Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.812
Filtrar
1.
Sci Rep ; 14(1): 15666, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977845

RESUMO

Inter-cellular signaling, referred to as quorum sensing (QS), regulates the production of virulence factors in numerous gram-negative bacteria, such as the human pathogens Pseudomonas aeruginosa and Chromobacterium violaceum. QS inhibition may provide an opportunity for the treatment of bacterial infections. This represents the initial study to examine the antibiofilm and antivirulence capabilities of rose absolute and its primary component, phenylethyl alcohol. QS inhibition was assessed by examining extracellular exopolysaccharide synthesis, biofilm development, and swarming motility in P. aeruginosa PAO1, along with violacein production in C. violaceum ATCC 12472. Molecular docking analysis was conducted to explore the mechanism by which PEA inhibits QS. Our results indicate that rose absolute and PEA caused decrease in EPS production (60.5-33.5%), swarming motility (94.7-64.5%), and biofilm formation (98.53-55.5%) in the human pathogen P. aeruginosa PAO1. Violacein production decreased by 98.1% and 62.5% with an absolute (0.5 v/v %) and PEA (2 mM). Moreover, the molecular docking analysis revealed a promising competitive interaction between PEA and AHLs. Consequently, this study offers valuable insights into the potential of rose absolute and PEA as inhibitors of QS in P. aeruginosa and C. violaceum.


Assuntos
Biofilmes , Chromobacterium , Simulação de Acoplamento Molecular , Álcool Feniletílico , Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Chromobacterium/efeitos dos fármacos , Chromobacterium/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Álcool Feniletílico/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Indóis/farmacologia , Indóis/metabolismo
2.
World J Microbiol Biotechnol ; 40(9): 270, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030429

RESUMO

Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.


Assuntos
Bactérias , Pigmentos Biológicos , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Carotenoides/metabolismo , Carotenoides/química , Indóis/metabolismo , Indóis/química , Terpenos/metabolismo , Terpenos/química , Piridinas/metabolismo , Piridinas/química , Pirróis/metabolismo , Pirróis/química , Técnicas Biossensoriais , Fenazinas/metabolismo , Fenazinas/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-39016536

RESUMO

A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6T, was isolated from fermented cabbage. Strain YZC6T grew at 10-37  °C, pH 5.5-8.5, and with up to 2  % (w/v) NaCl. The major cellular fatty acids were C16 : 0 and C18 : 1 cis 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6T belonged to the genus Lacrimispora and was closely related to Lacrimispora aerotolerans DSM 5434T (98.3  % sequence similarity), Lacrimispora saccharolytica WM1T (98.1  %), and Lacrimispora algidixylanolytica SPL73T (98.1  %). The average nucleotide identity based on blast (below 87.8  %) and digital DNA-DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6T could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel Lacrimispora species, Lacrimispora brassicae sp. nov., was proposed, with YZC6T as the type strain (=MAFF 212518T=JCM 32810T=DSM 112100T). This study also proposed Clostridium indicum Gundawar et al. 2019 as a later heterotypic synonym of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Clostridium methoxybenzovorans Mechichi et al. 1999 as a later heterotypic synonym of Lacrimispora indolis (McClung and McCpy 1957) Haas and Blanchard 2020.


Assuntos
Técnicas de Tipagem Bacteriana , Brassica , DNA Bacteriano , Ácidos Graxos , Fermentação , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Brassica/microbiologia , DNA Bacteriano/genética , Composição de Bases , Clostridiales/classificação , Clostridiales/isolamento & purificação , Clostridiales/genética , Indóis/metabolismo
4.
J Am Chem Soc ; 146(28): 19030-19041, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976645

RESUMO

Artificial photoenzymes with novel catalytic modes not found in nature are in high demand; yet, they also present significant challenges in the field of biocatalysis. In this study, a chemogenetic modification strategy is developed to facilitate the rapid diversification of photoenzymes. This strategy integrates site-specific chemical conjugation of various artificial photosensitizers into natural protein cavities and the iterative mutagenesis in cell lysates. Through rounds of directed evolution, prominent visible-light-activatable photoenzyme variants were developed, featuring a thioxanthone chromophore. They successfully enabled the enantioselective [2 + 2] photocycloaddition of 2-carboxamide indoles, a class of UV-sensitive substrates that are traditionally challenging for known photoenzymes. Furthermore, the versatility of this photoenzyme is demonstrated in enantioselective whole-cell photobiocatalysis, enabling the efficient synthesis of enantioenriched cyclobutane-fused indoline tetracycles. These findings significantly expand the photophysical properties of artificial photoenzymes, a critical factor in enhancing their potential for harnessing excited-state reactivity in stereoselective transformations.


Assuntos
Reação de Cicloadição , Estereoisomerismo , Indóis/química , Indóis/síntese química , Indóis/metabolismo , Processos Fotoquímicos , Biocatálise , Evolução Molecular Direcionada , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Luz , Escherichia coli/enzimologia , Estrutura Molecular
5.
Molecules ; 29(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893541

RESUMO

Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.


Assuntos
Acinetobacter , Biodegradação Ambiental , Polifosfatos , Acinetobacter/metabolismo , Acinetobacter/genética , Polifosfatos/metabolismo , Polifosfatos/química , Indóis/metabolismo , Indóis/química , Compostos de Amônio/metabolismo , Compostos de Amônio/química , Retardadores de Chama/metabolismo , Retardadores de Chama/análise
6.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927027

RESUMO

Microbiota tryptophan metabolism and the biosynthesis of indole derivatives play an important role in homeostasis and pathogenesis in the human body and can be affected by the gut microbiota. However, studies on the interplay between gut microbiota and tryptophan metabolites in patients undergoing dialysis are lacking. This study aimed to identify the gut microbiota, the indole pathway in tryptophan metabolism, and significant functional differences in ESRD patients with regular hemodialysis. We performed the shotgun metagenome sequencing of stool samples from 85 hemodialysis patients. Using the linear discriminant analysis effect size (LEfSe), we examined the composition of the gut microbiota and metabolic features across varying concentrations of tryptophan and indole metabolites. Higher tryptophan levels promoted tyrosine degradation I and pectin degradation I metabolic modules; lower tryptophan levels were associated with glutamate degradation I, fructose degradation, and valine degradation modules. Higher 3-indoxyl sulfate concentrations were characterized by alanine degradation I, anaerobic fatty acid beta-oxidation, sulfate reduction, and acetyl-CoA to crotonyl-CoA. Contrarily, lower 3-indoxyl sulfate levels were related to propionate production III, arabinoxylan degradation, the Entner-Doudoroff pathway, and glutamate degradation II. The present study provides a better understanding of the interaction between tryptophan, indole metabolites, and the gut microbiota as well as their gut metabolic modules in ESRD patients with regular hemodialysis.


Assuntos
Microbioma Gastrointestinal , Indóis , Diálise Renal , Triptofano , Humanos , Triptofano/metabolismo , Indóis/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Falência Renal Crônica/terapia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/microbiologia , Fezes/microbiologia , Redes e Vias Metabólicas , Adulto , Metagenoma
7.
Photochem Photobiol Sci ; 23(7): 1425-1434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822993

RESUMO

Cysteine (Cys) plays an indispensable role as an antioxidant in the maintenance of bioredox homeostasis. We have constructed an efficient fluorescent probe Mito-Cys based on the binding of indole and naphthol. The acrylic ester group serves as a recognition switch for specific detection of Cys, which undergoes Michael addition and intramolecular cyclization reactions, thereby ensuring the chemical kinetics priority of Cys compared to other biothiols. The probe has good water solubility, large Stokes shift (137 nm), with a detection limit of 21.81 nM. In addition, cell imaging experiments have shown that the probe has excellent mitochondrial targeting ability (R = 0.902). The probe can distinguish between Cys, homocysteine (Hcy) and glutathione (GSH), and can detect Cys specifically and quickly (100 s) to ensure accurate quantitative analysis of Cys changes in cells. More importantly, the probe confirms that ferroptosis inducing factors trigger thiol starvation in mitochondria, which helps to gain a deeper understanding of the physiological and pathological functions related to Cys and ferroptosis.


Assuntos
Cisteína , Corantes Fluorescentes , Mitocôndrias , Peixe-Zebra , Peixe-Zebra/metabolismo , Cisteína/metabolismo , Cisteína/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Animais , Indóis/química , Indóis/metabolismo , Imagem Óptica , Estrutura Molecular , Naftóis/química , Naftóis/síntese química , Naftóis/metabolismo
8.
ACS Synth Biol ; 13(7): 2246-2252, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38875315

RESUMO

Transcription factor (TF)-based biosensors are useful synthetic biology tools for applications in a variety of areas of biotechnology. A major challenge of biosensor circuits is the limited repertoire of identified and well-characterized TFs for applications of interest, in addition to the challenge of optimizing selected biosensors. In this work, we implement the IclR family repressor TF TtgV from Pseudomonas putida DOT-T1E as an indole-derivative biosensor in Escherichia coli. We optimize the genetic circuit utilizing different components, providing insights into biosensor design and expanding on previous studies investigating this TF. We discover novel physiologically relevant ligands of TtgV, such as skatole. The broad specificity of TtgV makes it a useful target for directed evolution and protein engineering toward desired specificity. TtgV, as an indole-derivative biosensor, is a promising genetic component for the detection of compounds with biological activities relevant to health and the gut microbiome.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Indóis , Pseudomonas putida , Fatores de Transcrição , Técnicas Biossensoriais/métodos , Indóis/metabolismo , Indóis/química , Escherichia coli/genética , Escherichia coli/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Sintética/métodos , Engenharia de Proteínas/métodos
9.
Arch Biochem Biophys ; 758: 110061, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880319

RESUMO

Indole is widely present in nature and contributes significantly to the smell of flowers and animal excretion. However, the odor perception mechanism for indole is unclear, despite previous reports suggesting that it activates the Olfr740 family of receptors. In this study, we successfully identified another receptor, Olfr205, that is responsive to indole. Molecular model construction and binding pocket analysis predicted that the A202 residue in transmembrane helix 5 of Olfr205 forms a crucial hydrogen bond with indole, facilitating receptor activation. Additionally, G112 in transmembrane helix 3 of the Olfr740 family is involved in indole activation of receptors. Finally, our mutant function assay showed that substitution of A202 in Olfr205 and G112 in Olfr740 with other amino acids significantly decreased the receptor response to indole, which provides robust evidence to confirm the docking results. In summary, our study is the first to reveal that Olfr205 is an olfactory receptor distinct from those in the Olfr740 family that is activated by indole. Moreover, these receptors display different indole-binding mechanisms. This study sheds light on molecular binding mechanisms and contributes to a deeper understanding of indole perception.


Assuntos
Indóis , Receptores Odorantes , Indóis/metabolismo , Indóis/química , Indóis/farmacologia , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Animais , Humanos , Células HEK293 , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Sítios de Ligação , Ligação Proteica
10.
Phys Chem Chem Phys ; 26(23): 16521-16528, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809594

RESUMO

Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.


Assuntos
Oxigenases de Função Mista , Oxirredução , Estereoisomerismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Teoria Quântica , Sulfetos/química , Sulfetos/metabolismo , Indóis/química , Indóis/metabolismo , Modelos Químicos , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares
11.
Gut Microbes ; 16(1): 2347722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706205

RESUMO

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Assuntos
Microbioma Gastrointestinal , Indóis , Camundongos Endogâmicos C57BL , Probióticos , Receptores de Hidrocarboneto Arílico , Via de Sinalização Wnt , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Humanos , Probióticos/administração & dosagem , Probióticos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Protetores contra Radiação/farmacologia , Organoides/metabolismo , Lesões por Radiação/metabolismo , Lesões por Radiação/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos da radiação , Intestinos/microbiologia , Intestinos/efeitos da radiação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
12.
ACS Chem Biol ; 19(6): 1211-1213, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38785570

RESUMO

Tryptophan, commonly regarded as buried within the interior cores of proteins to maintain secondary structures, is now being recognized for its significant contributions to protein functionality. However, investigating functional tryptophan-involved interactions across the proteome and manipulating these interactions in live cells are considerable challenges. In this In Focus article, we summarize emerging advances in the field, describing innovative chemistries that leverage distinctive biochemical properties of the indole moiety for targeting and functionally manipulating tryptophan interactions.


Assuntos
Proteínas , Triptofano , Triptofano/metabolismo , Triptofano/química , Proteínas/metabolismo , Proteínas/química , Humanos , Indóis/química , Indóis/metabolismo , Ligação Proteica
13.
Nat Commun ; 15(1): 4266, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769298

RESUMO

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Assuntos
Carcinogênese , Indóis , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc , Triptofano , Triptofano/metabolismo , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Indóis/metabolismo , Indóis/farmacologia , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Cinurenina/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Masculino
14.
J Agric Food Chem ; 72(22): 12822-12831, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38803050

RESUMO

The identification of dietary exposure biomarkers is crucial for advancing our understanding of the health benefits of specific foods. Broccoli, a vegetable with well-known anticancer properties, contains active ingredients, such as isothiocyanates with indole side chains. Hence, indole metabolites related to broccoli consumption have the potential to serve as biomarkers of dietary exposure. In this work, we developed a new analytical method for indole metabolites in urine using a poly(deep eutectic solvents)-molecularly imprinted polymer/vinyl-functionalized graphene oxide (PDESs-MIP/VGO) in miniaturized centrifugal pipet-tip solid-phase extraction (CPT-SPE) coupled with liquid chromatography. This method integrates the strengths of PDESs-MIP/VGO, including rich adsorption interactions, high adsorption capacity, and excellent selectivity, with the simplicity and cost-effectiveness of CPT-SPE. The proposed method demonstrated low limits of quantification (1.2-2.5 ng mL-1), high accuracy (91.7-104.8%), and good precision (relative standard deviation ≤4.4%). By applying this method to analyze indole metabolites in urine, our results suggested that indole-3-carbinol and indole-3-acetonitrile have the potential to emerge as reliable dietary exposure biomarkers for broccoli intake. Furthermore, highly selective analytical methods based on molecular imprinting technology are advantageous for precise screening and analysis of dietary exposure biomarkers associated with food consumption.


Assuntos
Biomarcadores , Brassica , Indóis , Extração em Fase Sólida , Humanos , Indóis/urina , Indóis/metabolismo , Biomarcadores/urina , Brassica/química , Brassica/metabolismo , Extração em Fase Sólida/métodos , Exposição Dietética , Cromatografia Líquida de Alta Pressão/métodos , Polímeros Molecularmente Impressos/química , Polímeros Molecularmente Impressos/metabolismo , Grafite
15.
Appl Environ Microbiol ; 90(6): e0042924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38780258

RESUMO

Microbial synthesis is a desirable approach to produce indirubin but suffers from low synthetic efficiency. Insufficient supply of reduced flavins is one major factor limiting synthetic efficiency. To address this, a novel flavin reductase, MoxB, was discovered through screening of the metagenomic library. MoxB showed a strong preference for NADH over NADPH as the electron source for FMN/FAD reduction and exhibited the highest activity at pH 8.0 and 30°C. It displayed remarkable thermostability by maintaining 80% of full activity after incubation at 60°C for 1 h. Furthermore, MoxB showed great organic solvent tolerance and its activity could be significantly increased by bivalent metal ions. In addition, heterologous expression of the moxB gene in the indirubin-producing E. coli significantly improved indirubin production up to 15.12-fold. This discovery expands the understanding of flavin reductases and provides a promising catalytic tool for microbial indirubin production.IMPORTANCEMuch effort has been exerted to produce indirubin using engineered Escherichia coli, but high-level production has not been achieved so far. Insufficient supply of reduced flavins is one key factor limiting the catalytic efficiency. However, the flavin reductases involved in indirubin biosynthesis have not been hitherto reported. Discovery of the novel flavin reductase MoxB provides a useful tool for enhancing indirubin production by E. coli. Overexpression of MoxB in indirubin-producing E. coli increased indirubin production by 15.12-fold in comparison to the control strain. Our results document the function of flavin reductase that reduces flavins during indirubin biosynthesis and provide an important foundation for using the flavin reductases to improve indirubin production by engineered microorganisms.


Assuntos
Escherichia coli , FMN Redutase , Indóis , Indóis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , FMN Redutase/metabolismo , FMN Redutase/genética , Sedimentos Geológicos/microbiologia , Metagenômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metagenoma , Biblioteca Gênica , Oxirredutases/genética , Oxirredutases/metabolismo
16.
Gut Microbes ; 16(1): 2347728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706226

RESUMO

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Indóis , Triptofano , Triptofano/metabolismo , Humanos , Indóis/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/genética , Triptofano Sintase/metabolismo , Triptofano Sintase/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
17.
Gut Microbes ; 16(1): 2347757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773738

RESUMO

Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Microbioma Gastrointestinal , Indóis , Prevotella , Ubiquitina-Proteína Ligases , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Animais , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Indóis/metabolismo , Indóis/farmacologia , Prevotella/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Progressão da Doença , Camundongos Endogâmicos BALB C , Triptofano/metabolismo , Linhagem Celular Tumoral
18.
Bioresour Technol ; 402: 130842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750828

RESUMO

Hydrophilic porous membranes, exemplified by polyvinylidene fluoride (PVDF) membranes, have demonstrated significant potential for replacing ion exchange membranes in microbial electrolysis cells (MECs). Membrane fouling remains a major challenge in MECs, impeding proton transport and consequently limiting hydrogen production. This study aims to investigate a synergistic antifouling strategy for PVDF membrane through the incorporation of a coating composed of polydopamine (PDA), polyethyleneimine (PEI), and silver nanoparticles (AgNPs). The PDA-PEI-Ag@PVDF membrane not only effectively mitigates fouling through steric and electrostatic repulsion forces, but also amplifies ion transport by facilitating water diffusion and electromigration. The PDA-PEI-Ag@PVDF membrane exhibited a reduced membrane resistance of 1.01 mΩ m2 and PDA-PEI-Ag modifying PVDF membrane was found to be effective in enhancing the proton transportation of PVDF membrane. Therefore, the enhanced hydrogen production rate of 2.65 ± 0.02 m3/m3/d was achieved in PDA-PEI-Ag@PVDF-MECs.


Assuntos
Fontes de Energia Bioelétrica , Incrustação Biológica , Eletrólise , Hidrogênio , Indóis , Membranas Artificiais , Polivinil , Prótons , Prata , Polivinil/química , Hidrogênio/metabolismo , Incrustação Biológica/prevenção & controle , Prata/química , Prata/farmacologia , Indóis/metabolismo , Indóis/química , Polímeros/química , Nanopartículas Metálicas/química , Polietilenoimina/química , Polímeros de Fluorcarboneto
19.
Theranostics ; 14(7): 2719-2735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773969

RESUMO

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Assuntos
Bifidobacterium breve , Diferenciação Celular , Colite , Indóis , Macrófagos , Probióticos , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Bifidobacterium breve/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Humanos , Colite/induzido quimicamente , Colite/microbiologia , Colite/complicações , Diferenciação Celular/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/administração & dosagem , Modelos Animais de Doenças , Carcinogênese/efeitos dos fármacos , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/metabolismo , Camundongos Endogâmicos C57BL , Colo/microbiologia , Colo/patologia , Colo/metabolismo , Sulfato de Dextrana , Masculino , Microbioma Gastrointestinal , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Azoximetano
20.
Adv Microb Physiol ; 84: 83-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38821635

RESUMO

The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.


Assuntos
Ácidos e Sais Biliares , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis/metabolismo , Ácidos e Sais Biliares/metabolismo , Indóis/metabolismo , Interações entre Hospedeiro e Microrganismos , Bactérias/metabolismo , Bactérias/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...