopesticides on formulation performance and the related mechanisms have yet to be explored, hindering the precise design and development of efficient and eco-friendly nanopesticides. In this study, two non-carrier-coated imidacloprid formulations (Nano-IMI and Micro-IMI) with identical composition but varying particle size characteristics were constructed to exclude other interferences in the size effect investigation. Nano-IMI and Micro-IMI both exhibited rod-like structures. Specifically, Nano-IMI had average vertical and horizontal axis sizes of 239.5 nm and 561.8 nm, while Micro-IMI exhibited 6.7 µm and 22.1 µm, respectively. Compared to Micro-IMI, the small size effect of Nano-IMI affected the arrangement of interfacial molecules, reduced surface tension and contact angle, thereby improving the stability, dispersibility, foliar wettability, deposition and retention of the nano-system. Nano-IMI exhibited 1.3 times higher toxicity to Aphis gossypii Glover compared to Micro-IMI, attributed to its enhanced foliar utilization efficiency. Importantly, the Nano-IMI did not intensify the toxicity to non-target organism Apis mellifera L. This study systematically elucidates the influence of size effect on key indicators related to the effectiveness and safety, providing a theoretical basis for efficient and safe application of nanopesticides and critical insights into sustainable agriculture and environmental development.
Assuntos
Imidazóis , Inseticidas , Nanopartículas , Neonicotinoides , Nitrocompostos , Tamanho da Partícula , Neonicotinoides/química , Nanopartículas/química , Nanopartículas/toxicidade , Imidazóis/toxicidade , Imidazóis/química , Inseticidas/toxicidade , Inseticidas/química , Animais , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacosRESUMO
Ionic liquids (ILs) become emerging environmental pollutants. Especially, alkyl imidazolium ILs commonly showed stimulation in toxicological studies and mechanisms remained to be explored. In the present study, alkyl imidazolium tetrafluoroborate ([amim]BF4), with ethyl ([emim]), hexyl ([hmim]) and octyl ([omim]) as side-chains, were chosen as target ILs. Their toxicities on the reproduction and lifespan of Caenorhabditis elegans were explored with two types (A and B) exposure arrangements to mimic realistic intermittent multi-generational exposure scenarios. In type A scenario, there was an exposure every 4 generations with 12 generations in total, and in type B one, there was an exposure every two generations with 12 generations in total. Result showed that [emim]BF4 caused inhibition on the reproduction in 8 generations in type A exposure but 6 ones in type B exposure. Meanwhile, [hmim]BF4 showed inhibition in one generation and stimulation in 3 generations in type A exposure, but stimulation in 6 generations in type B exposure. Also, [omim]BF4 showed stimulation in one generation in type B exposure. Collectively, the results demonstrated less frequencies of inhibition, or more frequencies of stimulation, in the exposure scenario with more frequent exposures. Further mechanism exploration was performed to measure the lipid storage and metabolism in the aspect of energy supply. Results showed that [emim]BF4, [hmim]BF4 and [omim]BF4 commonly stimulated the triglyceride (TG) levels across generations. They also disturbed the activities of glycerol-3-phosphate acyltransferase (GPAT) and acetyl CoA carboxylase (ACC) in lipogenesis, those of adipose triglyceride lipase (ATGL) and carnitine acyl transferase (CPT) in lipolysis, and also the contents of acetyl-CoA (ACA). Further data analysis indicated the energy allocation among life traits including reproduction, antioxidant responses and hormone regulations.
Assuntos
Caenorhabditis elegans , Imidazóis , Líquidos Iônicos , Metabolismo dos Lipídeos , Reprodução , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Imidazóis/toxicidade , Reprodução/efeitos dos fármacos , Líquidos Iônicos/toxicidade , Poluentes Ambientais/toxicidade , Boratos/toxicidadeRESUMO
Pesticides have been identified as major drivers of insect biodiversity loss. Thus, the study of their effects on non-pest insect species has attracted a lot of attention in recent decades. In general toxicology, the 'gold standard' to assess the toxicity of a substance is to measure mass-specific LD50 (i.e. median lethal dose per unit body mass). In entomology, reviews attempting to compare these data across all available studies are lacking. To fill this gap in knowledge, we performed a systematic review of the lethality of imidacloprid for adult insects. Imidacloprid is possibly the most extensively studied insecticide in recent times, yet we found that little is comparable across studies, owing to both methodological divergence and missing estimates of body mass. By accounting for body mass whenever possible, we show how imidacloprid sensitivity spans across an apparent range of approximately six orders of magnitude across insect species. Very high variability within species can also be observed owing to differences in exposure methods and observation time. We suggest that a more comparable and comprehensive approach has both biological and economic relevance. Ultimately, this would help to identify differences that could direct research towards preventing non-target species from being negatively affected.
Assuntos
Imidazóis , Insetos , Inseticidas , Neonicotinoides , Nitrocompostos , Especificidade da Espécie , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Inseticidas/toxicidade , Insetos/efeitos dos fármacos , Imidazóis/toxicidade , Dose Letal MedianaRESUMO
Environmental ambient temperature significantly impacts the metabolic activities of aquatic ectotherm organisms and influences the fate of various chemicals. Although numerous studies have shown that the acute lethal toxicity of most chemicals increases with increasing temperature, the impact of temperature on chronic effects - encompassing both lethal and sublethal endpoints - has received limited attention. Furthermore, the mechanisms linking temperature and toxicity, potentially unveiled by toxicokinetic-toxicodynamic models (TKTD), remains inadequately explored. This study investigated the effects of environmentally relevant concentrations of the insecticide imidacloprid (IMI) on the growth and survival of the freshwater amphipod Gammarus pulex at two different temperatures. Our experimental design was tailored to fit a TKTD model, specifically the Dynamic Energy Budget (DEB) model. We conducted experiments spanning three and six months, utilizing small G. pulex juveniles. We observed effects endpoints at least five times, employing both destructive and non-destructive methods, crucial for accurate model fittings. Our findings reveal that IMI at environmental concentrations (up to 0.3 µg/L) affects the growth and survival of G. pulex, albeit with limited effects, showing a 10% inhibition compared to the control group. These limited effects, observed in both lethal and sublethal aspects, suggest a different mode of action at low, environmentally-relevant concentrations in long-term exposure (3 months), in contrast to previous studies which applied higher concentrations and found that sublethal effects occurred at significantly lower levels than lethal effects in an acute test setting (4 days). Moreover, after parameterizing the DEB model for various temperatures, we identified a lower threshold for both lethal and sublethal effects at higher temperatures, indicating increased intrinsic sensitivity. Overall, this study contributes to future risk assessments considering temperature as a crucial factor and exemplifies the integration of the DEB model into experimental design for comprehensive toxicity evaluations.
Assuntos
Anfípodes , Inseticidas , Neonicotinoides , Nitrocompostos , Temperatura , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Toxicocinética , Imidazóis/toxicidadeRESUMO
Nanoformulations of pesticides are an effective way to increase utilization efficiency and alleviate the adverse impacts on the environments caused by conventional pesticide formulations. However, the complex preparation process, high cost, and potential environmental risk of nanocarriers severely restricted practical applications of carrier-based pesticide nanoformulations in agriculture. Herein, carrier-free self-assembled nanoparticles (FHA-PRO NPs) based on fenhexamid (FHA) and prochloraz (PRO) were developed by a facile co-assembly strategy to improve utilization efficiency and reduce toxicity to aquatic organism of pesticides. The results showed that noncovalent interactions between negatively charged FHA and positively charged PRO led to core-shell structured nanoparticles arranged in an orderly manner dispersing in aqueous solution with a diameter of 256 nm. The prepared FHA-PRO NPs showed a typical pH-responsive release profile and exhibited excellent physicochemical properties including low surface tension and high max retention. The photostability of FHA-PRO NPs was improved 2.4 times compared with free PRO. The FHA-PRO NPs displayed superior fungicidal activity against Sclerotinia sclerotiorum and Botrytis cinerea and longer duration against Sclerotinia sclerotiorum on potted rapeseed plants. Additionally, the FHA-PRO NPs reduced the acute toxicity of PRO to zebrafish significantly. Therefore, this work provided a promising strategy to develop nanoformulations of pesticides with stimuli-responsive controlled release characteristics for precise pesticide delivery.
Assuntos
Fungicidas Industriais , Imidazóis , Nanopartículas , Poluentes Químicos da Água , Nanopartículas/toxicidade , Nanopartículas/química , Animais , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Imidazóis/química , Imidazóis/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/química , Peixe-Zebra , Organismos Aquáticos/efeitos dos fármacos , Praguicidas/toxicidade , Praguicidas/química , Botrytis/efeitos dos fármacos , Ascomicetos/efeitos dos fármacosRESUMO
Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.
Assuntos
Mudança Climática , Inseticidas , Neonicotinoides , Nitrocompostos , Temperatura , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Inseticidas/toxicidade , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Poluentes do Solo/toxicidade , Solo/química , Adaptação Fisiológica , Imidazóis/toxicidadeRESUMO
Among antifungal agents used in pharmaceuticals and personal care products, the synthetic azole climbazole (CBZ; 1-(4-Chlorophenoxy)-1-(imidazol-1-yl)-3,3-dimethylbutan-2-one) acts on the fungus Malassezia. Despite concerns surrounding its effects on health, based on alterations to reproduction and steroidogenesis found in fish, little is known about its mechanism of action as an endocrine disrupting chemical (EDC) in mammalian cells. In this study, using OECD test guidelines, we investigated the effects of CBZ (i) in H295R cells, on the production of estradiol and testosterone, as well as intermediate metabolites in steroidogenesis pathway, and (ii) in HeLa9903 and AR-EcoScreen cell lines, on the transactivation of estrogen and androgen receptors. Our results are the first evidence in H295R cells, that CBZ treatment (from 0.3 µM) decreased secreted levels of testosterone and estradiol. This was associated with reduced 17α-hydroxypregnenolone and 17α-hydroxyprogesterone levels. The altered levels of these metabolites were associated with a decrease in cytochrome P450 17α-hydroxylase/17,20-lyase (Cyp17A1) activity without any effect on its protein level. CBZ was also found to exert antagonistic effects toward androgen and estrogen α receptors. These results give insights into the toxicological mechanism of action of CBZ. Many azoles share structural similarities; therefore, caution should be adopted due to their potential toxicity.
Assuntos
Antifúngicos , Imidazóis , Receptores Androgênicos , Testosterona , Humanos , Antifúngicos/toxicidade , Antifúngicos/farmacologia , Receptores Androgênicos/metabolismo , Testosterona/metabolismo , Imidazóis/toxicidade , Imidazóis/farmacologia , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Androgênios/metabolismo , Linhagem Celular Tumoral , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Células HeLaRESUMO
Caramel color is a widely used food pigment, and 2-Acetyl-4-tetrahydroxybutylimidazole (THI) is a by-products of Class III caramel color. Some studies have shown that THI can reduce the number of peripheral blood lymphocytes. However, the comprehensive mechanism of THI immunotoxicity requires further study. In this study, the effects of THI on lymphocyte count, humoral immunity, cellular immunity and nonspecific immunity were determined and the effect of the nutritional status of VB6 on THI immunotoxicity was evaluated. Female BALB/c mice were divided into 3 groups and fed chow containing different doses of VB6: VB6-normal (6â¯mg/kg VB6), VB6-deprived (0.5â¯mg/kg VB6) or VB6-enhanced (12â¯mg/kg VB6) feed. Each group was further divided into 4 subgroups and treated with THI (0.5, 2.5 or 12.5â¯mg/kg bw) or the solvent control by gavage for 30 days. The thymic cortical thickness was measured with ViewPoint; the proportions of major immune cells and T cells in peripheral blood and tissues were detected via flow cytometry; the transformation and proliferation abilities of T and B cells were detected via T and B lymphocyte proliferation assays; NK cell activity was assessed via lactate dehydrogenase assays; humoral immune function was assessed via plaque-forming cell assays; and the immune function of T lymphocytes was assessed via delayed type hypersensitivity assays. The results showed that compared with those in the corresponding control group, the white blood cell count and lymphocyte count decreased significantly in all the VB6-deprived groups, in the 2.5 and 12.5â¯mg/kg VB6 groups, and in the 12.5â¯mg/kg VB6-enhanced group. With increasing THI dose, the thymic cortical layer became thinner. In the thymus, THI increased the proportions of CD3+ T cells and mature CD8+ T cells and decreased the proportions of immature double-positive, double-negative T cells and CD69-expressing lymphocytes. The proportions of naïve T cells and Tcm (central memory T) cells related to homing decreased. The proportion of mature T cells in the spleen decreased significantly. The proliferation of T cells stimulated by ConA decreased after THI exposure. VB6-deficient mice were more sensitive to THI immunotoxicity, and supplementation with VB6 had a certain protective effect on these mice. The results of the PFC and NK cell activity assays indicated that THI exposure might not affect humoral immune or innate immune function.