Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.551
Filtrar
1.
Mikrochim Acta ; 191(8): 448, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967796

RESUMO

Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline). Then, MNPs@IgG were prepared via the bis(sulfosuccinimidyl) suberate (BS3) cross-linker to conjugate these IgG onto the MNP surface, with a binding efficiency of 73%. To construct dual-functionalized MNPs, these redox probes of ferrocene-NHS (Fc) were co-crosslinked onto the MNP surface, together with IgG, by using BS3. The developed MNPs@Redox@IgG were characterized by SDS‒PAGE to identify IgG binding and by square wave voltammetry (SWV) to validate the redox signal. Additionally, the anti-CD63 antibodies were selected for the development of MNPs@anti-CD63 for use in the bio-testing of exosome sample capture. Therefore, co-crosslinking strategy paved a way to develop dual-functionalized MNPs that can be an aid of their potential utilization in diagnostic assay or electrochemical methods.


Assuntos
Reagentes de Ligações Cruzadas , Imunoglobulina G , Nanopartículas de Magnetita , Oxirredução , Nanopartículas de Magnetita/química , Imunoglobulina G/química , Humanos , Reagentes de Ligações Cruzadas/química , Compostos Ferrosos/química , Metalocenos/química , Técnicas Biossensoriais/métodos , Tetraspanina 30/imunologia , Técnicas Eletroquímicas/métodos
2.
Mol Imaging ; 23: 15353508241261473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952401

RESUMO

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Assuntos
Antígeno B7-H1 , Camundongos Nus , Animais , Antígeno B7-H1/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Imagem Óptica/métodos , Radioisótopos do Iodo/química , Neoplasias/diagnóstico por imagem , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Feminino , Luminescência
3.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001098

RESUMO

The quartz tuning fork (QTF) is a promising instrument for biosensor applications due to its advanced properties such as high sensitivity to physical quantities, cost-effectiveness, frequency stability, and high-quality factor. Nevertheless, the fork's small size and difficulty in modifying the prongs' surfaces limit its wide use in experimental research. Our study presents the development of a QTF immunosensor composed of three active layers: biocompatible natural melanin nanoparticles (MNPs), glutaraldehyde (GLU), and anti-IgG layers, for the detection of immunoglobulin G (IgG). Frequency shifts of QTFs after MNP functionalization, GLU activation, and anti-IgG immobilization were measured with an Asensis QTF F-master device. Using QTF immunosensors that had been modified under optimum conditions, the performance of QTF immunosensors for IgG detection was evaluated. Accordingly, a finite element method (FEM)-based model was produced using the COMSOL Multiphysics software program (COMSOL License No. 2102058) to simulate the effect of deposited layers on the QTF resonance frequency. The experimental results, which demonstrated shifts in frequency with each layer during QTF surface functionalization, corroborated the simulation model predictions. A modelling error of 0.05% was observed for the MNP-functionalized QTF biosensor compared to experimental findings. This study validated a simulation model that demonstrates the advantages of a simulation-based approach to optimize QTF biosensors, thereby reducing the need for extensive laboratory work.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G , Melaninas , Nanopartículas , Quartzo , Imunoglobulina G/química , Imunoglobulina G/imunologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Nanopartículas/química , Melaninas/química , Quartzo/química , Imunoensaio/métodos , Imunoensaio/instrumentação , Simulação por Computador , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/química , Humanos
4.
Eur J Pharm Biopharm ; 201: 114377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955284

RESUMO

Drug product development of therapeutic antibody formulations is still dictated by the risk of protein particle formation during processing or storage, which can lead to loss of potency and potential immunogenic reactions. Since structural perturbations are the main driver for irreversible protein aggregation, the conformational integrity of antibodies should be closely monitored. The present study evaluated the applicability of a plate reader-based high throughput method for Intrinsic Tryptophan Fluorescence Emission (ITFE) spectroscopy to detect protein aggregation due to protein unfolding in high-concentrated therapeutic antibody samples. The impact of fluorophore concentration on the ITFE signal in microplate readers was investigated by analysis of dilution series of two therapeutic antibodies and pure tryptophan. At low antibody concentrations (< 5 mg/mL, equivalent to 0.8 mM tryptophan), the low inner filter effect suggests a quasi-linear relationship between antibody concentration and ITFE intensity. In contrast, the constant ITFE intensity at high protein concentrations (> 40 mg/mL, equivalent to 6.1 mM tryptophan) indicate that ITFE spectroscopy measurements of IgG1 antibodies are feasible in therapeutically relevant concentrations (up to 223 mg/mL). Furthermore, the capability of the method to detect low levels of unfolding (around 1 %) was confirmed by limit of detection (LOD) determination with temperature-stressed antibody samples as degradation standards. Change of fluorescence intensity at the maximum (ΔIaM) was identified as sensitive descriptor for protein degradation, providing the lowest LOD values. The results demonstrate that ITFE spectroscopy performed in a microplate reader is a valuable tool for high-throughput monitoring of protein degradation in therapeutic antibody formulations.


Assuntos
Imunoglobulina G , Espectrometria de Fluorescência , Triptofano , Triptofano/química , Espectrometria de Fluorescência/métodos , Imunoglobulina G/química , Agregados Proteicos , Desdobramento de Proteína , Anticorpos Monoclonais/química , Ensaios de Triagem em Larga Escala/métodos , Soluções
5.
MAbs ; 16(1): 2379560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028186

RESUMO

The self-association of therapeutic antibodies can result in elevated viscosity and create problems in manufacturing and formulation, as well as limit delivery by subcutaneous injection. The high concentration viscosity of some antibodies has been reduced by variable domain mutations or by the addition of formulation excipients. In contrast, the impact of Fc mutations on antibody viscosity has been minimally explored. Here, we studied the effect of a panel of common and clinically validated Fc mutations on the viscosity of two closely related humanized IgG1, κ antibodies, omalizumab (anti-IgE) and trastuzumab (anti-HER2). Data presented here suggest that both Fab-Fab and Fab-Fc interactions contribute to the high viscosity of omalizumab, in a four-contact model of self-association. Most strikingly, the high viscosity of omalizumab (176 cP) was reduced 10.7- and 2.2-fold by Fc modifications for half-life extension (M252Y:S254T:T256E) and aglycosylation (N297G), respectively. Related single mutations (S254T and T256E) each reduced the viscosity of omalizumab by ~6-fold. An alternative half-life extension Fc mutant (M428L:N434S) had the opposite effect in increasing the viscosity of omalizumab by 1.5-fold. The low viscosity of trastuzumab (8.6 cP) was unchanged or increased by ≤2-fold by the different Fc variants. Molecular dynamics simulations provided mechanistic insight into the impact of Fc mutations in modulating electrostatic and hydrophobic surface properties as well as conformational stability of the Fc. This study demonstrates that high viscosity of some IgG1 antibodies can be mitigated by Fc mutations, and thereby offers an additional tool to help design future antibody therapeutics potentially suitable for subcutaneous delivery.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Mutação , Omalizumab , Trastuzumab , Humanos , Trastuzumab/química , Viscosidade , Omalizumab/química , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoglobulina G/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética
6.
Anal Chem ; 96(24): 10003-10012, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38853531

RESUMO

Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.


Assuntos
Fragmentos Fc das Imunoglobulinas , Espectrometria de Massas , Desdobramento de Proteína , Proteínas Recombinantes de Fusão , Fragmentos Fc das Imunoglobulinas/química , Proteínas Recombinantes de Fusão/química , Espectrometria de Massas/métodos , Interleucina-10/química , Interleucina-10/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Estabilidade Proteica , Humanos , Imunoglobulina G/química
7.
Sci Rep ; 14(1): 14079, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890341

RESUMO

While cryogenic electron microscopy (cryo-EM) is fruitfully used for harvesting high-resolution structures of sizable macromolecules, its application to small or flexible proteins composed of small domains like immunoglobulin (IgG) remain challenging. Here, we applied single particle cryo-EM to Rituximab, a therapeutic IgG mediating anti-tumor toxicity, to explore its solution conformations. We found Rituximab molecules exhibited aggregates in cryo-EM specimens contrary to its solution behavior, and utilized a non-ionic detergent to successfully disperse them as isolated particles amenable to single particle analysis. As the detergent adversely reduced the protein-to-solvent contrast, we employed phase plate contrast to mitigate the impaired protein visibility. Assisted by phase plate imaging, we obtained a canonical three-arm IgG structure with other structures displaying variable arm densities co-existing in solution, affirming high flexibility of arm-connecting linkers. Furthermore, we showed phase plate imaging enables reliable structure determination of Fab to sub-nanometer resolution from ab initio, yielding a characteristic two-lobe structure that could be unambiguously docked with crystal structure. Our findings revealed conformation diversity of IgG and demonstrated phase plate was viable for cryo-EM analysis of small proteins without symmetry. This work helps extend cryo-EM boundaries, providing a valuable imaging and structural analysis framework for macromolecules with similar challenging features.


Assuntos
Microscopia Crioeletrônica , Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Conformação Proteica , Microscopia Crioeletrônica/métodos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoglobulina G/química , Rituximab/química , Humanos , Modelos Moleculares
8.
MAbs ; 16(1): 2361585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38849969

RESUMO

Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.


Assuntos
Afinidade de Anticorpos , Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Receptores Fc , Receptores Fc/metabolismo , Receptores Fc/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/química , Concentração de Íons de Hidrogênio , Afinidade de Anticorpos/imunologia , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Ligação Proteica , Cinética
9.
Sci Rep ; 14(1): 14832, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937649

RESUMO

The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.


Assuntos
Ouro , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Nanopartículas Metálicas , Simulação de Dinâmica Molecular , Imunoglobulina G/química , Imunoglobulina G/imunologia , Fragmentos Fc das Imunoglobulinas/química , Ouro/química , Nanopartículas Metálicas/química , Humanos , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Animais
10.
Biotechnol J ; 19(5): e2400154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719568

RESUMO

Maximizing product yield in biopharmaceutical manufacturing processes is a critical factor in determining the overall cost of goods, especially given the high value of these biological products. However, there has been relatively limited research on the quantitative analysis of protein losses due to adsorption and fouling during the different membrane filtration processes employed in typical downstream operations. This study aims to provide a comprehensive analysis of protein loss in the range of membrane systems used in downstream processing including clarification, virus removal filtration, ultrafiltration/diafiltration for formulation, and final sterile filtration, all using commercially available membranes with three model proteins (bovine serum albumin, human serum albumin, and immunoglobulin G). The correlation between protein loss and various parameters (i.e., protein type, protein concentration, throughput, membrane morphology, and protein removal mechanism) was also investigated. This study provides important insights into the nature of protein loss during membrane processes as well as a methodology for quantifying protein yield loss in bioprocesses.


Assuntos
Membranas Artificiais , Ultrafiltração , Humanos , Ultrafiltração/métodos , Filtração/métodos , Animais , Produtos Biológicos/química , Soroalbumina Bovina/química , Imunoglobulina G/química , Adsorção , Bovinos , Albumina Sérica Humana/química
11.
Eur J Pharm Biopharm ; 200: 114342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795787

RESUMO

Over the past three decades, there was a remarkable growth in the approval of antibody-based biopharmaceutical products. These molecules are notably susceptible to the stresses occurring during drug manufacturing, often leading to structural alterations. A key concern is thus the ability to detect and comprehend these alterations caused by processes, such as aggregation, fragmentation, oxidation levels, as well as the change in protein concentration throughout the process steps, potentially resulting in out-of-spec products. In the present study, Raman spectroscopy, coupled with Principal Component Analysis (PCA), has proven to be an excellent tool for characterizing protein-based products. Notably, it offers the advantages of being minimally invasive, rapid and relatively insensitive to water. Therefore, it was successfully employed to discriminate between various stresses impacting a monoclonal antibody (mAb). The molecule used in this study is a fully human IgG1 fusion protein. Thermal stress was induced by incubating the samples at 50 °C for one month, while oxidative stress was induced by introducing hydrogen peroxide. Additionally, dilutions were performed to explore a broader range of protein concentrations. Specific key bands were identified in the Raman spectra, which facilitated the PCA classification and allowed for their association with distinct changes in the secondary and tertiary structures of the protein. Notably, it was observed that signals corresponding to amino acids exhibited a decrease in intensity with increasing levels of thermal stress, while other alterations were noted in the amide bands. It was shown that changes in the range 2800-3000 cm-1 pertains to the dilution process, while specific peaks of C-H stretching were essential for the discrimination between the oxidative-stressed samples and the thermal and diluted counterparts. Furthermore, the model calibrated on the mAb demonstrated remarkable performance when used to evaluate a different product, e.g. a hormone.


Assuntos
Anticorpos Monoclonais , Análise de Componente Principal , Análise Espectral Raman , Análise Espectral Raman/métodos , Anticorpos Monoclonais/química , Humanos , Imunoglobulina G/química , Produtos Biológicos/química , Estresse Oxidativo/efeitos dos fármacos , Controle de Qualidade
12.
ACS Appl Bio Mater ; 7(6): 3942-3952, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38740514

RESUMO

Magnetic separation is a promising alternative to chromatography for enhancing the downstream processing (DSP) of monoclonal antibodies (mAbs). However, there is a lack of efficient magnetic particles for successful application. Aiming to fill this gap, we demonstrate the suitability of bare iron oxide nanoparticles (BION) with physical site-directed immobilization of an engineered Protein A affinity ligand (rSpA) as an innovative magnetic material. The rSpA ligand contains a short peptide tag that enables the direct and stable immobilization onto the uncoated BION surface without commonly required laborious particle activation. The resulting BION@rSpA have beneficial characteristics outperforming conventional Protein A-functionalized magnetic particles: a simple, fast, low-cost synthesis, a particle size in the nanometer range with a large effective specific surface area enabling large immunoglobulin G (IgG) binding capacity, and a high magnetophoretic velocity advantageous for fast processing. We further show rapid interactions of IgG with the easily accessible rSpA ligands. The binding of IgG to BION@rSpA is thereby highly selective and not impeded by impurity molecules in perfusion cell culture supernatant. Regarding the subsequent acidic IgG elution from BION@rSpA@IgG, we observed a hampering pH increase caused by the protonation of large iron oxide surfaces after concentrating the particles in 100 mM sodium acetate buffer. However, the pH can be stabilized by adding 50 mM glycine to the elution buffer, resulting in recoveries above 85% even at high particle concentrations. Our work shows that BION@rSpA enable efficient magnetic mAb separation and could help to overcome emerging bottlenecks in DSP.


Assuntos
Imunoglobulina G , Nanopartículas Magnéticas de Óxido de Ferro , Teste de Materiais , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro/química , Ligantes , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Materiais Biocompatíveis/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Propriedades de Superfície , Compostos Férricos/química
13.
J Chromatogr A ; 1728: 464995, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38805895

RESUMO

Fluorescently labeled antibodies are widely used to visualize the adsorption process in protein chromatography using confocal laser scanning microscopy (CLSM), but also as a tracer for determination of residence time distribution (RTD) in continuous chromatography. It is assumed that the labeled protein is inert and representative of the unlabeled antibody, ignoring the fact that labeling with a fluorescent dye can change the characteristics of the original molecule. It became evident that the fluorescently labeled antibody has a higher affinity toward protein A resins such as MabSelect Sure. This can be due to slight differences in hydrophobicity and net charge, which are caused by the addition of the fluorescent dye. However, this difference is eliminated when using high salt concentrations in the adsorption studies. In this work, the site occupancy of two labeled antibodies, MAb1 (IgG1 subclass) and MAb2 (IgG2 subclass) conjugated with the fluorescent dye Alexa Fluor™ 488 was elucidated by intact mass spectrometry (MS) and peptide mapping LC-MS/MS, employing a sequential cleavage with Endoproteinase Lys-C and trypsin and in parallel with chymotrypsin alone. It was shown that the main binding site for the dye was a specific lysine in the heavy chains of the MAb1 and MAb2 molecules, in positions 188 and 189 respectively. Other lysine residues distributed throughout the protein sequence were labeled to a lot lesser extent. The labeled antibody had a slightly different affinity to MabSelect Sure although its primary binding site (to Protein A) was not affected by labeling, despite the secondary region responsible for binding to the protein A was partly labeled. Overall, the fluorescent-labeled antibodies are a good compromise as an inert tracer in residence time distribution and chromatography studies because they are much cheaper than isotope-labeled antibodies; However, the differences between the labeled and unlabeled antibodies should be considered.


Assuntos
Anticorpos Monoclonais , Corantes Fluorescentes , Proteína Estafilocócica A , Corantes Fluorescentes/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Cromatografia de Afinidade/métodos , Sítios de Ligação , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Espectrometria de Massas em Tandem/métodos , Mapeamento de Peptídeos/métodos , Animais
14.
J Chromatogr A ; 1726: 464975, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735118

RESUMO

In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G , Ligantes , Humanos , Adsorção , Imunoglobulina G/química , Imunoglobulina G/sangue , Triptaminas/química , Cromatografia Líquida/métodos , Benzimidazóis/química , Concentração de Íons de Hidrogênio
15.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736384

RESUMO

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Assuntos
Cromatografia de Afinidade , Proteína Estafilocócica A , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/química , Adsorção , Imunoglobulina G/química , Ácidos Polimetacrílicos/química , Sefarose/química
16.
J Am Chem Soc ; 146(19): 13455-13466, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703132

RESUMO

The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen-antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system.


Assuntos
Ativação do Complemento , DNA , Imunoglobulina G , Nanoestruturas , Nanoestruturas/química , Humanos , DNA/química , DNA/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia
17.
Anal Chem ; 96(16): 6347-6355, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607313

RESUMO

The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Glicosilação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Humanos , Polissacarídeos/análise , Polissacarídeos/química , Cromatografia Líquida , Pepsina A/metabolismo , Pepsina A/química , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Animais , Membranas Artificiais
18.
ACS Sens ; 9(4): 1756-1762, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38620013

RESUMO

Biosensing technologies are often described to provide facile, sensitive, and minimally to noninvasive detection of molecular analytes across diverse scientific, environmental, and clinical diagnostic disciplines. However, commercialization has been very limited mostly due to the difficulty of biosensor reconfiguration for different analyte(s) and limited high-throughput capabilities. The immobilization of different biomolecular probes (e.g., antibodies, peptides, and aptamers) requires the sensor surface chemistry to be tailored to provide optimal probe coupling, orientation, and passivation and prevent nonspecific interactions. To overcome these challenges, here we report the development of a solution-phase biosensor consisting of an engineered aptamer, the AptaShield, capable of universally binding to any antigen recognition site (Fab') of fluorescently labeled immunoglobulins (IgG) produced in rabbits. The resulting AptaShield biosensor relies on a low affinity dynamic equilibrium between the fluorescently tagged aptamer and IgG to generate a specific Förster resonance energy transfer (FRET) signal. As the analyte binds to the IgG, the AptaShield DNA aptamer-IgG complex dissociates, leading to an analyte concentration-dependent decrease of the FRET signal. The biosensor demonstrates high selectivity, specificity, and reproducibility for analyte quantification in different biological fluids (e.g., urine and blood serum) in a one-step and low sample volume (0.5-6.25 µL) format. The AptaShield provides a universal signal transduction mechanism as it can be coupled to different rabbit antibodies without the need for aptamer modification, therefore representing a robust high-throughput solution-phase technology suitable for point-of-care applications, overcoming the current limitations of gold standard enzyme-linked immunosorbent assays (ELISA) for molecular profiling.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Imunoglobulina G , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoglobulina G/sangue , Imunoglobulina G/química , Imunoglobulina G/imunologia , Animais , Coelhos , Transdução de Sinais , Ensaios de Triagem em Larga Escala/métodos
19.
J Am Soc Mass Spectrom ; 35(6): 1292-1300, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38662593

RESUMO

Endogenous antibodies, or immunoglobulins (Igs), abundantly present in body fluids, represent some of the most challenging samples to analyze, largely due to the immense variability in their sequences and concentrations. It has been estimated that our body can produce billions of different Ig proteins with different isotypes, making their individual analysis seemingly impossible. However, recent advances in protein-centric proteomics using LC-MS coupled to Orbitrap mass analyzers to profile intact Fab fragments formed by selective cleavage at the IgG-hinge revealed that IgG repertoires may be less diverse, albeit unique for each donor. Serum repertoires seem to be dominated by a few hundred clones that cumulatively make up 50-95% of the total IgG content. Enabling such analyses required careful optimization of the chromatography and mass analysis, as all Fab analytes are highly alike in mass (46-51 kDa) and sequence. To extend the opportunities of this mass-spectrometry-based profiling of antibody repertoires, we here report the optimization and evaluation of an alternative MS platform, namely, the timsTOF, for antibody repertoire profiling. The timsTOF mass analyzer has gained traction in recent years for peptide-centric proteomics and found wide applicability in plasma proteomics, affinity proteomics, and HLA peptidomics, to name a few. However, for protein-centric analysis, this platform has been less explored. Here, we demonstrate that the timsTOF platform can be adapted to perform protein-centric LC-MS-based profiling of antibody repertoires. In a side-by-side comparison of the timsTOF and the Orbitrap we demonstrate that the extracted serum antibody repertoires are alike qualitatively and quantitatively, whereby in particular the sensitivity of the timsTOF platform excels. Future incorporation of advanced top-down capabilities on the timsTOF may make this platform a very valuable alternative for protein-centric proteomics and top-down proteomics and thus also for personalized antibody repertoire profiling.


Assuntos
Fragmentos Fab das Imunoglobulinas , Espectrometria de Massas , Proteômica , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/análise , Fragmentos Fab das Imunoglobulinas/sangue , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas/métodos , Imunoglobulina G/sangue , Imunoglobulina G/química , Imunoglobulina G/análise , Medicina de Precisão/métodos , Espectrometria de Massa com Cromatografia Líquida
20.
J Biol Chem ; 300(5): 107245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569940

RESUMO

The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.


Assuntos
Proteínas de Bactérias , Glicosídeo Hidrolases , Imunoglobulina G , Modelos Moleculares , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Streptococcus pyogenes/enzimologia , Especificidade por Substrato , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...