Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.822
Filtrar
1.
PLoS One ; 19(8): e0307820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116077

RESUMO

The key to high-quality development in the textile and apparel industry lies in enhancing technological innovation and optimizing the efficiency of technological innovation. Based on data from 60 A-share listed companies in the textile and apparel sector in China from 2013 to 2022, this study employs a three-stage DEA model and the Malmquist index model to measure changes in technological innovation efficiency from static and dynamic perspectives. Additionally, it uses a Tobit model to analyze the impact and mechanisms of management and financial factors on technological innovation efficiency. The results indicate that: (1) Compared to the manufacturing industry and its sub-sectors, the overall technological innovation efficiency of listed textile and apparel companies was relatively low and showed a declining trend between 2013 and 2022; (2) Over the decade, the average total factor productivity of these listed companies increased by 1.7%, exhibiting a "W" shaped fluctuation, with technological progress, pure technical efficiency, and scale efficiency all showing weak improvement; (3) Management and financial factors significantly influence technological innovation efficiency. Specifically, employee quality, profitability, and operational capability are positively correlated with technological innovation efficiency and have long-term effectiveness, while firm age, management costs, equity concentration, development ability, and debt repayment capacity are negatively correlated with technological innovation efficiency; (4) Different types of enterprises show differences in the significance of management factors, while whether the same person holds both managerial positions significantly affects financial factors.


Assuntos
Invenções , Indústria Têxtil , China , Humanos , Têxteis
2.
Sci Prog ; 107(3): 368504241271737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109939

RESUMO

In the industrial sector, vegetable residual materials have received attention in the production of bio-colorant for textile dyeing. The current research endeavor is centered on investigating the possibility of using sugar beet leaves as a natural source of dye for the purpose of dyeing cotton fabrics. Different extraction methods were utilized to isolate the bio-colorant present in sugar beet residual material, and the most favorable colorant yield was obtained using a 5% methanolic KOH solution. For optimal dyeing results, the cotton fabric performed dyeing for a duration of 45 min at a temperature of 60 °C, using a salt solution concentration of 6 g/100 mL and 50 mL of the extracted dye solution. Characterization of dye using Fourier transform infrared spectroscopy analysis confirmed the presence of quercetin in the leaf extract. For the creation of a range of color variations, mordants that were chemical in nature, such as tannic acid, iron sulfate, potassium dichromate, and copper sulfate, as well as mordants that were bio-based, such as onion peel, pomegranate peel, henna, golden shower bark, and turmeric, were employed in harmony. In comparison, the utilization of bio-mordants resulted in darker shades that exhibited enhanced color intensity and superior color fastness properties with the value of 4-5 for wash, 4 for wet rubbing, 4-5 for dry rubbing, and 4-5 for light. The findings of this study hold significant value in terms of ecofriendly waste management and contribute to advancements in the industrial sector by utilizing waste residual materials as a natural source of colorants.


Assuntos
Beta vulgaris , Corantes , Folhas de Planta , Beta vulgaris/química , Folhas de Planta/química , Corantes/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fibra de Algodão/análise , Cor , Indústria Têxtil
3.
An Acad Bras Cienc ; 96(4): e20230851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39194029

RESUMO

Textile industries stand out as one of the main polluters of water resources, generating large amounts of liquid effluents with variable composition and intense coloration. The objective of this work is the integration of the reductive process using commercial steel wool, combined with oxidative processes, in the treatment of textile effluent. The effect of the variables of the reductive process were studied using a 32 factorial design. After 30 minutes, the reductive process allowed a reduction of 68% COD, 46% TOC, 62% true color and 72% of total phenols, but showed an increase in color apparent and turbidity, due to the iron species formed by the oxidation of steel wool during the process. With the combined process using sunlight, the reduction was 73% COD, 50% TOC, 97% phenols, 93% true color and 48% apparent color. With artificial light, the reduction was 94% COD, 63% TOC, 95% phenols, 98% true color and 65% apparent color. The evaluation of the acute toxicity against Daphnia magna indicated that after the proposed treatments, the effluent did not present toxicity or the toxicity was reduced. It is concluded that the combined process can be considered an efficient alternative for the treatment of textile effluent.


Assuntos
Oxirredução , Aço , Indústria Têxtil , Eliminação de Resíduos Líquidos , Aço/química , Animais , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Daphnia/efeitos dos fármacos , Lã/química
4.
Environ Sci Pollut Res Int ; 31(36): 49156-49171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39046637

RESUMO

The textile industry is a pillar of the manufacturing sector worldwide, but it still represents a significantly polluting production sector since it is energy-, water- and natural resource-intensive. Herein, waste wool that did not meet the technical requirements to be used for yarns and fabrics was recovered first to prepare materials for wastewater remediation, specifically for phosphate removal. The wool underwent an alkaline treatment, eventually saturated with FeCl3 and then left at room temperature or thermally treated to induce crosslinking/stabilisation, obtaining adsorbent panels. The main characterisation findings concerned the impact of alkaline treatment on morphology and structure; additionally, the samples with iron displayed a behaviour attributable to a crosslinking effect operated by Fe3+. Batch experiments showed that only samples with iron were efficient in phosphate adsorption, with a high removal percentage obtained in a wide pH range. Adsorption isotherms and kinetics were investigated, suggesting a complex system of interactions. Moreover, during the alkaline treatment necessary to prepare such wool-derived adsorbent panels, a significant amount of wool hydrolysates left in the solution was produced. These substances, in view of zero-waste procedures, were isolated and re-employed as dyeing auxiliaries. Preliminary results demonstrated that the wool hydrolysates enabled the dyeing of cotton with natural dyes, which is generally a tricky process.


Assuntos
Corantes , Fosfatos , Têxteis , , Lã/química , Adsorção , Fosfatos/química , Corantes/química , Animais , Poluentes Químicos da Água/química , Indústria Têxtil , Águas Residuárias/química
5.
Environ Sci Pollut Res Int ; 31(35): 47552-47583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034377

RESUMO

In recent years, consumer preferences have begun to turn back to natural dyes, whereas synthetic dyes have been pushed into the background over the previous 60 years. This is a result of increased knowledge of the potential hazards associated with the creation of synthetic dyes, which use raw materials derived from petrochemicals and involve intense chemical interactions. Such dyes need a lot of energy to produce, and their negative effects on the environment increase pollution. It has been discovered that several of these dyes, particularly the azo-based ones are carcinogenic. On the contrary, natural dyes are getting more attention from scientists and researchers as a result of their several advantages like being eco-friendly, biodegradable and renewable, sustainable, available in nature, having no disposal problems, minimizing the consumption of fossil fuel, anti-bacterial, insect repellent, and anti-allergic, anti-ultraviolet, intensify dyeing and finishing process efficiency, less expensive, and no adverse effects on human health and environment. However, there are also some drawbacks, like poor fastness properties, natural dye printing for bulk production, difficulties in reproducibility of shades, and so forth. Despite all these limitations, the demand for natural dyes is increasing significantly in textile industries because they offer far more safety than synthetic dyes. This study provides an overall concept of the natural dyes in textile printing. It illustrates parameters of printing performance, methods, and techniques of extraction of natural dyes, printing methods, and printing of natural and synthetic fibers. Finally, this study describes the challenges and future prospects of natural dyes in textile printing.


Assuntos
Corantes , Têxteis , Corantes/química , Impressão , Indústria Têxtil
6.
Afr Health Sci ; 24(1): 135-144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38962357

RESUMO

Background: Some synthetic dyes used mainly in textile industries have been associated with endocrine disruption, resulting in infertility, among other disorders. It is unknown if occupational exposure to Vat textile dyes among premenopausal dyers alters hormonal levels. Objectives: We aimed at determining the probable effects of occupational exposure to Vat dyes on reproductive hormones of female textile dyers in the follicular and luteal phases while relating this to age categories and duration of exposure. Methods: Thirty-three premenopausal Vat textile dyers at "Itoku", Abeokuta, Nigeria, among a population of about 80 female dyers were age and sex-matched with 55 non-exposed (control) female participants. Using semi-structured questionnaires, socio-demographic, occupational details and the LMP of participants were obtained. Serum samples were collected in follicular and luteal phases and assayed for female sex hormones using Enzyme Immunoassay. Mann-Whitney U and Z- statistic were used for comparison of the two groups. P-value < 0.05 was considered to be significant. Results: In the follicular phase, the result showed a lower mean FSH ranking (in age category ≤20 years) and higher (p<0.05) Estradiol ranking (in age category 31-40 years) in the exposed than the unexposed. Mean ranks of Progesterone and Estradiol in the luteal phase (age category 31-40 years) were higher (p<0.05) in the exposed, while Estradiol (age category ≥41years) ranked lower (p<0.05). Prolactin demonstrated a significant inverse relationship with the duration of exposure. Conclusion: Occupational exposure to Vat dye among female dyers in Abeokuta is associated with some sex hormone disruption which appears to be age and duration of exposure-related.


Assuntos
Corantes , Exposição Ocupacional , Indústria Têxtil , Humanos , Feminino , Adulto , Nigéria , Corantes/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estradiol/sangue , Progesterona/sangue , Fase Luteal/sangue , Hormônio Foliculoestimulante/sangue , Fase Folicular/sangue , Adulto Jovem , Estudos de Casos e Controles , Pessoa de Meia-Idade , Inquéritos e Questionários , Hormônio Luteinizante/sangue
7.
J Environ Manage ; 363: 121337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850903

RESUMO

The accelerating environmental impact of the textile industry, especially in water management, requires efficient wastewater treatment strategies. This study examines the effectiveness of various electrode pairs in the Electrocoagulation (EC) process for treating textile wastewater, focusing on removing of Total Suspended Solids (TSS), turbidity, Chemical Oxygen Demand (COD), and Total Organic Carbon (TOC). A comprehensive analysis was conducted using thirty-six electrode pair combinations, consisting of six materials: Aluminium (Al), Zinc (Zn), Carbon (C), Copper (Cu), Mild Steel (MS), and Stainless Steel (SS). The results demonstrated that different electrode pairs yielded varying removal efficiencies for various pollutants, with the highest efficiencies being 92.09% for COD (Al-C pair), 99.66% for TSS (Al-Cu pair), 99.17% for turbidity (Al-MS pair), and 70.99% for TOC (SS-SS pair). However, no single electrode pair excelled in removing all pollutant categories. To address this, three Multi-Criteria Decision Making (MCDM) methods such as TOPSIS, VIKOR, and PROMETHEE II were used to assess the most effective electrode pair. The results indicated that the Al-Zn combination was the most efficient, exhibiting high removal efficiencies for various pollutants (99.32% for TSS, 98.88% for turbidity, 68.62% for COD, and 57.96% for TOC). This study demonstrates that the EC process can effectively treat textile effluent and emphasizes the importance of selecting suitable electrode materials. Furthermore, pollutant removal was optimal with the Al-Zn electrode pair, offering a balanced and efficient approach to textile wastewater treatment. Thus, MCDM methods offer a robust framework for assessing and optimizing electrode selection, providing valuable insights for sustainable environmental management practices.


Assuntos
Eletrodos , Têxteis , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Tomada de Decisões , Análise da Demanda Biológica de Oxigênio , Poluentes Químicos da Água/química , Indústria Têxtil , Purificação da Água/métodos
8.
Environ Res ; 258: 119427, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889840

RESUMO

This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.


Assuntos
Combustíveis Fósseis , Nanoestruturas , Indústria Têxtil , Nanoestruturas/química , Combustíveis Fósseis/análise , Resíduos Industriais/análise , Têxteis/análise , Biocombustíveis/análise
9.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930836

RESUMO

The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.


Assuntos
Biodegradação Ambiental , Corantes , Genômica , Metabolômica , Têxteis , Corantes/metabolismo , Corantes/química , Genômica/métodos , Metabolômica/métodos , Indústria Têxtil , Proteômica/métodos , Bactérias/metabolismo , Bactérias/genética
10.
BMC Microbiol ; 24(1): 210, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877404

RESUMO

Efficiently mitigating and managing environmental pollution caused by the improper disposal of dyes and effluents from the textile industry is of great importance. This study evaluated the effectiveness of Streptomyces albidoflavus 3MGH in decolorizing and degrading three different azo dyes, namely Reactive Orange 122 (RO 122), Direct Blue 15 (DB 15), and Direct Black 38 (DB 38). Various analytical techniques, such as Fourier Transform Infrared (FTIR) spectroscopy, High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze the degraded byproducts of the dyes. S. albidoflavus 3MGH demonstrated a strong capability to decolorize RO 122, DB 15, and DB 38, achieving up to 60.74%, 61.38%, and 53.43% decolorization within 5 days at a concentration of 0.3 g/L, respectively. The optimal conditions for the maximum decolorization of these azo dyes were found to be a temperature of 35 °C, a pH of 6, sucrose as a carbon source, and beef extract as a nitrogen source. Additionally, after optimization of the decolorization process, treatment with S. albidoflavus 3MGH resulted in significant reductions of 94.4%, 86.3%, and 68.2% in the total organic carbon of RO 122, DB 15, and DB 38, respectively. After the treatment process, we found the specific activity of the laccase enzyme, one of the mediating enzymes of the degradation mechanism, to be 5.96 U/mg. FT-IR spectroscopy analysis of the degraded metabolites showed specific changes and shifts in peaks compared to the control samples. GC-MS analysis revealed the presence of metabolites such as benzene, biphenyl, and naphthalene derivatives. Overall, this study demonstrated the potential of S. albidoflavus 3MGH for the effective decolorization and degradation of different azo dyes. The findings were validated through various analytical techniques, shedding light on the biodegradation mechanism employed by this strain.


Assuntos
Compostos Azo , Biodegradação Ambiental , Corantes , Streptomyces , Streptomyces/metabolismo , Compostos Azo/metabolismo , Compostos Azo/química , Corantes/metabolismo , Corantes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Têxteis , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Temperatura , Indústria Têxtil , Poluentes Químicos da Água/metabolismo , Cromatografia Líquida de Alta Pressão , Carbono/metabolismo
11.
Bioresour Technol ; 404: 130916, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823560

RESUMO

In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ± 0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Corantes , Oxirredução , Águas Residuárias , Purificação da Água , Águas Residuárias/química , Corantes/metabolismo , Corantes/química , Purificação da Água/métodos , Compostos Azo/metabolismo , Compostos Azo/química , Têxteis , Indústria Têxtil , Poluentes Químicos da Água/metabolismo , Biomassa , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
12.
Bioresour Technol ; 402: 130807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723727

RESUMO

The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.


Assuntos
Agaricus , Corantes , Corantes/química , Têxteis , Biodegradação Ambiental , Cor , Indústria Têxtil , Poluentes Químicos da Água , Resíduos Industriais
13.
Chemosphere ; 359: 142389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777191

RESUMO

Bacillus nitratireducens was isolated from textile effluent and showed high tolerance to chromium (Cr), reaching up to a 1000 mg/L MIC value. This research was aimed at utilizing biosorbents from live and dead cells of B. nitratireducens to remove Cr from an aqueous solution. A batch biosorption test was performed, and mechanisms analysis was approached by an adsorption-desorption test, SEM-EDS, and FTIR analysis. Cr removal by dead cells in 25, 50, and 100 mg/L of Cr were 58.99 ± 0.7%, 69.8 ± 0.2%, and 82.87 ± 0.11%, respectively, while that by live cells was 73.08 ± 1.9%, 80.27 ± 6.33%, and 86.17 ± 1.93%, respectively. Live cells showed significantly higher Cr removal and adsorption capacities as compared to dead cells. In all concentrations, absorption contributed more than adsorption to the Cr removal by both live and dead cells. Absorption of Cr was subjected to occur due to passive mechanisms in dead cells while involving some active mechanisms in live cells. SEM-EDS confirmed the detection of Cr on the cell surface, while FTIR revealed the shifting of some peaks after the biosorption test, suggesting interactions between Cr and functional groups. Further TEM analysis is suggested to be conducted as a future approach to reveal the inner structure of cells and confirm the involvement of absorption mechanisms.


Assuntos
Bacillus , Biodegradação Ambiental , Cromo , Poluentes Químicos da Água , Cromo/metabolismo , Bacillus/metabolismo , Adsorção , Poluentes Químicos da Água/metabolismo , Têxteis , Eliminação de Resíduos Líquidos/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Indústria Têxtil , Águas Residuárias/química , Águas Residuárias/microbiologia
14.
Int J Biol Macromol ; 271(Pt 1): 132194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821791

RESUMO

Currently the textile industry relies strongly on synthetic fibres and cotton, which contribute to many environmental problems. Man-made cellulosic fibres (MMCF) can offer sustainable alternatives. Herein, the development of Lyocell-type MMCF using bacterial cellulose (BC) as alternative raw material in the Ioncell® spinning process was investigated. BC, known for its high degree of polymerization (DP), crystallinity and strength was successfully dissolved in the ionic liquid (IL) 1,5-diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc] to produce solutions with excellent spinnability. BC staple fibres displayed good mechanical properties and crystallinity (CI) and were spun into a yarn which was knitted into garments, demonstrating the potential of BC as suitable cellulose source for textile production. BC is also a valuable additive when recycling waste cellulose textiles (viscose fibres). The high DP and Cl of BC enhanced the spinnability in a viscose/BC blend, consequently improving the mechanical performance of the resulting fibres, as compared to neat viscose fibres.


Assuntos
Celulose , Têxteis , Celulose/química , Bactérias , Líquidos Iônicos/química , Indústria Têxtil
15.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753198

RESUMO

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Assuntos
Biodegradação Ambiental , Corantes , Cebolas , Indústria Têxtil , Triticum , Corantes/metabolismo , Corantes/química , Corantes/toxicidade , Triticum/microbiologia , Cebolas/efeitos dos fármacos , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Têxteis , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Testes de Mutagenicidade
16.
Chemosphere ; 360: 142347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759802

RESUMO

Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.


Assuntos
Corantes , Destilação , Membranas Artificiais , Indústria Têxtil , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Destilação/métodos , Corantes/química , Corantes/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Resíduos Industriais
17.
Environ Pollut ; 355: 124182, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776997

RESUMO

The treatment of textile wastewater containing harmful metal ions poses a significant challenge in industrial applications due to its environmental impact. In this study, the use of sulfite for treating simulated dye wastewater containing New Coccine (NC) and Cr(VI) was investigated. The removal of NC was influenced by the redox reaction between Cr(VI) and sulfite, demonstrating a strong self-boosting effect of Cr(VI) on NC removal. Remarkable NC decoloration (95%) and Cr(VI) reduction (90%) were achieved within 1 min, highlighting the effectiveness of the treatment. Quenching experiments and electron paramagnetic resonance (EPR) technology confirmed that singlet oxygen (1O2) was the main oxidative agent for organic dye removal and SO4•-, •OH and Cr(V) were also identified as key contributors to NC degradation. The Cr(VI)/sulfite system exhibited higher efficiency in degrading azo dyes, such as NC and Congo Red (CR), compared to non-azo dyes like Methylene Blue (MB). This superiority may be attributed to the action of Cr(V) on azo groups. Additionally, the COD removal experiments were conducted on the actual dye wastewater, showing the excellent performance of the Cr(VI)/Sulfite system in treating industrial textile wastewater. This approach presents a promising strategy for effective "waste control by waste", offering great potential for addressing challenges related to dye wastewater treatment and environmental pollution control in practical industrial scenarios.


Assuntos
Cromo , Corantes , Oxirredução , Sulfitos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Corantes/química , Poluentes Químicos da Água/química , Cromo/química , Sulfitos/química , Eliminação de Resíduos Líquidos/métodos , Têxteis , Indústria Têxtil , Resíduos Industriais
18.
Braz J Microbiol ; 55(2): 1231-1241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38727921

RESUMO

Laccase is an exothermic enzyme with copper in its structure and has an important role in biodegradation by providing oxidation of phenolic compounds and aromatic amines and decomposing lignin. The aim of this study is to reach maximum laccase enzyme activity with minimum cost and energy through optimization studies of Proteusmirabilis isolated from treatment sludge of a textile factory. In order to increase the laccase enzyme activities of the isolates, medium and culture conditions were optimized with the study of carbon (Glucose, Fructose, Sodium Acetate, Carboxymethylcellulose, Xylose) and nitrogen sources (Potassium nitrate, Yeast Extract, Peptone From Soybean, Bacteriological Peptone), incubation time, pH, temperature and Copper(II) sulfate concentration then according to the results obtained. Response Surface Method (RSM) was performed on six different variables with three level. According to the data obtained from the RSM, the maximum laccase enzyme activity is reached at pH 7.77, temperature 30.03oC, 0.5 g/L CuSO4, 0.5 g/L fructose and 0.082 g/L yeast extract conditions. After all, the laccase activity increased 2.7 times. As a result, laccase activity of P. mirabilis can be increased by optimization studies. The information obtained as a result of the literature studies is that the laccase enzymes produced in laboratory and industrial scale are costly and their amounts are low. This study is important in terms of obtaining more laccase activity from P.mirabilis with less cost and energy.


Assuntos
Meios de Cultura , Lacase , Proteus mirabilis , Esgotos , Temperatura , Indústria Têxtil , Lacase/metabolismo , Proteus mirabilis/enzimologia , Proteus mirabilis/isolamento & purificação , Proteus mirabilis/metabolismo , Proteus mirabilis/genética , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Meios de Cultura/química , Resíduos Industriais , Nitrogênio/metabolismo , Carbono/metabolismo , Biodegradação Ambiental
19.
PLoS One ; 19(5): e0304578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820452

RESUMO

The study explores the strategic pricing and quality improvement decisions under uncertain demand in a three-layer textile and garment supply chain. According to whether the fabric manufacturer (FM) invests in quality or not and whether the garment manufacturer (GM) or garment retailer (GR) is willing to share the costs or not, five game models are constructed to investigate the impact of different members' cost sharing on the optimal decisions and profits. By conducting a theoretical and numerical analysis, we find that: (1) The GM's or GR's cost sharing plays a positive effect on the quality improvement, as for whose cost sharing performs better in improving the quality depending on the proportion of cost sharing, and the quality improvement is highest with both members share the costs simultaneously. (2) The FM receives the highest profit when both members share the costs simultaneously, however, whose cost sharing is more profitable for the FM is also related to the proportion of cost sharing; in short, the FM always benefits from the cost sharing, no matter one member does this or two members do this. (3) The GM (GR) gains the highest profit when only the GR (GM) shares the costs, and the results indicate that if one member has shared the costs, whether the other member engaging in cost sharing could benefit the former depending on their proportions. Specifically, when the GM (GR) chooses to share the costs and the proportion is relatively low, the GR(GM) joining in cost sharing is beneficial to the former; otherwise, is harmful.


Assuntos
Vestuário , Melhoria de Qualidade , Têxteis , Têxteis/economia , Vestuário/economia , Custos e Análise de Custo , Incerteza , Humanos , Indústria Têxtil/economia , Modelos Econômicos
20.
Arch Environ Contam Toxicol ; 86(4): 375-382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775938

RESUMO

Alkylphenol ethoxylates comprise of many anthropogenic chemicals such as nonylphenol (NP), octylphenol (OP) and nonylphenol ethoxylates (NPEOs). The objectives of this study were to assess the frequency and magnitude of detections of 4-NP, OP and NPEOs in Canadian sediment downstream of textile associated municipal wastewater treatment plants (MWWTPs) to determine if regulatory actions have had a beneficial impact on the receiving environment. Surficial sediments were obtained in four locations in the province of Québec (Canada) and were analyzed for nonylphenol, nonylphenol monoethoxylates (NP1EO), nonylphenol diethoxylates (NP2EO) and octylphenol from 2015 to 2018. Individual concentrations of the compounds varied from non detect to 419 ng/g. Of the four compounds analyzed, NP was detected the most frequently with a 75% detection rate while OPs were not detected in any of the samples. Since the Canadian regulatory actions have drastically reduced NP/NPEOs usage in textile mill factories and manufactured products, the potential source of these compounds in sediment for this study could stem from the outfall from the MWWTPs but not related to textile mills as well as from the usage of these compounds as formulants in pesticide products. Lastly, there were no exceedances to the Canadian Sediment Quality guideline toxic equivalency approach (TEQ) of 1400 ng/g or the 1310 ng/g guideline for NP in freshwater sediment from the European Scientific Committee on Health, Environmental and Emerging Risks. We hypothesize that the significant concentrations of these compounds in sediment may be a relevant and continuous source of 4NP in surface waters due to resuspension of sediment in the water column.


Assuntos
Monitoramento Ambiental , Água Doce , Sedimentos Geológicos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Águas Residuárias/química , Águas Residuárias/análise , Água Doce/química , Fenóis/análise , Quebeque , Eliminação de Resíduos Líquidos , Têxteis/análise , Indústria Têxtil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...