Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
Genes (Basel) ; 15(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39202382

RESUMO

Spodoptera frugiperda poses a severe threat to crops, causing substantial economic losses. The increased use of chemical pesticides has led to resistance in S. frugiperda populations. Micro ribonucleic acids (MicroRNAs or miRNAs) are pivotal in insect growth and development. This study aims to identify miRNAs across different developmental stages of S. frugiperda to explore differential expression and predict target gene functions. High-throughput sequencing of miRNAs was conducted on eggs, 3rd instar larvae, pupae, and adults. Bioinformatics analyses identified differentially expressed miRNAs specifically in larvae, with candidate miRNAs screened to predict target genes, particularly those involved in detoxification pathways. A total of 184 known miRNAs and 209 novel miRNAs were identified across stages. Comparative analysis revealed 54, 15, and 18 miRNAs differentially expressed in larvae, compared to egg, pupa, and adult stages, respectively. Eight miRNAs showed significant differential expression across stages, validated by quantitative reverse transcription PCR (qRT-PCR). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses predicted target genes' functions, identifying eight differentially expressed miRNAs targeting 10 gene families associated with detoxification metabolism, including P450s, glutathione S-transferase (GSTs), ATP-binding cassette (ABC) transporters, and sodium channels. These findings elucidate the species-specific miRNA profiles and regulatory mechanisms of detoxification-related genes in S. frugiperda larvae, offering insights and strategies for effectively managing this pest.


Assuntos
Inativação Metabólica , Larva , MicroRNAs , Spodoptera , Animais , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Inativação Metabólica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
2.
J Agric Food Chem ; 72(28): 15624-15632, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38952111

RESUMO

Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.


Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Túbulos de Malpighi , Spodoptera , Xenobióticos , Animais , Spodoptera/genética , Spodoptera/efeitos dos fármacos , Spodoptera/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Xenobióticos/metabolismo , Inseticidas/farmacologia , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/enzimologia , Túbulos de Malpighi/efeitos dos fármacos , Resistência a Inseticidas/genética , Inativação Metabólica/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/efeitos dos fármacos
3.
PLoS Genet ; 20(7): e1011371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39083540

RESUMO

The ubiquitin-proteasome system (UPS) is critical for maintaining proteostasis, influencing stress resilience, lifespan, and thermal adaptability in organisms. In Caenorhabditis elegans, specific proteasome subunits and activators, such as RPN-6, PBS-6, and PSME-3, are associated with heat resistance, survival at cold (4°C), and enhanced longevity at moderate temperatures (15°C). Previously linked to improving proteostasis, we investigated the impact of sterility-inducing floxuridine (FUdR) on UPS functionality under proteasome dysfunction and its potential to improve cold survival. Our findings reveal that FUdR significantly enhances UPS activity and resilience during proteasome inhibition or subunit deficiency, supporting worms' normal lifespan and adaptation to cold. Importantly, FUdR effect on UPS activity occurs independently of major proteostasis regulators and does not rely on the germ cells proliferation or spermatogenesis. Instead, FUdR activates a distinct detoxification pathway that supports UPS function, with GST-24 appearing to be one of the factors contributing to the enhanced activity of the UPS upon knockdown of the SKN-1-mediated proteasome surveillance pathway. Our study highlights FUdR unique role in the UPS modulation and its crucial contribution to enhancing survival under low-temperature stress, providing new insights into its mechanisms of action and potential therapeutic applications.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Floxuridina , Células Germinativas , Complexo de Endopeptidases do Proteassoma , Proteostase , Transdução de Sinais , Ubiquitina , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Floxuridina/farmacologia , Ubiquitina/metabolismo , Longevidade/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Temperatura Baixa , Inativação Metabólica/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
4.
Int J Biol Macromol ; 277(Pt 2): 134231, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074699

RESUMO

To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.


Assuntos
Sistema Enzimático do Citocromo P-450 , Xenobióticos , ortoaminobenzoatos , Animais , ortoaminobenzoatos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Inativação Metabólica/genética , Astacoidea/genética , Astacoidea/efeitos dos fármacos , Astacoidea/metabolismo , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Perfilação da Expressão Gênica , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
5.
Int J Biol Macromol ; 277(Pt 2): 134304, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084443

RESUMO

Tea plant (Camellia sinensis) is an important economical crop that frequently suffers from various herbicides, especially glyphosate. However, the molecular responses and regulatory mechanisms of glyphosate stress in tea plants remain poorly understood. Here, we reported a transcriptome dataset and identified large number of differentially expressed genes (DEGs) under glyphosate exposure. Next, two glutathione S-transferase genes (CsGSTU8-1 and CsGSTU8-2) that upregulated significantly were screened as candidate genes. Tissue-specific expression patterns showed that both CsGSTU8-1 and CsGSTU8-2 had extremely high expression levels in the roots and were predominantly localized in the nucleus and plasma membrane based on subcellular localization. Both were significantly upregulated at different time points under various stressors, including drought, cold, salt, pathogen infections, and SA treatments. An enzymatic activity assay showed that CsGSTU8-1 catalyzes the conjugation of glutathione with 2,4-dinitrochlorobenzene (CDNB). Functional analysis in yeast verified that the two genes significantly contributed to the detoxification of glyphosate, and CsGSTU8-1 had a stronger role in detoxification than CsGSTU8-2. Taken together, these findings provide insights into the molecular responses of tea plants to glyphosate and the functions of CsGSTU8s in glyphosate detoxification, which can be used as a promising genetic resource for improving herbicide resistance in tea cultivars.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Glutationa Transferase , Glicina , Glifosato , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Camellia sinensis/genética , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/metabolismo , Camellia sinensis/enzimologia , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Inativação Metabólica/genética , Transcriptoma , Herbicidas/farmacologia , Herbicidas/metabolismo , Perfilação da Expressão Gênica
6.
PLoS Biol ; 22(7): e3002711, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008532

RESUMO

Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.


Assuntos
Escherichia coli , Taxa de Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Mutação , Inativação Metabólica/genética
7.
Plant Physiol Biochem ; 214: 108968, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074436

RESUMO

Cadmium (Cd) is a hazardous heavy metal known for its detrimental effects on plants, human health, and the environment. This review article delves into the dynamics of Cd uptake, long-distance transport, and its impact on plant performance, with a specific focus on tomato plants. The process of Cd uptake by roots and its subsequent long-distance transport in the xylem and phloem are explored to understand how Cd influences plants operation. The toxic effects of Cd on tomato plants are discussed, highlighting on the challenges it poses to plant growth and development. Furthermore, the review investigates various Cd tolerance mechanisms in plants, including avoidance or exclusion by the root cell wall, root-to-shoot translocation, detoxification pathways, and antioxidative defence systems against Cd-induced stress. In addition, the transcriptomic analyses of tomato plants under Cd stress provide insights into the molecular responses and adaptations of plants to Cd toxicity. Overall, this comprehensive review enhances our understanding of Cd-plant interactions and reveal promising genes for tomato genetic improvement to increase its tolerance to cadmium.


Assuntos
Cádmio , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/toxicidade , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Transporte Biológico , Inativação Metabólica/genética
8.
Mol Ecol ; 33(16): e17463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38984610

RESUMO

Here we investigate the evolutionary dynamics of five enzyme superfamilies (CYPs, GSTs, UGTs, CCEs and ABCs) involved in detoxification in Helicoverpa armigera. The reference assembly for an African isolate of the major lineages, H. a. armigera, has 373 genes in the five superfamilies. Most of its CYPs, GSTs, UGTs and CCEs and a few of its ABCs occur in blocks and most of the clustered genes are in subfamilies specifically implicated in detoxification. Most of the genes have orthologues in the reference genome for the Oceania lineage, H. a. conferta. However, clustered orthologues and subfamilies specifically implicated in detoxification show greater sequence divergence and less constraint on non-synonymous differences between the two assemblies than do other members of the five superfamilies. Two duplicated CYPs, which were found in the H. a. armigera but not H. a. conferta reference genome, were also missing in 16 Chinese populations spanning two different lineages of H. a. armigera. The enzyme produced by one of these duplicates has higher activity against esfenvalerate than a previously described chimeric CYP mutant conferring pyrethroid resistance. Various transposable elements were found in the introns of most detoxification genes, generating diverse gene structures. Extensive resequencing data for the Chinese H. a. armigera and H. a. conferta lineages also revealed complex copy number polymorphisms in 17 CCE001s in a cluster also implicated in pyrethroid metabolism, with substantial haplotype differences between all three lineages. Our results suggest that cotton bollworm has a versatile complement of detoxification genes which are evolving in diverse ways across its range.


Assuntos
Sistema Enzimático do Citocromo P-450 , Helicoverpa armigera , Animais , China , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Duplicação Gênica , Helicoverpa armigera/enzimologia , Helicoverpa armigera/genética , Inativação Metabólica/genética , Filogenia
9.
J Agric Food Chem ; 72(27): 15164-15175, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38938126

RESUMO

Insecticide susceptibility is mainly determined by the insect host, but symbiotic bacteria are also an important affecting factor. In this study, we investigate the relationship between the structure of gut bacterial symbionts and insecticide susceptibility in Diaphorina citri, the important carrier of Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). Our results indicated that antibiotic treatment significantly increased the susceptibility of D. citri to bifenthrin and thiamethoxam, and significantly decreased the relative abundance of Wolbachia and Profftella, enzyme activities of CarEs, and expression level of multiple CarE genes. The relative loads of Wolbachia and Profftella were positively correlated with DcitCCE13, DcitCCE14, DcitCCE15, and DcitCCE16. RNAi and prokaryotic expression revealed that DcitCCE15 is associated with bifenthrin metabolism. These results revealed that bacterial symbionts might regulate DcitCCE15 expression, which is involved in the susceptibility of D. citri to bifenthrin.


Assuntos
Hemípteros , Inseticidas , Simbiose , Animais , Inseticidas/farmacologia , Hemípteros/microbiologia , Hemípteros/genética , Hemípteros/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Wolbachia/efeitos dos fármacos , Wolbachia/genética , Piretrinas/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Inativação Metabólica/genética
10.
Environ Microbiol ; 26(5): e16629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695111

RESUMO

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Assuntos
Arsênio , Extremófilos , Transferência Genética Horizontal , Rodófitas , Rodófitas/genética , Extremófilos/genética , Arsênio/metabolismo , Mercúrio/metabolismo , Estresse Fisiológico/genética , Inativação Metabólica/genética , Evolução Molecular
11.
Drug Metab Rev ; 54(4): 361-385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35892182

RESUMO

HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.


Assuntos
Fator 4 Nuclear de Hepatócito , Inativação Metabólica , Fígado , Humanos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Redes Reguladoras de Genes , Inativação Metabólica/genética , Preparações Farmacêuticas/metabolismo
12.
Drug Metab Rev ; 54(2): 194-206, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35412942

RESUMO

Interindividual differences in drug response have always existed in clinical treatment. Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) play an important role in the process of pharmacokinetics. The effects of genetic polymorphism and nuclear receptors on the expression of drug metabolism enzymes and transporters can only explain some individual differences in clinical treatment. Several key ADME genes have been demonstrated to be regulated by epigenetic mechanisms that can potentially affect inter-individual variability in medical treatment. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug response. Among them, the most studied are anti-tumor drugs, followed by anti-tuberculous and anti-platelet drugs. Therefore, we provide an epigenetics perspective on variability in drug response. The review summarizes the correlation between ADME gene expression and DNA methylation, including the exact methylation locations, and focuses on the corresponding drug disposition and effects to illuminate interindividual differences in clinical medication.


Assuntos
Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Inativação Metabólica/genética , Proteínas de Membrana Transportadoras/genética
13.
Pestic Biochem Physiol ; 183: 105084, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430074

RESUMO

The insect-specific epsilon class of glutathione S-transferases (GSTEs) plays important roles in insecticide detoxification in insects. In our previous work, five GSTEs were identified in Locusta migratoria, and two recombinant GSTEs, rLmGSTE1 and rLmGSTE4, showed high catalytic activity when 1-chloro-2,4-dinitrobenzene (CDNB) was used as a substrate. In this work, we further investigated whether these two GSTEs could metabolize three insecticides including malathion, deltamethrin and DDT. Using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC/MS) method, we found that rLmGSTE4, but not rLmGSTE1, can metabolize malathion and DDT. Malathion bioassays of L.migratoria after the expression of LmGSTE4 was suppressed by RNA interference (RNAi) showed increased insect mortality from 33.8% to 68.9%. However, no changes in mortality were observed in deltamethrin- or DDT-treated L.migratoria after the expression of LmGSTE4 was suppressed by RNAi. Our results provided direct evidences that LmGSTE4 participates in malathion detoxification in L.migratoria. These findings are important for understanding the mechanisms of insecticide resistance in L.migratoria and developing new strategies for managing the insect populations in the field.


Assuntos
Inseticidas , Locusta migratoria , Animais , DDT/metabolismo , DDT/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Locusta migratoria/genética , Locusta migratoria/metabolismo , Malation/metabolismo , Malation/farmacologia
14.
Pharmacol Rep ; 74(1): 204-215, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741761

RESUMO

BACKGROUND: Hepatic enzymes involved in drug metabolism vary markedly in expression, abundance and activity, which affects individual susceptibility to drugs and toxicants. The present study aimed to compare mRNA expression and protein abundance of the most pharmacologically relevant drug-metabolizing enzymes in two main sources of the control liver samples that are used as the reference, i.e. organ donor livers and non-tumorous tissue from metastatic livers. An association analysis of the most common genetic variants with mRNA and protein levels was also performed. METHODS: The CYP450 and UGT enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, UGT1A1, UGT1A3, UGT2B7 and UGT2B15) were analyzed for mRNA (qPCR) and protein abundance (LC-MS/MS) in healthy donors (n = 11) and metastatic (n = 13) livers. Genotyping was performed by means of TaqMan assays and pyrosequencing. RESULTS: Significantly higher protein abundance in the metastatic livers was observed in case of CYP2C9, CYP2D6, and UGT2B7, and for UGT1A3 the difference was only significant at mRNA level. For all the enzymes except CYP2E1 some significant correlation between mRNA and protein content was observed, and for UGT1A1 an inverse correlation with age was noted. CYP2C19, CYP3A5 and CYP2D6 were significantly affected by genotype. CONCLUSION: The selection of a control group for the study on drug-metabolizing enzymes (e.g. in pathological states) may possibly affect its conclusions on differences in mRNA and protein content. Genotyping for common functional variants of CYP450 enzymes should be performed in all studies on drug-metabolizing enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Inativação Metabólica/genética , Fígado/enzimologia , Perfilação da Expressão Gênica , Técnicas de Genotipagem/métodos , Humanos , Fígado/patologia , Metástase Neoplásica/patologia , Variantes Farmacogenômicos , Doadores de Tecidos , Xenobióticos/metabolismo
15.
Insect Biochem Mol Biol ; 140: 103696, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800643

RESUMO

Insect CYP2 and mitochondrial clan P450s are relatively conserved genes encoding enzymes generally thought to be involved in biosynthesis or metabolism of endobiotics. However, emerging evidence argues they have potential roles in chemical defense as well, but their actual detoxification functions remain largely unknown. Here, we focused on the full complement of 8 CYP2 and 10 mitochondrial P450s in the generalist herbivore, Helicoverpa armigera. Their varied spatiotemporal expression profiles were analyzed and reflected their specific functions. For functional study of the mitochondrial clan P450s, the redox partners, adrenodoxin reductase (AdR) and adrenodoxin (Adx), were identified from genomes of eight insects and an efficient in vitro electron transfer system of mitochondrial P450 was established by co-expression with Adx and AdR of H. armigera. All CYP2 clan P450s and 8 mitochondrial P450s were successfully expressed in Sf9 cells and compared functionally. In vitro metabolism assays showed that two CYP2 clan P450s (CYP305B1 and CYP18A1) and CYP333B3 (mito clan) could epoxidize aldrin to dieldrin, while CYP305B1 and CYP339A1 (mito clan) have limited but significant hydroxylation capacities to esfenvalerate. CYP303A1 of the CYP2 clan exhibits high metabolic efficiency to 2-tridecanone. Screening the xenobiotic metabolism competence of CYP2 and mitochondrial clan P450s not only provides new insights on insect chemical defense but also can give indications on their physiological functions in H. armigera and other insects.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/metabolismo , Inativação Metabólica , Mariposas , Xenobióticos/metabolismo , Aldrina/metabolismo , Animais , Inativação Metabólica/genética , Inativação Metabólica/fisiologia , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/metabolismo , Mariposas/fisiologia , Células Sf9
16.
J Clin Lab Anal ; 35(12): e24085, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34773716

RESUMO

BACKGROUND: Metabolic abnormalities in patients with gastric adenocarcinoma lead to drug resistance and poor prognosis. Therefore, this study aimed to explore biomarkers that can predict the prognostic risk of gastric adenocarcinoma by analyzing drug metabolism-related genes. METHODS: The RNA-seq and clinical information on gastric adenocarcinoma were downloaded from the UCSC and gene expression omnibus databases. Univariate and least absolute shrinkage and selection operator regression analyses were used to identify the prognostic gene signature of gastric adenocarcinoma. The relationships between gastric adenocarcinoma prognostic risk and tumor microenvironment were assessed using CIBERSORT, EPIC, QUANTISEQ, MCPCounter, xCell, and TIMER algorithms. The potential drugs that could target the gene signatures were predicted in WebGestalt, and molecular docking analysis verified their binding stabilities. RESULTS: Combined with clinical information, an eight-gene signature, including GPX3, ABCA1, NNMT, NOS3, SLCO4A1, ADH4, DHRS7, and TAP1, was identified from the drug metabolism-related gene set. Based on their expressions, risk scores were calculated, and patients were divided into high- and low-risk groups, which had significant differences in survival status and immune infiltrations. Risk group was also identified as an independent prognostic factor of gastric adenocarcinoma, and the established prognostic and nomogram models exhibited excellent capacities for predicting prognosis. Finally, miconazole and niacin were predicted as potential therapeutic drugs for gastric adenocarcinoma that bond stably with NOS3 and NNMT through hydrogen interactions. CONCLUSIONS: This study proposed a drug metabolism-related eight-gene signature as a potential biomarker to predict the gastric adenocarcinoma prognosis risks.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Inativação Metabólica/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Adenocarcinoma/tratamento farmacológico , Adulto , Idoso , Biomarcadores Tumorais/genética , Glibureto/química , Glibureto/metabolismo , Glibureto/farmacocinética , Humanos , Miconazol/química , Miconazol/farmacocinética , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Nomogramas , Prognóstico , Mapas de Interação de Proteínas/genética , Proteínas/química , Proteínas/genética , Reprodutibilidade dos Testes , Fatores de Risco , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Microbiol Spectr ; 9(3): e0121221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756068

RESUMO

In the periodontal pocket, there is a direct correlation between environmental conditions, the dynamic oral microbial flora, and disease. The relative abundance of several newly recognized microbial species in the oral microenvironment has raised questions on their impact on disease development. One such organism, Filifactor alocis, is significant to the pathogenic biofilm structure. Moreover, its pathogenic characteristics are highlighted by its ability to survive in the oxidative-stress microenvironment of the periodontal pocket and alter the microbial community dynamics. There is a gap in our understanding of its mechanism(s) of oxidative stress resistance and impact on pathogenicity. Several proteins, including HMPRFF0389-00519 (FA519), were observed in high abundance in F. alocis during coinfection of epithelial cells with Porphyromonas gingivalis W83. Bioinformatics analysis shows that FA519 contains a "Cys-X-X-Cys zinc ribbon domain" which could be involved in DNA binding and oxidative stress resistance. We have characterized FA519 to elucidate its roles in the oxidative stress resistance and virulence of F. alocis. Compared to the wild-type strain, the F. alocis isogenic gene deletion mutant, FLL1013 (ΔFA519::ermF), showed significantly reduced sensitivity to hydrogen peroxide and nitric oxide-induced stress. The ability to form biofilm and adhere to and invade gingival epithelial cells was also reduced in the isogenic mutant. The recombinant FA519 protein was shown to protect DNA from Fenton-mediated damage with an intrinsic ability to reduce hydrogen peroxide and disulfide bonds. Collectively, these results suggest that FA519 is involved in oxidative stress resistance and can modulate important virulence attributes in F. alocis. IMPORTANCE Filifactor alocis is an emerging member of the periodontal community and is now proposed to be a diagnostic indicator of periodontal disease. However, due to the lack of genetic tools available to study this organism, not much is known about its virulence attributes. The mechanism(s) of oxidative stress resistance in F. alocis is unknown. Therefore, identifying the adaptive mechanisms utilized by F. alocis to survive in the oxidative stress environment of the periodontal pocket would lead to understanding its virulence regulation, which could help develop novel therapeutic treatments to combat the effects of periodontal disease. This study is focused on the characterization of FA519, a hypothetical protein in F. alocis, as a multifunctional protein that plays an important role in the reactive oxygen species-detoxification pathway. Collectively, our results suggest that FA519 is involved in oxidative stress resistance and can modulate important virulence attributes in F. alocis.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Inativação Metabólica/fisiologia , Estresse Oxidativo/fisiologia , Bolsa Periodontal/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Clostridiales/genética , Clostridiales/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Inativação Metabólica/genética , Microbiota/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Doenças Periodontais/microbiologia , Doenças Periodontais/patologia , Peroxidase/metabolismo , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Tiorredoxinas/metabolismo , Fatores de Virulência/genética
18.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769124

RESUMO

Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.


Assuntos
Resistência a Medicamentos/genética , Epilepsia/tratamento farmacológico , Inativação Metabólica/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Epilepsia/genética , Humanos , Testes Farmacogenômicos , Variantes Farmacogenômicos
19.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638547

RESUMO

Cytochromes P450 (CYP) are one of the major xenobiotic metabolizing enzymes with increasing importance in pharmacogenetics. The CYP2C9 enzyme is responsible for the metabolism of a wide range of clinical drugs. More than sixty genetic variations have been identified in CYP2C9 with many demonstrating reduced activity compared to the wild-type (WT) enzyme. The CYP2C9*8 allele is predominantly found in persons of African ancestry and results in altered clearance of several drug substrates of CYP2C9. The X-ray crystal structure of CYP2C9*8, which represents an amino acid variation from arginine to histidine at position 150 (R150H), was solved in complex with losartan. The overall conformation of the CYP2C9*8-losartan complex was similar to the previously solved complex with wild type (WT) protein, but it differs in the occupancy of losartan. One molecule of losartan was bound in the active site and another on the surface in an identical orientation to that observed in the WT complex. However, unlike the WT structure, the losartan in the access channel was not observed in the *8 complex. Furthermore, isothermal titration calorimetry studies illustrated weaker binding of losartan to *8 compared to WT. Interestingly, the CYP2C9*8 interaction with losartan was not as weak as the CYP2C9*3 variant, which showed up to three-fold weaker average dissociation constant compared to the WT. Taken together, the structural and solution characterization yields insights into the similarities and differences of losartan binding to CYP2C9 variants and provides a useful framework for probing the role of amino acid substitution and substrate dependent activity.


Assuntos
Domínio Catalítico/genética , Citocromo P-450 CYP2C9/genética , Inativação Metabólica/genética , Losartan/metabolismo , Alelos , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Citocromo P-450 CYP2C9/metabolismo , Variação Genética/genética , Humanos , Inativação Metabólica/fisiologia , Conformação Proteica
20.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502161

RESUMO

Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to reduced azole sensitivity when compared to Cps. RNA-Seq and bioinformatic analyses found that following azole treatment, 55 genes in Cps, belonging to diverse pathways, displayed a significant decrease in expression. Putative xenobiotic detoxification genes overexpressed in tetraconazole-treated Che encoded predicted monooxygenase and oxidoreductase enzymes. In summary, expression of a functional CYP51A gene and overexpression of predicted xenobiotic detoxification genes appear likely to contribute to differential fungicide sensitivity in these two sister taxa.


Assuntos
Azóis/farmacologia , Buxus/efeitos dos fármacos , Buxus/genética , Buxus/microbiologia , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Biologia Computacional/métodos , Farmacorresistência Fúngica , Ergosterol/metabolismo , Perfilação da Expressão Gênica , Genoma Fúngico , Genômica/métodos , Hypocreales/efeitos dos fármacos , Inativação Metabólica/genética , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...