Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 236, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970123

RESUMO

BACKGROUND: Owing to its unique location and multifaceted metabolic functions, epicardial adipose tissue (EAT) is gradually emerging as a new metabolic target for coronary artery disease risk stratification. Microvascular obstruction (MVO) has been recognized as an independent risk factor for unfavorable prognosis in acute myocardial infarction patients. However, the concrete role of EAT in the pathogenesis of MVO formation in individuals with ST-segment elevation myocardial infarction (STEMI) remains unclear. The objective of the study is to evaluate the correlation between EAT accumulation and MVO formation measured by cardiac magnetic resonance (CMR) in STEMI patients and clarify the underlying mechanisms involved in this relationship. METHODS: Firstly, we utilized CMR technique to explore the association of EAT distribution and quantity with MVO formation in patients with STEMI. Then we utilized a mouse model with EAT depletion to explore how EAT affected MVO formation under the circumstances of myocardial ischemia/reperfusion (I/R) injury. We further investigated the immunomodulatory effect of EAT on macrophages through co-culture experiments. Finally, we searched for new therapeutic strategies targeting EAT to prevent MVO formation. RESULTS: The increase of left atrioventricular EAT mass index was independently associated with MVO formation. We also found that increased circulating levels of DPP4 and high DPP4 activity seemed to be associated with EAT increase. EAT accumulation acted as a pro-inflammatory mediator boosting the transition of macrophages towards inflammatory phenotype in myocardial I/R injury through secreting inflammatory EVs. Furthermore, our study declared the potential therapeutic effects of GLP-1 receptor agonist and GLP-1/GLP-2 receptor dual agonist for MVO prevention were at least partially ascribed to its impact on EAT modulation. CONCLUSIONS: Our work for the first time demonstrated that excessive accumulation of EAT promoted MVO formation by promoting the polarization state of cardiac macrophages towards an inflammatory phenotype. Furthermore, this study identified a very promising therapeutic strategy, GLP-1/GLP-2 receptor dual agonist, targeting EAT for MVO prevention following myocardial I/R injury.


Assuntos
Tecido Adiposo , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1 , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Pericárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Animais , Pericárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Masculino , Macrófagos/metabolismo , Macrófagos/patologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Humanos , Feminino , Pessoa de Meia-Idade , Fenótipo , Dipeptidil Peptidase 4/metabolismo , Idoso , Técnicas de Cocultura , Adiposidade , Circulação Coronária , Transdução de Sinais , Microcirculação , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/diagnóstico por imagem , Incretinas/farmacologia , Microvasos/metabolismo , Microvasos/patologia , Células Cultivadas , Camundongos , Tecido Adiposo Epicárdico
2.
Am J Physiol Cell Physiol ; 327(1): C74-C96, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738303

RESUMO

Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic ß cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas , Camundongos Endogâmicos C57BL , Obesidade , Animais , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Masculino , Incretinas/farmacologia , Incretinas/metabolismo , Transporte Proteico/efeitos dos fármacos , Controle Glicêmico/métodos , Camundongos Obesos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Humanos , Dieta Hiperlipídica/efeitos adversos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Insulina/metabolismo , Exenatida/farmacologia , Transdução de Sinais/efeitos dos fármacos , AMP Cíclico/metabolismo
3.
Peptides ; 178: 171254, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815655

RESUMO

The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9-36) and GIP(3-42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9-39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6-8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9-36), GIP(3-42), Ex(9-39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9-36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3-42) and Ex(9-39) treatment. While GLP-1(9-36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3-42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9-36) and GIP(3-42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9-36) and GIP(3-42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.


Assuntos
Dieta Hiperlipídica , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Incretinas , Células Secretoras de Insulina , Animais , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Masculino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Camundongos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Incretinas/farmacologia , Incretinas/metabolismo , Fragmentos de Peptídeos/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Apoptose/efeitos dos fármacos , Insulina/metabolismo
4.
J Cardiovasc Pharmacol ; 83(6): 621-634, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547520

RESUMO

ABSTRACT: Type 2 diabetes mellitus increases the risk of cardiovascular diseases. Therefore, elucidation of the cardiovascular effects of antidiabetics is crucial. Incretin-based therapies are increasingly used for type 2 diabetes mellitus treatment as monotherapy and in combination. We aimed to study the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sitagliptin on beating rates in isolated atria from diabetic rats. The chronotropic responses to GLP-1 RAs and sitagliptin as monotherapy and in combinations with metformin, pioglitazone, and glimepiride in isolated atria from control and diabetic rats were determined. GLP-1 (7-36), GLP-1 (9-36), and exendin-4 (1-39) produced increases in beating rates in both control and diabetic rat atria. However, sitagliptin increased the beating frequency only in the diabetic group. Exendin (9-39), nitro- l -arginine methyl ester hydrochloride, and indomethacin blocked responses to GLP-1 RAs but not the response to sitagliptin. Glibenclamide, 4-aminopyridine, apamin, charybdotoxin, superoxide dismutase, and catalase incubations did not change responses to GLP-1 RAs and sitagliptin. GLP-1 RAs increase beating rates in isolated rat atrium through GLP-1 receptor, nitric oxide, and cyclooxygenase pathways but not potassium channels and reactive oxygen radicals.


Assuntos
Diabetes Mellitus Experimental , Receptor do Peptídeo Semelhante ao Glucagon 1 , Átrios do Coração , Frequência Cardíaca , Hipoglicemiantes , Fosfato de Sitagliptina , Animais , Fosfato de Sitagliptina/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Ratos , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/farmacologia , Incretinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Pirazinas/farmacologia , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
5.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511325

RESUMO

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glicólise , Membro Posterior , Isquemia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Transdução de Sinais , Animais , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Isquemia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicólise/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Membro Posterior/irrigação sanguínea , Masculino , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Indutores da Angiogênese/farmacologia , Fragmentos de Peptídeos/farmacologia , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Modelos Animais de Doenças , Incretinas/farmacologia , Angiogênese
6.
Am J Physiol Endocrinol Metab ; 326(6): E747-E766, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477666

RESUMO

Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.


Assuntos
Incretinas , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Incretinas/uso terapêutico , Incretinas/farmacologia , Animais , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Glucagon/metabolismo
7.
JAMA ; 331(1): 38-48, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38078870

RESUMO

Importance: The effect of continued treatment with tirzepatide on maintaining initial weight reduction is unknown. Objective: To assess the effect of tirzepatide, with diet and physical activity, on the maintenance of weight reduction. Design, Setting, and Participants: This phase 3, randomized withdrawal clinical trial conducted at 70 sites in 4 countries with a 36-week, open-label tirzepatide lead-in period followed by a 52-week, double-blind, placebo-controlled period included adults with a body mass index greater than or equal to 30 or greater than or equal to 27 and a weight-related complication, excluding diabetes. Interventions: Participants (n = 783) enrolled in an open-label lead-in period received once-weekly subcutaneous maximum tolerated dose (10 or 15 mg) of tirzepatide for 36 weeks. At week 36, a total of 670 participants were randomized (1:1) to continue receiving tirzepatide (n = 335) or switch to placebo (n = 335) for 52 weeks. Main Outcomes and Measures: The primary end point was the mean percent change in weight from week 36 (randomization) to week 88. Key secondary end points included the proportion of participants at week 88 who maintained at least 80% of the weight loss during the lead-in period. Results: Participants (n = 670; mean age, 48 years; 473 [71%] women; mean weight, 107.3 kg) who completed the 36-week lead-in period experienced a mean weight reduction of 20.9%. The mean percent weight change from week 36 to week 88 was -5.5% with tirzepatide vs 14.0% with placebo (difference, -19.4% [95% CI, -21.2% to -17.7%]; P < .001). Overall, 300 participants (89.5%) receiving tirzepatide at 88 weeks maintained at least 80% of the weight loss during the lead-in period compared with 16.6% receiving placebo (P < .001). The overall mean weight reduction from week 0 to 88 was 25.3% for tirzepatide and 9.9% for placebo. The most common adverse events were mostly mild to moderate gastrointestinal events, which occurred more commonly with tirzepatide vs placebo. Conclusions and Relevance: In participants with obesity or overweight, withdrawing tirzepatide led to substantial regain of lost weight, whereas continued treatment maintained and augmented initial weight reduction. Trial Registration: ClinicalTrials.gov Identifier: NCT04660643.


Assuntos
Fármacos Antiobesidade , Obesidade , Redução de Peso , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Duplo-Cego , Polipeptídeo Inibidor Gástrico/administração & dosagem , Polipeptídeo Inibidor Gástrico/efeitos adversos , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/complicações , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Resultado do Tratamento , Redução de Peso/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 2/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 2/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 2/uso terapêutico , Incretinas/administração & dosagem , Incretinas/efeitos adversos , Incretinas/farmacologia , Incretinas/uso terapêutico , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Quimioterapia de Manutenção , Injeções Subcutâneas , Suspensão de Tratamento
8.
Peptides ; 171: 171117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984684

RESUMO

Tirzepatide is a dual GIP and GLP-1 receptor co-agonist which is approved for glucose-lowering therapy in type 2 diabetes. Here, we explored its effects on beta cell function, insulin sensitivity and insulin-independent glucose elimination (glucose effectiveness) in normal mice. Anesthetized female C57/BL/6 J mice were injected intravenously with saline or glucose (0.125, 0.35 or 0.75 g/kg) with or without simultaneous administration of synthetic tirzepatide (3 nmol/kg). Samples were taken at 0, 1, 5, 10, 20 and 50 min. Glucose elimination rate was estimated by the percentage reduction in glucose from min 5 to min 20 (KG). The 50 min areas under the curve (AUC) for insulin and glucose were determined. Beta cell function was assessed as AUCinsulin divided by AUCglucose. Insulin sensitivity (SI) and glucose effectiveness (SG) were determined by minimal model analysis of the insulin and glucose data. Tirzepatide glucose-dependently reduced glucose levels and increased insulin levels. The slope for the regression of AUCinsulin versus AUCglucose was increased 7-fold by tirzepatide from 0.014 ± 0.004 with glucose only to 0.099 ± 0.016 (P < 0.001). SI was not affected by tirzepatide, whereas SG was increased by 78% (P < 0.001). The increase in SG contributed to an increase in KG by 74 ± 4% after glucose alone and by 67 ± 8% after glucose+ tirzepatide, whereas contribution by SI times AUCinsulin insulin (i.e., disposition index) was 26 ± 4% and 33 ± 8%, respectively. In conclusion, tirzepatide stimulates both insulin secretion and glucose effectiveness, with stimulation of glucose effectiveness being the prominent process to reduce glucose.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Camundongos , Animais , Glucose/farmacologia , Incretinas/farmacologia , Secreção de Insulina , Glicemia , Resistência à Insulina/fisiologia , Polipeptídeo Inibidor Gástrico/farmacologia , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Receptor do Peptídeo Semelhante ao Glucagon 1
9.
Neurogastroenterol Motil ; 36(2): e14660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37638839

RESUMO

PURPOSE: The objectives of this review are to summarize the role of gastric motor functions in the development of satiation (defined broadly as postprandial fullness) and satiety (reduced appetite or postponing desire to eat after a meal) and their impact on weight change. The specific topics are the methods of measurement of gastric emptying and accommodation and their impact on food intake, satiation, and satiety. A second focus contrasts bariatric surgery to endoscopic gastroplasty that alter gastric emptying and incretin responses in markedly divergent manners. BACKGROUND: The hormone, GLP-1, retards gastric emptying and increases gastric accommodation through vagally-mediated effects. Indeed, these effects provide the basis for the association of altered gastric emptying in the appetite and weight loss responses to pharmacological interventions particularly by those acting on receptors of incretin agonists such as liraglutide and the dual agonists, tirzepatide and cotadutide, all of which retard gastric emptying. In fact, retardation of gastric emptying and gastrointestinal adverse effects have been shown to contribute in part to the weight loss in response to this class of pharmacological agents. SUMMARY: The motor functions of the stomach are relevant to postprandial fullness and to interventions aimed at weight loss in people with obesity.


Assuntos
Incretinas , Obesidade , Humanos , Incretinas/farmacologia , Peso Corporal , Esvaziamento Gástrico/fisiologia , Saciação/fisiologia , Redução de Peso , Ingestão de Alimentos
10.
Endocr Pract ; 30(3): 292-303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38122931

RESUMO

OBJECTIVE: To review clinical trial data for incretin therapies that are approved or in late-stage development for overweight or obesity management, along with clinical implications of these therapies and future directions. METHODS: We searched for clinical trials involving incretin therapies studied specifically for overweight or obesity management in ClinicalTrials.gov and PubMed from registry inception through December 2023. RESULTS: Glucagon-like peptide-1 (GLP-1) receptor agonism, alone and in combination with glucose-dependent insulinotropic polypeptide (GIP) receptor agonism or glucagon agonism, leads to significant weight reduction in people with overweight or obesity. Newer incretin therapies have demonstrated weight reduction between 15% to 25%, far outpacing non-incretin therapies for weight management and achieving levels of weight loss that may prevent weight-related complications. However, the discontinuation of incretin therapies is associated with weight regain. The main side effects of incretin therapies are transient, mild-to-moderate gastrointestinal side effects - nausea, diarrhea, constipation, and vomiting - that commonly occur in the first 4 to 8 weeks of treatment. There is a rich late-stage pipeline of incretin therapies for weight management, consisting of oral GLP-1 receptor agonists, dual GLP-1/GIP receptor agonists, dual GLP-1/glucagon receptor agonists, triple GLP-1/GIP/glucagon receptor agonists, and combination therapies with nonincretin drugs. CONCLUSION: Newer incretin therapies for weight management have the potential to improve the treatment for overweight and obesity, the treatment and prevention of weight-related complications, and the individualization of weight management. Ensuring that these therapies are accessible - and that treatment with them is consistent and sustainable - is necessary to translate findings from trials into the real world.


Assuntos
Diabetes Mellitus Tipo 2 , Manejo da Obesidade , Humanos , Incretinas/uso terapêutico , Incretinas/farmacologia , Sobrepeso/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptores de Glucagon/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Redução de Peso , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
12.
Front Endocrinol (Lausanne) ; 14: 1234925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900147

RESUMO

Aim: Wolfram Syndrome (WS) is a rare condition caused by mutations in Wfs1, with a poor prognosis and no cure. Mono-agonists targeting the incretin glucagon-like-peptide 1 (GLP-1) have demonstrated disease-modifying potential in pre-clinical and clinical settings. Dual agonists that target GLP-1 and glucose-dependent insulinotropic polypeptide (GIP-1) are reportedly more efficacious; hence, we evaluated the therapeutic potential of dual incretin agonism in a loss-of-function rat model of WS. Methods: Eight-month-old Wfs1 knock-out (KO) and wild-type control rats were continuously treated with either the dual agonist DA-CH5 or saline for four months. Glycemic profile, visual acuity and hearing sensitivity were longitudinally monitored pre-treatment, and then at 10.5 and 12 months. Pancreata and retina were harvested for immunohistological analysis. Results: DA-CH5 therapy reversed glucose intolerance in KO rats and provided lasting anti-diabetogenic protection. Treatment also reversed intra-islet alterations, including reduced endocrine islet area and ß-cell density, indicating its regenerative potential. Although no rescue effect was noted for hearing loss, visual acuity and retinal ganglion cell density were better preserved in DA-CH5-treated rats. Conclusion: We present preclinical evidence for the pleiotropic therapeutic effects of long-term dual incretin agonist treatment; effects were seen despite treatment beginning after symptom-onset, indicating reversal of disease progression. Dual incretins represent a promising therapeutic avenue for WS patients.


Assuntos
Células Secretoras de Insulina , Síndrome de Wolfram , Humanos , Ratos , Animais , Lactente , Incretinas/farmacologia , Síndrome de Wolfram/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Polipeptídeo Inibidor Gástrico
13.
Am J Physiol Endocrinol Metab ; 325(5): E595-E609, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729025

RESUMO

Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Incretinas/farmacologia , Incretinas/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
14.
J Parkinsons Dis ; 13(7): 1149-1174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718851

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration. OBJECTIVE: In Lund Human Mesencephalic (LUHMES) dopaminergic-like neurons, we tested novel incretin mimetics under conditions of persistent, calcium-dependent ER stress. METHODS: We assessed the pharmacological effects of Liraglutide-a glucagon-like peptide-1 (GLP-1) analog-and the dual incretin GLP-1/GIP agonist DA3-CH in the unfolded protein response (UPR), cell bioenergetics, mitochondrial biogenesis, macroautophagy, and intracellular signaling for cell fate in terminally differentiated LUHMES cells. Cells were co-stressed with the sarcoplasmic reticulum calcium ATPase (SERCA) inhibitor, thapsigargin. RESULTS: We report that Liraglutide and DA3-CH analogs rescue the arrested oxidative phosphorylation and glycolysis. They mitigate the suppressed mitochondrial biogenesis and hyper-polarization of the mitochondrial membrane, all to re-establish normalcy of mitochondrial function under conditions of chronic ER stress. These effects correlate with a resolution of the UPR and the deficiency of components for autophagosome formation to ultimately halt the excessive synaptic and neuronal death. Notably, the dual incretin displayed a superior anti-apoptotic effect, when compared to Liraglutide. CONCLUSIONS: The results confirm the protective effects of incretin signaling in ER and mitochondrial stress for neuronal degeneration management and further explain the incretin-derived effects observed in PD patients.


Assuntos
Incretinas , Doença de Parkinson , Humanos , Incretinas/farmacologia , Incretinas/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Liraglutida/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Cálcio/uso terapêutico , Mitocôndrias , Peptídeo 1 Semelhante ao Glucagon , Dopamina/metabolismo , Neurônios/metabolismo
15.
Can J Cardiol ; 39(12): 1816-1838, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37429523

RESUMO

Glucagon-like peptide-1 receptor agonists (GLP1RA) are incretin agents initially designed for the treatment of type 2 diabetes mellitus but because of pleiotropic actions are now used to reduce cardiovascular disease in people with type 2 diabetes mellitus and in some instances as approved treatments for obesity. In this review we highlight the biology and pharmacology of GLP1RA. We review the evidence for clinical benefit on major adverse cardiovascular outcomes in addition to modulation of cardiometabolic risk factors including reductions in weight, blood pressure, improvement in lipid profiles, and effects on kidney function. Guidance is provided on indications and potential adverse effects to consider. Finally, we describe the evolving landscape of GLP1RA and including novel glucagon-like peptide-1-based dual/polyagonist therapies that are being evaluated for weight loss, type 2 diabetes mellitus, and cardiorenal benefit.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Incretinas/uso terapêutico , Incretinas/farmacologia , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Biologia
16.
Nat Metab ; 5(6): 945-954, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277609

RESUMO

The incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) mediate insulin responses that are proportionate to nutrient intake to facilitate glucose tolerance1. The GLP-1 receptor (GLP-1R) is an established drug target for the treatment of diabetes and obesity2, whereas the therapeutic potential of the GIP receptor (GIPR) is a subject of debate. Tirzepatide is an agonist at both the GIPR and GLP-1R and is a highly effective treatment for type 2 diabetes and obesity3,4. However, although tirzepatide activates GIPR in cell lines and mouse models, it is not clear whether or how dual agonism contributes to its therapeutic benefit. Islet beta cells express both the GLP-1R and the GIPR, and insulin secretion is an established mechanism by which incretin agonists improve glycemic control5. Here, we show that in mouse islets, tirzepatide stimulates insulin secretion predominantly through the GLP-1R, owing to reduced potency at the mouse GIPR. However, in human islets, antagonizing GIPR activity consistently decreases the insulin response to tirzepatide. Moreover, tirzepatide enhances glucagon secretion and somatostatin secretion in human islets. These data demonstrate that tirzepatide stimulates islet hormone secretion from human islets through both incretin receptors.


Assuntos
Polipeptídeo Inibidor Gástrico , Hipoglicemiantes , Incretinas , Ilhotas Pancreáticas , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Animais , Camundongos , Receptores de Peptídeos Semelhantes ao Glucagon/agonistas , Ilhotas Pancreáticas/efeitos dos fármacos , Incretinas/farmacologia , Insulina/metabolismo , Hipoglicemiantes/farmacologia , Células Cultivadas
17.
Neurogastroenterol Motil ; 35(8): e14589, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37010838

RESUMO

BACKGROUND: Enterochromaffin (EC) cell-derived 5-hydroxytryptamine (5-HT) is a mediator of toxin-induced reflexes, initiating emesis via vagal and central 5-HT3 receptors. The amine is also involved in gastrointestinal (GI) reflexes that are prosecretory and promotile, and recently 5-HT's roles in chemosensation in the distal bowel have been described. We set out to establish the efficacy of 5-HT signaling, local 5-HT levels and pharmacology in discrete regions of the mouse small and large intestine. We also investigated the inter-relationships between incretin hormones, glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and endogenous 5-HT in mucosal and motility assays. METHODS: Adult mouse GI mucosae were mounted in Ussing chambers and area-specific studies were performed to establish the 5-HT3 and 5-HT4 pharmacology, the sidedness of responses, and the inter-relationships between incretins and endogenous 5-HT. Natural fecal pellet transit in vitro and full-length GI transit in vivo were also measured. KEY RESULTS: We observed the greatest level of tonic and exogenous 5-HT-induced ion transport and highest levels of 5-HT in ascending colon mucosa. Here both 5-HT3 and 5-HT4 receptors were involved but elsewhere in the GI tract epithelial basolateral 5-HT4 receptors mediate 5-HT's prosecretory effect. Exendin-4 and GIP induced 5-HT release in the ascending colon, while L cell-derived PYY also contributed to GIP mucosal effects in the descending colon. Both peptides slowed colonic transit. CONCLUSIONS & INFERENCES: We provide functional evidence for paracrine interplay between 5-HT, GLP-1 and GIP, particularly in the colonic mucosal region. Basolateral epithelial 5-HT4 receptors mediated both 5-HT and incretin mucosal responses in healthy colon.


Assuntos
Incretinas , Serotonina , Camundongos , Animais , Serotonina/farmacologia , Incretinas/farmacologia , Polipeptídeo Inibidor Gástrico , Colo , Mucosa Intestinal , Peptídeo 1 Semelhante ao Glucagon
18.
Asia Pac J Clin Nutr ; 32(1): 48-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36997485

RESUMO

BACKGROUND AND OBJECTIVES: Few studies exist on resistant starch in rice grains. The Okinawa Institute of Science and Technology Graduate University (OIST) has developed a new rice (OIST rice, OR) rich in resistant starch. This study aimed to clarify the effect of OR on postprandial glucose concentrations. METHODS AND STUDY DESIGN: This single-center, open, randomized, crossover comparative study included 17 patients with type 2 diabetes. All participants completed two meal tolerance tests using OR and white rice (WR). RESULTS: The median age of the participants was 70.0 [59.0-73.0] years, and the mean body mass index was 25.9±3.1 kg/m2. The difference in total area under the curve (AUC) of plasma glucose was -8223 (95% confidence interval [CI]: -10100 to -6346, p<0.001) mg·min/dL. The postprandial plasma glucose was significantly lower with OR than with WR. The difference in the AUC of insulin was -1139 (95% CI: -1839 to -438, p=0.004) µU·min/mL. The difference in the AUC of total gastric inhibitory peptide (GIP) and total glucagon-like peptide-1 (GLP-1) was -4886 (95% CI: -8456 to -1317, p=0.011) and -171 (95% CI: -1034 to 691, p=0.673) pmol·min/L, respectively. CONCLUSIONS: OR can be ingested as rice grains and significantly reduced postprandial plasma glucose compared to WR independent of insulin secretion in patients with type 2 diabetes. OR could have escaped absorption not only from the upper small intestine but also from the lower small intestine.


Assuntos
Diabetes Mellitus Tipo 2 , Oryza , Humanos , Pessoa de Meia-Idade , Idoso , Incretinas/farmacologia , Insulina , Glicemia , Amido Resistente/farmacologia , Período Pós-Prandial , Estudos Cross-Over
19.
J Diabetes Investig ; 14(6): 746-755, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36977210

RESUMO

AIMS/INTRODUCTION: Imeglimin is a new antidiabetic drug structurally related to metformin. Despite this structural similarity, only imeglimin augments glucose-stimulated insulin secretion (GSIS), with the mechanism underlying this effect remaining unclear. Given that glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) also enhance GSIS, we examined whether these incretin hormones might contribute to the pharmacological actions of imeglimin. MATERIALS AND METHODS: Blood glucose and plasma insulin, GIP, and GLP-1 concentrations were measured during an oral glucose tolerance test (OGTT) performed in C57BL/6JJcl (C57BL/6) or KK-Ay/TaJcl (KK-Ay) mice after administration of a single dose of imeglimin with or without the dipeptidyl peptidase-4 inhibitor sitagliptin or the GLP-1 receptor antagonist exendin-9. The effects of imeglimin, with or without GIP or GLP-1, on GSIS were examined in C57BL/6 mouse islets. RESULTS: Imeglimin lowered blood glucose and increased plasma insulin levels during an OGTT in both C57BL/6 and KK-Ay mice, whereas it also increased the plasma levels of GIP and GLP-1 in KK-Ay mice and the GLP-1 levels in C57BL/6 mice. The combination of imeglimin and sitagliptin increased plasma insulin and GLP-1 levels during the OGTT in KK-Ay mice to a markedly greater extent than did either drug alone. Imeglimin enhanced GSIS in an additive manner with GLP-1, but not with GIP, in mouse islets. Exendin-9 had only a minor inhibitory effect on the glucose-lowering action of imeglimin during the OGTT in KK-Ay mice. CONCLUSIONS: Our data suggest that the imeglimin-induced increase in plasma GLP-1 levels likely contributes at least in part to its stimulatory effect on insulin secretion.


Assuntos
Glicemia , Incretinas , Animais , Camundongos , Incretinas/farmacologia , Insulina , Camundongos Endogâmicos C57BL , Fosfato de Sitagliptina/farmacologia , Hipoglicemiantes/farmacologia , Glucose/farmacologia , Peptídeo 1 Semelhante ao Glucagon , Polipeptídeo Inibidor Gástrico
20.
Lancet Gastroenterol Hepatol ; 8(2): 179-191, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36620987

RESUMO

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that stimulate insulin secretion from pancreatic ß cells in response to food ingestion. Modified GLP-1 and GIP peptides are potent agonists for their incretin receptors, and some evidence shows that the dual GLP-1 and GIP receptor agonist tirzepatide is effective in promoting marked weight loss. GLP-1 receptor agonists signal in the CNS to suppress appetite, increase satiety, and thereby decrease calorie intake, but many other effects of incretin signalling have been recognised that are relevant to the treatment of non-alcoholic fatty liver disease (NAFLD). This Review provides an overview of the literature supporting the notion that endogenous incretins and incretin-receptor agonist treatments are important not only for decreasing risk of developing NAFLD, but also for treating NAFLD and NAFLD-related complications. We discuss incretin signalling and related incretin-receptor agonist treatments, mechanisms in key relevant tissues affecting liver disease, and clinical data from randomised controlled trials. Finally, we present future perspectives in this rapidly developing field of research and clinical medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Incretinas/uso terapêutico , Incretinas/farmacologia , Incretinas/fisiologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/complicações , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...