Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Antiviral Res ; 228: 105933, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851593

RESUMO

The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.


Assuntos
Ácido Dicloroacético , Glucose , Replicação Viral , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Ácido Dicloroacético/farmacologia , Replicação Viral/efeitos dos fármacos , Glucose/metabolismo , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Animais , Glicólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antivirais/farmacologia
2.
Antiviral Res ; 228: 105940, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901736

RESUMO

The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.


Assuntos
Antivirais , Canais de Potencial de Receptor Transitório , Replicação Viral , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/metabolismo , Infecção por Zika virus/virologia , Infecção por Zika virus/tratamento farmacológico , Chlorocebus aethiops , Animais , Células Vero , Colesterol/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Linhagem Celular , Células HEK293 , Ftalimidas , Quinolinas
3.
Virus Res ; 347: 199419, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880335

RESUMO

Zika virus (ZIKV) is a re-emerging RNA virus that is known to cause ocular and neurological abnormalities in infants. ZIKV exploits autophagic processes in infected cells to enhance its replication and spread. Thus, autophagy inhibitors have emerged as a potent therapeutic target to combat RNA viruses, with Hydroxychloroquine (HCQ) being one of the most promising candidates. In this study, we synthesized several novel small-molecule quinoline derivatives, assessed their antiviral activity, and determined the underlying molecular mechanisms. Among the nine synthesized analogs, two lead candidates, labeled GL-287 and GL-382, significantly attenuated ZIKV replication in human ocular cells, primarily by inhibiting autophagy. These two compounds surpassed the antiviral efficacy of HCQ and other existing autophagy inhibitors, such as ROC-325, DC661, and GNS561. Moreover, unlike HCQ, these novel analogs did not exhibit cytotoxicity in the ocular cells. Treatment with compounds GL-287 and GL-382 in ZIKV-infected cells increased the abundance of LC3 puncta, indicating the disruption of the autophagic process. Furthermore, compounds GL-287 and GL-382 effectively inhibited the ZIKV-induced innate inflammatory response in ocular cells. Collectively, our study demonstrates the safe and potent antiviral activity of novel autophagy inhibitors against ZIKV.


Assuntos
Antivirais , Autofagia , Quinolinas , Replicação Viral , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Autofagia/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Quinolinas/farmacologia , Quinolinas/química , Quinolinas/síntese química , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Linhagem Celular , Chlorocebus aethiops , Animais , Células Vero
4.
Mar Drugs ; 22(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921558

RESUMO

Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sargassum , Xantofilas , Zika virus , Antivirais/farmacologia , Antivirais/isolamento & purificação , Antivirais/química , Zika virus/efeitos dos fármacos , Animais , Sargassum/química , Chlorocebus aethiops , Xantofilas/farmacologia , Xantofilas/isolamento & purificação , Xantofilas/química , Células Vero , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
5.
Antimicrob Agents Chemother ; 68(7): e0016824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38809067

RESUMO

Zika virus (ZIKV) is one of the mosquito-borne flaviviruses that exhibits a unique tropism to nervous systems and is associated with Guillain-Barre syndrome and congenital Zika syndrome (CZS). Dengue virus (DENV) and yellow fever virus (YFV), the other two mosquito-borne flaviviruses, have also been circulating for a long time and cause severe diseases, such as dengue hemorrhagic fever and yellow fever, respectively. However, there are no safe and effective antiviral drugs approved for the treatment of infections or coinfections of these flaviviruses. Here, we found that zafirlukast, a pregnancy-safe leukotriene receptor antagonist, exhibited potent antiviral activity against infections of ZIKV strains from different lineages in different cell lines, as well as against infections of DENV-2 and YFV 17D. Mechanistic studies demonstrated that zafirlukast directly and irreversibly inactivated these flaviviruses by disrupting the integrity of the virions, leading to the loss of viral infectivity, hence inhibiting the entry step of virus infection. Considering its efficacy against flaviviruses, its safety for pregnant women, and its neuroprotective effect, zafirlukast is a promising candidate for prophylaxis and treatment of infections or coinfections of ZIKV, DENV, and YFV, even in pregnant women.


Assuntos
Antivirais , Vírus da Dengue , Indóis , Sulfonamidas , Vírus da Febre Amarela , Zika virus , Zika virus/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Animais , Vírus da Febre Amarela/efeitos dos fármacos , Indóis/farmacologia , Sulfonamidas/farmacologia , Chlorocebus aethiops , Células Vero , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Linhagem Celular , Fenilcarbamatos
6.
SLAS Discov ; 29(5): 100164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796112

RESUMO

Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV. One promising target for drug development is the ZIKV NS2B-NS3 protease due to its crucial role in the virus life cycle. In this study, we established a cell-based ZIKV protease inhibition assay designed for high-throughput screening (HTS). Our assay relies on the ZIKV protease's ability to cleave a cyclised firefly luciferase fused to a natural cleavage sequence between NS2B and NS3 protease within living cells. We evaluated the performance of our assay in HTS setting using the pharmacologic controls (JNJ-40418677 and MK-591) and by screening a Library of Pharmacologically Active Compounds (LOPAC). The results confirmed the feasibility of our assay for compound library screening to identify potential ZIKV protease inhibitors.


Assuntos
Antivirais , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Inibidores de Proteases , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteases/farmacologia , Humanos , Antivirais/farmacologia , Descoberta de Drogas/métodos , Infecção por Zika virus/virologia , Infecção por Zika virus/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Animais , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
7.
Curr Microbiol ; 81(5): 133, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592489

RESUMO

Zika virus (ZIKV) infections have been associated with severe clinical outcomes, which may include neurological manifestations, especially in newborns with intrauterine infection. However, licensed vaccines and specific antiviral agents are not yet available. Therefore, a safe and low-cost therapy is required, especially for pregnant women. In this regard, metformin, an FDA-approved drug used to treat gestational diabetes, has previously exhibited an anti-ZIKA effect in vitro in HUVEC cells by activating AMPK. In this study, we evaluated metformin treatment during ZIKV infection in vitro in a JEG3-permissive trophoblast cell line. Our results demonstrate that metformin affects viral replication and protein synthesis and reverses cytoskeletal changes promoted by ZIKV infection. In addition, it reduces lipid droplet formation, which is associated with lipogenic activation of infection. Taken together, our results indicate that metformin has potential as an antiviral agent against ZIKV infection in vitro in trophoblast cells.


Assuntos
Metformina , Infecção por Zika virus , Zika virus , Recém-Nascido , Gravidez , Feminino , Humanos , Infecção por Zika virus/tratamento farmacológico , Linhagem Celular Tumoral , Trofoblastos , Antivirais/farmacologia , Metformina/farmacologia
8.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673962

RESUMO

In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.


Assuntos
Antivirais , Dengue , Inibidores de Proteases , Infecção por Zika virus , Animais , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , RNA Helicases DEAD-box , Dengue/tratamento farmacológico , Dengue/virologia , Vírus da Dengue/efeitos dos fármacos , Nucleosídeo-Trifosfatase , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteases Virais , Zika virus/efeitos dos fármacos , Zika virus/enzimologia , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
9.
Bioorg Med Chem ; 103: 117682, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493729

RESUMO

Zika virus (ZIKV) disease has been given attention due to the risk of congenital microcephaly and neurodevelopmental disorders after ZIKV infection in pregnancy, but no vaccine or antiviral drug is available. Based on a previously reported ZIKV inhibitor ZK22, a series of novel 1-aryl-4-arylmethylpiperazine derivatives was designed, synthesized, and investigated for antiviral activity by quantify cellular ZIKV RNA amount using RT-qPCR method in ZIKV-infected human venous endothelial cells (HUVECs) assay. Structure-activity relationship (SAR) analysis demonstrated that anti-ZIKV activity of 1-aryl-4-arylmethylpiperazine derivatives is not correlated with molecular hydrophobicity, multiple new derivatives with pyridine group to replace the benzonitrile moiety of ZK22 showed stronger antiviral activity, higher ligand lipophilicity efficiency as well as lower cytotoxicity. Two active compounds 13 and 33 were further identified as novel ZIKV entry inhibitors with the potential of oral available. Moreover, both ZK22 and newly active derivatives also possess of obvious inhibition on the viral replication of coronavirus and influenza A virus at low micromolar level. In summary, this work provided better candidates of ZIKV inhibitor for preclinical study and revealed the promise of 1-aryl-4-arylmethylpiperazine chemotype in the development of broad-spectrum antiviral agents.


Assuntos
Infecção por Zika virus , Zika virus , Feminino , Humanos , Gravidez , Antivirais/farmacologia , Antivirais/uso terapêutico , Células Endoteliais , Replicação Viral , Infecção por Zika virus/tratamento farmacológico , Piperazinas/química , Piperazinas/farmacologia
10.
Virology ; 594: 110042, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492519

RESUMO

High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.


Assuntos
Vírus de RNA , Viroses , Infecção por Zika virus , Zika virus , Animais , Humanos , Antivirais/química , Inteligência Artificial , Vírus de RNA/genética , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico
11.
Infect Disord Drug Targets ; 24(7): e020224226681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318833

RESUMO

Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV-2, coronavirus, monkeypox (Mpox) virus, etc. ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection. This review examines the last five years of work using natural biomolecules (BMs) to counteract the ZIKV through virtual screening and in vitro investigations. Virtual screening has identified doramectin, pinocembrin, hesperidins, epigallocatechin gallate, pedalitin, and quercetin as potentially active versus ZIKV infection. In vitro, testing has shown that nordihydroguaiaretic acid, mefloquine, isoquercitrin, glycyrrhetinic acid, patentiflorin-A, rottlerin, and harringtonine can reduce ZIKV infections in cell lines. However, in vivo, testing is limited, fortunately, emetine, rottlerin, patentiflorin-A, and lycorine have shown in vivo anti- ZIKV potential. This review focuses on natural biomolecules that show a particularly high selective index (>10). There is limited in vivo and clinical trial data for natural BMs, which needs to be an active area of investigation. This review aims to compile the known reference data and discuss the barriers associated with discovering and using natural BM agents to control ZIKV infection.


Assuntos
Antivirais , Infecção por Zika virus , Zika virus , Humanos , Zika virus/efeitos dos fármacos , Antivirais/farmacologia , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Animais , Produtos Biológicos/farmacologia
12.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397115

RESUMO

Zika virus (ZIKV) is a positive-sense single-stranded virus member of the Flaviviridae family. Among other arboviruses, ZIKV can cause neurological disorders such as Guillain Barré syndrome, and it can have congenital neurological manifestations and affect fertility. ZIKV nonstructural protein 5 (NS5) is essential for viral replication and limiting host immune detection. Herein, we performed virtual screening to identify novel small-molecule inhibitors of the ZIKV NS5 methyltransferase (MTase) domain. Compounds were tested against the MTases of both ZIKV and DENV, demonstrating good inhibitory activities against ZIKV MTase. Extensive molecular dynamic studies conducted on the series led us to identify other derivatives with improved activity against the MTase and limiting ZIKV infection with an increased selectivity index. Preliminary pharmacokinetic parameters have been determined, revealing excellent stability over time. Preliminary in vivo toxicity studies demonstrated that the hit compound 17 is well tolerated after acute administration. Our results provide the basis for further optimization studies on novel non-nucleoside MTase inhibitors.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Infecção por Zika virus/tratamento farmacológico , Modelos Moleculares , Antivirais/química , Proteínas não Estruturais Virais/metabolismo
13.
ACS Appl Mater Interfaces ; 16(5): 5426-5437, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277775

RESUMO

Curcumin, a natural product with recognized antiviral properties, is limited in its application largely due to its poor solubility. This study presents the synthesis of water-soluble curcumin-poly(sodium 4-styrenesulfonate) (Cur-PSSNan) covalent conjugates. The antiflaviviral activity of conjugates was validated in vitro by using the Zika virus as a model. In the development of these water-soluble curcumin-containing derivatives, we used the macromolecules reported by us to also hamper viral infections. Mechanistic investigations indicated that the conjugates exhibited excellent stability and bioavailability. The curcumin and macromolecules in concerted action interact directly with virus particles and block their attachment to host cells, hampering the infection process.


Assuntos
Curcumina , Infecção por Zika virus , Zika virus , Humanos , Curcumina/farmacologia , Internalização do Vírus , Infecção por Zika virus/tratamento farmacológico , Solubilidade , Água
14.
Phytomedicine ; 125: 155343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290230

RESUMO

BACKGROUND: Zika virus (ZIKV) is a single-stranded RNA flavivirus transmitted by mosquitoes. Its infection is associated with neurological complications such as neonatal microcephaly and adult Guillain-Barré syndrome, posing a serious threat to the health of people worldwide. Therefore, there is an urgent need to develop effective anti-ZIKV drugs. Atranorin is a lichen secondary metabolite with a wide range of biological activities, including anti-inflammatory, antibacterial and antioxidant, etc. However, the antiviral activity of atranorin and underlying mechanism has not been fully elucidated. PURPOSE: We aimed to determine the anti-ZIKV activity of atranorin in human glioma cell line SNB-19 and investigate the potential mechanism from the perspective of viral life cycle and the host cell functions. METHODS: We first established ZIKV-infected human glioma cells (SNB-19) model and used Western Blot, RT-qPCR, immunofluorescence, fluorescence-activated cell sorting (FACS) and plaque assay to evaluate the anti-ZIKV activity of atranorin. Then we assessed the regulation effect of atranorin on ZIKV induced IFN signal pathway activation by RT-qPCR. Afterward, we introduced time-of-addition assay, viral adsorption assay, viral internalization assay and transferrin uptake assay to define which step of ZIKV lifecycle is influenced by atranorin. Finally, we performed virus infectivity assay, molecular docking and thermal shift assay to uncover the target protein of atranorin on ZIKV. RESULTS: Our study showed that atranorin could protect SNB-19 cells from ZIKV infection, as evidenced by inhibited viral protein expression and progeny virus yield. Meanwhile, atranorin attenuated the activation of IFN signal pathway and downstream inflammatory response that induced by ZIKV infection. The results of time-of-addition assay indicated that atranorin acted primarily by disturbing the viral entry process. After ruling out the effect of atranorin on AXL receptor tyrosine kinase (AXL) dependent virus adsorption and clathrin-mediated endocytosis, we confirmed that atranorin directly targeted the viral envelope protein and lowered ZIKV infectivity by thermal shift assay and virus infectivity assay respectively. CONCLUSION: We found atranorin inhibits ZIKV infection in SNB-19 cells via targeting ZIKV envelope protein. Our study provided an experimental basis for the further development of atranorin and a reference for antiviral drug discovery from natural resources.


Assuntos
Glioblastoma , Hidroxibenzoatos , Infecção por Zika virus , Zika virus , Animais , Recém-Nascido , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Proteínas do Envelope Viral , Glioblastoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Replicação Viral , Linhagem Celular
15.
Phytomedicine ; 123: 155197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952409

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Assuntos
Dioxolanos , Glicosídeos , Lignanas , Naftalenos , Phyllanthus , Infecção por Zika virus , Zika virus , Recém-Nascido , Animais , Humanos , Chlorocebus aethiops , Infecção por Zika virus/tratamento farmacológico , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Replicação Viral
16.
Int Immunopharmacol ; 127: 111368, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103408

RESUMO

Zika virus (ZIKV) is a mosquito-borne virus first reported from humans in Nigeria in 1954. The first outbreak occurred in Micronesia followed by an outbreak in French Polynesia and another in Brazil when the virus was associated with numerous cases of severe neurological manifestations such as Guillain-Barre syndrome in adults and congenital zika syndrome in fetuses, particularly congenital microcephaly. Innate immunity is the first line of defense against ZIKV through triggering an antiviral immune response. Along with innate immune responses, a sufficient balance between anti- and pro-inflammatory cytokines and the amount of these cytokines are triggered to enhance the antiviral responses. Here, we reviewed the complex interplay between the mediators and signal pathways that coordinate antiviral immune response and inflammation as a key to understanding the development of the underlying diseases triggered by ZIKV. In addition, we summarize current and new therapeutic strategies for ZIKV infection, highlighting cardiotonic steroids as antiviral drugs for the development of this agent.


Assuntos
Glicosídeos Cardíacos , Infecção por Zika virus , Zika virus , Adulto , Animais , Humanos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/epidemiologia , Inflamação/tratamento farmacológico , Inflamação/complicações , Imunidade Inata , Citocinas , Antivirais/uso terapêutico
17.
Virology ; 589: 109939, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979208

RESUMO

Zika virus (ZIKV) belongs to Flaviviridae, the Flavivirus genus. Its infection causes congenital brain abnormalities and Guillain-Barré syndrome. However, there are no effective vaccines, no FDA-approved drugs to manage ZIKV infection. The non-structural protein NS5 of ZIKV has been recognized as a valuable target of antivirals because of its RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) activities essential for viral RNA synthesis. Here, we report a cell-based assay for discovering inhibitors of ZIKV NS5 and found that 5-Azacytidine potently inhibits ZIKV NS5, with EC50 of 4.9 µM. Furthermore, 5-Azacytidine suppresses ZIKV replication by inhibiting NS5-mediated viral RNA transcription. Therefore, we have developed a cell-based ZIKV NS5 assay which can be deployed to discover ZIKV NS5 inhibitors and demonstrated the potential of 5-Azacytidine for further development as a ZIKV NS5 inhibitor.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Azacitidina/farmacologia , Azacitidina/metabolismo , Azacitidina/uso terapêutico , Replicação Viral
18.
Molecules ; 28(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38138628

RESUMO

Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family, and is a pathogen posing a significant threat to human health. Currently, there is a lack of internationally approved antiviral drugs for the treatment of ZIKV infection, and symptomatic management remains the primary clinical approach. Consequently, the exploration of safe and effective anti-ZIKV drugs has emerged as a paramount imperative in ZIKV control efforts. In this study, we performed a screening of a compound library consisting of 1789 FDA-approved drugs to identify potential agents with anti-ZIKV activity. We have identified dapoxetine, an orally administered selective serotonin reuptake inhibitor (SSRI) commonly employed for the clinical management of premature ejaculation (PE), as a potential inhibitor of ZIKV RNA-dependent RNA polymerase (RdRp). Consequently, we conducted surface plasmon resonance (SPR) analysis to validate the specific binding of dapoxetine to ZIKV RdRp, and further evaluated its inhibitory effect on ZIKV RdRp synthesis using the ZIKV Gluc reporter gene assay. Furthermore, we substantiated the efficacy of dapoxetine in suppressing intracellular replication of ZIKV, thereby demonstrating a concentration-dependent antiviral effect (EC50 values ranging from 4.20 µM to 12.6 µM) and negligible cytotoxicity (CC50 > 50 µM) across diverse cell lines. Moreover, cell fluorescence staining and Western blotting assays revealed that dapoxetine effectively reduced the expression of ZIKV proteins. Collectively, our findings suggest that dapoxetine exhibits anti-ZIKV effects by inhibiting ZIKV RdRp activity, positioning it as a potential candidate for clinical therapeutic intervention against ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Masculino , Humanos , Infecção por Zika virus/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Antivirais/uso terapêutico , Replicação Viral
19.
Antiviral Res ; 220: 105739, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944824

RESUMO

With approximately 3.8 billion people at risk of infection in tropical and sub-tropical regions, Dengue ranks among the top ten threats worldwide. Despite the potential for severe disease manifestation and the economic burden it places on endemic countries, there is a lack of approved antiviral agents to effectively treat the infection. Flavonoids, including baicalein, have garnered attention for their antimicrobial properties. In this study, we took a rational and iterative approach to develop a series of baicalein derivatives with improved antiviral activity against Dengue virus (DENV). Compound 11064 emerged as a promising lead candidate, exhibiting antiviral activity against the four DENV serotypes and representative strains of Zika virus (ZIKV) in vitro, with attractive selectivity indices. Mechanistic studies revealed that Compound 11064 did not prevent DENV attachment at the cell surface, nor viral RNA synthesis and viral protein translation. Instead, the drug was found to impair the post-receptor binding entry steps (endocytosis and/or uncoating), as well as the late stage of DENV infection cycle, including virus assembly/maturation and/or exocytosis. The inability to raise DENV resistant mutants, combined with significant antiviral activity against an unrelated RNA virus (Enterovirus-A71) suggested that Compound 11064 targets the host rather than a viral protein, further supporting its broad-spectrum antiviral potential. Overall, Compound 11064 represents a promising antiviral candidate for the treatment of Dengue and Zika.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/tratamento farmacológico , Antivirais/uso terapêutico , Dengue/tratamento farmacológico
20.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005854

RESUMO

Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.


Assuntos
Infecções por Arbovirus , Arbovírus , Doenças Transmissíveis , Viroses , Infecção por Zika virus , Zika virus , Animais , Humanos , Anticorpos Monoclonais/uso terapêutico , Infecções por Arbovirus/tratamento farmacológico , Infecções por Arbovirus/prevenção & controle , Viroses/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...