Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.592
Filtrar
1.
PLoS One ; 19(6): e0305541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885233

RESUMO

BACKGROUND: The inflammatory response is a key factor in the pathogenesis of cerebral ischemia/reperfusion injury (CIRI), and anti-inflammatory interventions may offer a promising therapeutic strategy. Forsythoside B (FB) is a phenylethanoid glycoside isolated from Forsythiae fructus, which has been reported to have anti-inflammatory effects. However, the mechanism of the neuroprotective effect of FB on CIRI remains unclear. METHODS: Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion (MCAO/R). FB was administered intraperitoneally for 3 days prior to MCAO/R. Cerebral infarct volume and neurological deficit score were used as indices to evaluate MCAO/R injury. The serum levels of inflammatory factors and antioxidant enzymes were measured. The activation of silent information regulator 2 homolog 1 (Sirt1) and the inhibition of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) pathway were assessed through western blot and immunohistochemistry analysis. Furthermore, the rats were treated with Sirt1 shRNA 3 days before MCAO/R by stereotactical injection into the ipsilateral hemispheric region to assess the impact of Sirt1 knockdown on the protection of FB during MCAO/R. RESULTS: FB reduced cerebral infarct volume and neurological deficit score in MCAO/R rats. FB reduced pathological changes and cell apoptosis in the hippocampal CA1 region and cortex on the ischemic side of rats. FB inhibited the serum levels of inflammatory factors and increased the activities of antioxidant enzymes. Further study showed that FB inhibited the activation of the NLRP3 pathway and induced Sirt1 activation. CONCLUSION: FB demonstrated neuroprotective and anti-inflammatory effects by inhibiting the NLRP3 pathway through Sirt1 activation in CIRI.


Assuntos
Infarto da Artéria Cerebral Média , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Masculino , Inflamassomos/metabolismo , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Ácidos Cafeicos , Glucosídeos
2.
Phytomedicine ; 130: 155399, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850632

RESUMO

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is a sequence of pathophysiological processes after blood recanalization in the patients with ischemic stroke, and has become the hinder for the rehabilitation. Naotaifang formula (NTF) has exhibited the clinical effectiveness for this disease. However, its action effects and molecular mechanisms against CIRI are not fully elucidated. PURPOSE: The research was to clarify the crosstalk between ferroptosis and necroptosis in CIRI, and uncover the mechanism underlying the neuroprotection of NTF. METHODS: This study established MCAO/R rat models with various reperfusion times. Western blot, transmission electron microscope, laser speckle imaging, immunofluorescence, immunohistochemistry and pathological staining were conducted to detect and analyze the obtained results. Subsequently, various NTF doses were used to intervene in MCAO/R rats, and biology experiments, such as western blot, Evans blue, immunofluorescence and immunohistochemistry, were used to analyze the efficacy of NTF doses. The effect of NTF was further clarified through in vitro experiments. Eventually, HT22 cells that suffered OGD/R were subjected to pre-treatment with plasmids overexpressing HSP90, MLKL, and GPX4 to indicate the interaction among ferroptosis and necroptosis. RESULTS: There was a gradual increase in the Zea Longa score and cerebral infarction volume following CIRI with prolonged reperfusion. Furthermore, the expression of factors associated with pro-ferroptosis and pro-necroptosis was upregulated in the cortex and hippocampus. NTF alleviated ferroptosis and necroptosis in a dose-dependent manner, downregulated HSP90 levels, reduced blood-brain barrier permeability, and thus protected nerve cells from CIRI. The results in vitro research aligned with those of the in vivo research. HSP90 and MLKL overexpression promoted necroptosis and ferroptosis while activating the GCN2-ATF4 pathway. GPX4 overexpression had no effect on necroptosis or the associated signaling pathway. The administration of NTF alone, as well as its combination with the overexpression of HSP90, MLKL, or GPX4 plasmids, decreased the expression levels of factors associated with pro-ferroptosis and pro-necroptosis and reduced the protein levels of the HSP90-GCN2-ATF4 pathway. Moreover, the regulatory effects of the NTF alone group on GSH, ferrous iron, and GCN2 were more significant compared with those of the HSP90 overexpression combination group. CONCLUSION: Ferroptosis and necroptosis were gradually aggravated following CIRI with prolonged reperfusion. MLKL overexpression may promote ferroptosis and necroptosis, while GPX4 overexpression may have little effect on necroptosis. HSP90 overexpression accelerated both forms of cell death via the HSP90-GCN2-ATF4 pathway. NTF alleviated ferroptosis and necroptosis to attenuate CIRI by regulating the HSP90-GCN2-ATF4 pathway. Our research provided evidence for the potential of drug development by targeting HSP90, MLKL, and GPX4 to protect against ischemic stroke.


Assuntos
Fator 4 Ativador da Transcrição , Ferroptose , Proteínas de Choque Térmico HSP90 , Necroptose , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Ferroptose/efeitos dos fármacos , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Necroptose/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Proteínas de Choque Térmico HSP90/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Camundongos
3.
Fitoterapia ; 176: 106045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823597

RESUMO

Notoginseng leaf triterpenes (PNGL), derived from the dried stems and leaves of P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in vivo and in vitro of ischemic stroke. However, its impact on neurological restoration specifically in relation to angiogenesis following ischemic stroke remains unexplored. The aim of this study was to assess the effects of PNGL on angiogenesis subsequent to ischemic stroke. Male Sprague-Dawley rats were utilized in this study and were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Post-ischemia, PNGL were administered through intraperitoneal (i.p.) injection. The high-performance liquid chromatography (HPLC) fingerprinting, triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, network pharmacology and western blot analyses were assessed to determine the therapeutical effect and molecular mechanisms of PNGL on cerebral ischemia/reperfusion injury. Our findings demonstrate that PNGL effectively reduced infarct volume, enhanced cerebral blood flow, and induced angiogenesis in rats subjected to MCAO/R. Notably, PNGL also facilitated neuronal proliferation and migration in HUMECs in vitro. The proangiogenic effects of PNGL were found to be linked to the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis, as well as the activation of neurological function. Our study provides evidence that PNGL hold promise as an active ingredient of inducing proangiogenic effects, potentially through the activation of the Nrf2 pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis. These findings contribute to the understanding of novel mechanisms involved in the restoration of neurological function following PNGL treatment for ischemic stroke.


Assuntos
AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Panax notoginseng , Folhas de Planta , Ratos Sprague-Dawley , Sirtuína 1 , Triterpenos , Animais , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Sirtuína 1/metabolismo , AVC Isquêmico/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Panax notoginseng/química , Folhas de Planta/química , Humanos , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , China , Traumatismo por Reperfusão/tratamento farmacológico , Indutores da Angiogênese/farmacologia , Angiogênese
4.
PLoS One ; 19(5): e0303213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753710

RESUMO

Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Tretinoína , Proteína de Morte Celular Associada a bcl , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Proteína de Morte Celular Associada a bcl/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
5.
Neuroscience ; 549: 76-83, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38734304

RESUMO

Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. Male Sprague-Dawley rats (n = 36) were divided into four groups: saline (pMCAO - Saline), CBL (pMCAO + CBL), NAM (pMCAO + NAM), and experimental (pMCAO + CBL-NAM) (n = 9 per group). A permanent middle cerebral artery occlusion (pMCAO) was induced through electrocauterization of the middle cerebral artery, followed by the administration of CBL (2.5 ml/kg), NAM (500 mg/kg) or combined immediately after skin suture, as well as at 24, 48, and 72 h post-surgery. The rats were evaluated in the novel object recognition test; hippocampal infarct area measurement; reconstruction of neurons from CA1 for Sholl analysis; and, measurement of brain-derived neurotrophic factor (BDNF) levels near the infarct zone. Our findings revealed that the administration of CBL or NAM induced infarct reduction, improved cognition, and increased BDNF levels. Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.


Assuntos
Aminoácidos , Cognição , Hipocampo , Infarto da Artéria Cerebral Média , Neurônios , Fármacos Neuroprotetores , Niacinamida , Ratos Sprague-Dawley , Animais , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Aminoácidos/farmacologia , Aminoácidos/administração & dosagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Cognição/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Quimioterapia Combinada , Modelos Animais de Doenças
6.
Pharmacol Res ; 205: 107229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782148

RESUMO

After long-term clinical application, traditional Chinese medicine (TCM) has accumulated rich experience in the stroke treatment. Huang-Qi-Long-Dan Granule (HQLDG) is a TCM formula that has been used in clinical for the treatment of acute ischemic stroke. However, its mechanism against ischemic stroke is still unknown. This study aimed to identify HQLDG's effect against ischemic stroke and explore its underlying mechanism. 16s rRNA sequencing, metabolomics/tryptophan (Trp)-targeted metabolomics analysis and transcriptomic analysis were used to investigate HQLDG underlying therapeutic mechanism. Our results revealed that HQLDG significantly decreased the infarct volume, improved mouse behavior and brain slices pathological staining. In addition, it could ameliorate intestinal barrier damage and regulate tight junction gene expression. 16s rRNA, metabolomics and transcriptomics analysis revealed that HQLDG treatment significantly improved the composition of gut microbiota and Trp metabolism pathway, and further downregulated Th17/IL-17 signaling pathway. HQLDG treatment could significantly decrease serum inflammatory cytokines, IL-17A and IL-22; down-regulate Trp metabolism receptor gene (Ahr), inflammatory cytokines genes (IL-17a, IL-22), and an important coding gene for maintaining the mature Th17 (rorc) in both brain and intestinal tissues. In the contrary, after gut microbiota removal, this effect of HQLDG was impaired. HQLDG treated mouse fecal microbiota transplantation also had positive effect against tMCAO injury. Moreover, AhR inhibitor could decrease IL-17A immunofluorescence. These results suggested that the gut microbiota regulation might be an important intermediate in HQLDG against tMCAO injury. HQLDG might exert anti-ischemic stroke effects through the gut microbiota-Trp metabolism-Th17/IL-17 signaling, which provides new insights into HQLDG-mediated prevention in ischemic stroke.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , AVC Isquêmico , Metabolômica , Camundongos Endogâmicos C57BL , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos , Triptofano/metabolismo , Astragalus propinquus , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Multiômica , Receptores de Hidrocarboneto Arílico , Fatores de Transcrição Hélice-Alça-Hélice Básicos
7.
Phytomedicine ; 130: 155701, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788392

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) refers to brain tissue injury caused by the temporary interruption of cerebral blood flow ischemia followed by the restoration of reperfusion, which is the main cause of post-stroke brain injury. A traditional Chinese herbal preparation called Tongqiao Huoxue Decoction (TQHX) has shown promise in reducing CIRI in rats. However, the mechanism of this herbal preparation for CIRI remains unclear. PURPOSE: This study aimed to evaluate the therapeutic effect of TQHX extract on rats with CIRI and to further explore the underlying mechanisms. METHODS: The active ingredients of TQHX extract were quantified by the high-performance liquid chromatography (HPLC) condition. We conducted thorough investigations to assess the effects of TQHX on CIRI and ferroptosis using oxygen-glucose deprivation/reperfusion (OGD/R)-treated PC12 cells as an in vitro model and transient middle cerebral artery occlusion (tMCAO) animals as an in vivo model. The neurological score assessment was performed to evaluate the neuroprotective effects of TQHX extract on tMCAO rats. Using histologic methods to study the extent of cerebral infarction, blood-brain barrier, and rat brain tissue. We examined the impact of TQHX on ferroptosis-related markers of Fe2+, superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) in the brain tissue. In addition, the expression of key proteins and markers of ferroptosis, as well as key factors associated with Acyl-CoA synthetase long-chain family member 4 (ACSL4) were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS: TQHX extract could decrease the Longa score and extent of cerebral infarction of tMCAO rats, which exerted the function of neuroprotection. Additionally, TQHX treatment efficiently decreased levels of MDA and ROS while increasing the expression of SOD and ferroptosis-related proteins including ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) at the transcription and translation level. Meanwhile, TQHX provided strong protection against oxidative stress and ferritin accumulation by increasing the ubiquitination and degradation of ACSL4. The injection of OE-ACSL4 reversed the effects of TQHX on neuroprotection and ferroptosis inhibition in PC12 cells. The injection of shACSL4 reversely validate the crucial role of ACSL4 in CIRI rat treatment. CONCLUSION: This work shows that TQHX promotes the ubiquitination-mediated degradation of ACSL4, which improves oxidative stress and inhibits the beginning of ferroptosis in cells. TQHX provides a possible path for additional research in CIRI therapies, advancing translational investigations.


Assuntos
Coenzima A Ligases , Medicamentos de Ervas Chinesas , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Coenzima A Ligases/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ferroptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Ubiquitinação/efeitos dos fármacos
8.
Mol Med ; 30(1): 59, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745316

RESUMO

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Assuntos
Autofagia , Modelos Animais de Doenças , Microglia , Doenças Neuroinflamatórias , Traumatismo por Reperfusão , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/etiologia , Autofagia/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Polaridade Celular/efeitos dos fármacos
9.
Phytomedicine ; 129: 155635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701541

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.


Assuntos
Curcumina , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Microglia , Fármacos Neuroprotetores , Mucosa Olfatória , Traumatismo por Reperfusão , Curcumina/farmacologia , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Microglia/efeitos dos fármacos , Camundongos , Células-Tronco Mesenquimais/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Mucosa Olfatória/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Modelos Animais de Doenças
10.
Int J Med Sci ; 21(7): 1274-1279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818467

RESUMO

Objective: Citicoline can be used to reduce acute ischemic stroke injury via venous infusion, however, its protective effects in the brain extracellular space remain largely unknown. Herein, we investigated the brain protective effects of citicoline administered via the brain extracellular space and sought precise effective dosage range that can protect against ischemic injury after experimental ischemic stroke in rats. Methods: Fifty-six Sprague-Dawley rats were randomly divided into control, intraperitoneal (IP), caudate-putamen (CPu)-25, CPu-40, CPu-50, CPu-60 and CPu-75 groups based on the infusion site and concentration of citicoline. Two hours after the administration of citicoline, the rats were subjected to a permanent middle cerebral artery occlusion to mimic acute ischemic stroke. Then, the brain infarct volume in rats after stroke was measured and their neurological deficiency was evaluated to explain the protective effects and effective dosage range of citicoline. Results: Compared to the control and IP groups, brain infarct volume of rats in CPu-40, CPu-50, and CPu-60 groups is significant smaller. Furthermore, the brain infarct volume of rats in CPu-50 is the least. Conclusions: Here, we showed that citicoline can decrease the brain infarct volume, thus protecting the brain from acute ischemic stroke injury. We also found that the appropriate effective citicoline dose delivered via the brain extracellular space is 50 mM. Our study provides novel insights into the precise treatment of acute ischemic stroke by citicoline via the brain extracellular space, further guiding the treatment of brain disease.


Assuntos
Encéfalo , Citidina Difosfato Colina , Modelos Animais de Doenças , Espaço Extracelular , AVC Isquêmico , Ratos Sprague-Dawley , Animais , Citidina Difosfato Colina/administração & dosagem , Citidina Difosfato Colina/farmacologia , Citidina Difosfato Colina/uso terapêutico , Ratos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Espaço Extracelular/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia
11.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717643

RESUMO

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Assuntos
Anexina A1 , AVC Isquêmico , Microglia , Doenças Neuroinflamatórias , Sirtuínas , Animais , Masculino , Camundongos , Anexina A1/efeitos dos fármacos , Anexina A1/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Neuroreport ; 35(10): 601-611, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38813902

RESUMO

Danshen injection (DI) is effective in treating cardiovascular and cerebrovascular diseases, including ischemic stroke (IS), including IS, but its mechanism is unclear. A middle cerebral artery occlusion model was used to simulate ischemia/reperfusion (I/R) injury in SD rats. Overexpression of hypoxia-inducible factor 1α (HIF-1α) was achieved by AAV-HIF-1α. Rats were treated with DI or saline. Neurological scores and infarction rates were assessed. I/R damage was examined by HE, 2,3,5-triphenyltetrazolium and Nissl stainings. Expression levels of relative proteins [TNF-α, IL-6, IL-1ß, SOD, MDA, ROS, HIF-1α, CXC chemokine receptor 4 (CXCR4) and NF-κB] were measured. DI treatment improved neurological scores and reduced infarction rates, suggesting that it inhibits inflammation and oxidative stress. The expression levels of HIF-1α, CXCR4 and NF-κB were decreased. However, the effectiveness of DI on inflammation inhibition was lost after HIF-1α overexpression. DI may directly target HIF-1α to suppress neuroinflammation and reduce I/R injury by suppressing the HIF-1α/CXCR4/NF-κB signaling pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , NF-kappa B , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Receptores CXCR4 , Traumatismo por Reperfusão , Salvia miltiorrhiza , Transdução de Sinais , Animais , Receptores CXCR4/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Ratos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico
13.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716368

RESUMO

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Ferroptose/efeitos dos fármacos , Animais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
14.
Exp Gerontol ; 191: 112448, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697555

RESUMO

BACKGROUND: Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE: This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS: Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS: We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, ß-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100ß and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION: This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Traumatismo por Reperfusão , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Neurochem Res ; 49(7): 1863-1878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753259

RESUMO

The study aimed to assess 𝛾-Terpinene's (𝛾-TER) neuroprotective potential in acute cerebral ischemia, characterized by reduced cerebral blood flow in rats. Middle cerebral artery occlusion (MCAO), a standard method for inducing cerebral ischemia, was employed in male Wistar rats. 𝛾-TER at varying doses (5, 10, and 15 mg/kg) were intraperitoneally administered during reperfusion onset. Neurological outcomes, cerebral infarct size, edema, and enzymatic activities (SOD, GPx, and catalase) in the brain were evaluated using diverse techniques. The study examined gene expression and pathways associated with neuroinflammation and apoptosis using Cytoscape software, identifying the top 10 genes involved. Pro-inflammatory and pro-apoptotic factors were assessed through real-time PCR and ELISA, while apoptotic cell rates were measured using the TUNEL and Flow cytometry assay. Immunohistochemistry assessed apoptosis-related proteins like Bax and bcl-2 in the ischemic area. 𝛾-TER, particularly at doses of 10 and 15 mg/kg, significantly reduced neurological deficits and cerebral infarction size. The 15 mg/kg dose mitigated TNF-α, IL-1ß, Bax, and caspase-3 gene and protein levels in the cortex, hippocampus, and striatum compared to controls. Furthermore, Bcl-2 levels increased in these regions. 𝛾-TER show cased neuroprotective effects by suppressing inflammation, apoptosis, and oxidation. In conclusion, 𝛾-TER, possessing natural anti-inflammatory and anti-apoptotic properties, shields the brain against ischemic damage by reducing infarction, edema, oxidative stress, and inflammation. It modulates the expression of crucial genes and proteins associated with apoptosis in diverse brain regions. These findings position 𝛾-TER as a potential therapeutic agent for ischemic stroke.


Assuntos
Apoptose , Fármacos Neuroprotetores , Ratos Wistar , Animais , Masculino , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Estresse Oxidativo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Monoterpenos Cicloexânicos/uso terapêutico , Monoterpenos Cicloexânicos/farmacologia , Oxirredução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia
16.
J Ethnopharmacol ; 332: 118372, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38777084

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Neovessels represent a crucial therapeutic target and strategy for repairing ischemic tissue. Taohong Siwu Decoction (THSWD) exhibits potential in promoting angiogenesis to address ischemic stroke (IS). However, its impact on neovessel structure and function, alongside the underlying molecular mechanisms, remains elusive. AIM OF THE STUDY: Our aim is to investigate the protective effects of THSWD on neovessel structure and function, as well as the associated molecular mechanisms, utilizing an integrative pharmacological approach. MATERIALS AND METHODS: We initially employed behavioral tests, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Haematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), Laser Doppler flowmetry (LDF), Evans blue staining, and immunofluorescence to evaluate the protective effects of THSWD on neovascular structure and function in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. Subsequently, we utilized network pharmacology, metabolomics, and experimental validation to elucidate the underlying molecular mechanisms of THSWD in enhancing neovascular structure and function. RESULT: In addition to significantly reducing neurological deficits and cerebral infarct volume, THSWD mitigated pathological damage, blood-brain barrier (BBB) leakage, and cerebral blood flow disruption. Moreover, it preserved neovascular structure and stimulated angiogenesis. THSWD demonstrated potential in ameliorating cerebral microvascular metabolic disturbances including lipoic acid metabolism, fructose and mannose metabolism, purine metabolism, and ether lipid metabolism. Consequently, it exhibited multifaceted therapeutic effects, encompassing anti-inflammatory, antioxidant, energy metabolism modulation, and antiplatelet aggregation properties. CONCLUSION: THSWD exhibited protective effects on cerebral vascular structure and function and facilitated angiogenesis by rectifying cerebral microvascular metabolic disturbances in MCAO/R rats. Furthermore, integrated pharmacology offers a promising approach for studying the intricate traditional Chinese medicine (TCM) system in IS treatment.


Assuntos
Medicamentos de Ervas Chinesas , Infarto da Artéria Cerebral Média , AVC Isquêmico , Ratos Sprague-Dawley , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , AVC Isquêmico/tratamento farmacológico , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Indutores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Farmacologia em Rede , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Angiogênese
17.
Brain Res Bull ; 213: 110986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810789

RESUMO

Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.


Assuntos
Infarto da Artéria Cerebral Média , Camundongos Knockout , Doenças Neuroinflamatórias , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Camundongos Endogâmicos C57BL , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptores de Complemento/antagonistas & inibidores , Receptores de Complemento/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
18.
J Neuropathol Exp Neurol ; 83(7): 615-625, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38804899

RESUMO

Breviscapine (Bre), an extract from Erigeron breviscapus, has been widely used to treat cerebral ischemia but the mechanisms of its neuroprotective effects need to be clarified. The present study investigated whether Bre could alleviate excessive autophagy induced by cerebral ischemia in the rat middle cerebral artery occlusion (MCAO) ischemia model via activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5)/B-cell lymphoma 2 (BCL2) pathway. Rats were randomly divided into 5 groups, i.e. Sham group, MCAO+saline group, MCAO+Bre group, MCAO+DMSO (Dimethyl sulfoxide) group, and MCAO+Bre+AG490 (Tyrphostin AG490, the inhibitor of STAT5) group. The model was established and neuroprotection was evaluated by determining infarct volumes and conducting neurological behavioral tests. Autophagy levels in the infarct penumbra were detected using transmission electron microscopy and Western blotting. The expression of proteins in the JAK2/STAT5/BCL2 pathway was tested by Western blotting. Compared to the MCAO+saline group, the infarct volumes in the MCAO+Bre group were significantly reduced and neurological behavior improved. Breviscapine administration also significantly increased p-JAK2, p-STAT5, and BCL2 expression but decreased autolysosome numbers; it also downregulated Beclin-1 expression and the LC3II/LCI ratio. The JAK2 inhibitor AG490 reversed these effects. These findings indicate that breviscapine can improve neural recovery following ischemia through alleviating excessive autophagy and activation of the JAK2/STAT5/BCL2 axis.


Assuntos
Autofagia , Modelos Animais de Doenças , Flavonoides , Janus Quinase 2 , Proteínas Proto-Oncogênicas c-bcl-2 , Ratos Sprague-Dawley , Fator de Transcrição STAT5 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Flavonoides/farmacologia , Masculino , Ratos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Fator de Transcrição STAT5/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Tirfostinas
19.
J Pharm Biomed Anal ; 246: 116206, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733762

RESUMO

Ischemic stroke, accounting for 80 % of all strokes, is a major cause of morbidity and mortality worldwide. However, effective and safe pharmacotherapy options for ischemic injury are limited. This study investigated the therapeutic effects of wogonoside, a compound derived from Radix Scutellariae, on ischemia/reperfusion (I/R) injury. The results showed that wogonoside treatment had significant therapeutic effects in rats with middle cerebral artery occlusion. It effectively reduced mortality rates, neurological deficits, cerebral infarct size, and brain water content. In an in vitro model using PC12 cells, wogonoside activated the Nrf2/Sirt3 signaling pathway. This activation contributed to the attenuation of oxidative damage and inflammation. Metabolomics analysis revealed increased levels of γ-aminobutyric acid (GABA) and glutathione in response to wogonoside treatment, suggesting their potential as therapeutic biomarkers for ischemic stroke. Additionally, wogonoside restored perturbed energy metabolism, including the tricarboxylic acid cycle. Wogonoside has the potential to ameliorate cerebral ischemic injury by targeting GABA-related amino acid metabolism, energy metabolism, and glutathione metabolism, maintaining redox homeostasis, and attenuating oxidative stress. These findings provide valuable insights into the protective mechanisms of wogonoside in cerebral I/R injury and highlight the promising therapeutic approach of wogonoside in the treatment of ischemic stroke.


Assuntos
AVC Isquêmico , Metabolômica , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Sirtuína 3 , Espectrometria de Massas em Tandem , Animais , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Metabolômica/métodos , Transdução de Sinais/efeitos dos fármacos , Células PC12 , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Masculino , Espectrometria de Massas em Tandem/métodos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Sirtuína 3/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glucosídeos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Glutationa/metabolismo , Modelos Animais de Doenças , Sirtuínas
20.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA