Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928277

RESUMO

Absent in melanoma 2 (AIM2), a key component of the IFI20X/IFI16 (PYHIN) protein family, is characterized as a DNA sensor to detect cytosolic bacteria and DNA viruses. However, little is known about its immunological role during pathogenic Clostridium perfringens (C. perfringens) infection, an extracellular bacterial pathogen. In a pathogenic C. perfringens gas gangrene model, Aim2-/- mice are more susceptible to pathogenic C. perfringens soft tissue infection, revealing the importance of AIM2 in host protection. Notably, Aim2 deficiency leads to a defect in bacterial killing and clearance. Our in vivo and in vitro findings further establish that inflammasome signaling is impaired in the absence of Aim2 in response to pathogenic C. perfringens. Mechanistically, inflammasome signaling downstream of active AIM2 promotes pathogen control. Importantly, pathogenic C. perfringens-derived genomic DNA triggers inflammasome signaling activation in an AIM2-dependent manner. Thus, these observations uncover a central role for AIM2 in host defense and triggering innate immunity to combat pathogenic C. perfringens infections.


Assuntos
Clostridium perfringens , Proteínas de Ligação a DNA , Inflamassomos , Transdução de Sinais , Inflamassomos/metabolismo , Inflamassomos/imunologia , Animais , Clostridium perfringens/imunologia , Clostridium perfringens/patogenicidade , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Knockout , Imunidade Inata , Camundongos Endogâmicos C57BL , Gangrena Gasosa/imunologia , Gangrena Gasosa/microbiologia , Modelos Animais de Doenças , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/metabolismo , Humanos
2.
J Proteome Res ; 23(6): 2000-2012, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752739

RESUMO

Biological interpretation of untargeted LC-MS-based metabolomics data depends on accurate compound identification, but current techniques fall short of identifying most features that can be detected. The human fecal metabolome is complex, variable, incompletely annotated, and serves as an ideal matrix to evaluate novel compound identification methods. We devised an experimental strategy for compound annotation using multidimensional chromatography and semiautomated feature alignment and applied these methods to study the fecal metabolome in the context of fecal microbiota transplantation (FMT) for recurrent C. difficile infection. Pooled fecal samples were fractionated using semipreparative liquid chromatography and analyzed by an orthogonal LC-MS/MS method. The resulting spectra were searched against commercial, public, and local spectral libraries, and annotations were vetted using retention time alignment and prediction. Multidimensional chromatography yielded more than a 2-fold improvement in identified compounds compared to conventional LC-MS/MS and successfully identified several rare and previously unreported compounds, including novel fatty-acid conjugated bile acid species. Using an automated software-based feature alignment strategy, most metabolites identified by the new approach could be matched to features that were detected but not identified in single-dimensional LC-MS/MS data. Overall, our approach represents a powerful strategy to enhance compound identification and biological insight from untargeted metabolomics data.


Assuntos
Transplante de Microbiota Fecal , Fezes , Metaboloma , Metabolômica , Espectrometria de Massas em Tandem , Humanos , Fezes/microbiologia , Fezes/química , Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/metabolismo , Clostridioides difficile/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/análise , Espectrometria de Massa com Cromatografia Líquida
3.
mBio ; 15(3): e0333823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376154

RESUMO

Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During Clostridium difficile infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to C. difficile colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng+, Ccl5+, and Il23r+ ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during C. difficile infection. Together, our data expand our understanding of how antibiotics induce susceptibility to C. difficile colitis through their impact on ILC subsets and function.IMPORTANCEClostridium difficile infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of C. difficile infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Colite , Enterocolite Pseudomembranosa , Camundongos , Animais , Imunidade Inata , Linfócitos , Antibacterianos/farmacologia , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Disbiose , Infecções por Clostridium/metabolismo
4.
Nature ; 623(7989): 1009-1016, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968387

RESUMO

Iron is indispensable for almost all forms of life but toxic at elevated levels1-4. To survive within their hosts, bacterial pathogens have evolved iron uptake, storage and detoxification strategies to maintain iron homeostasis1,5,6. Recent studies showed that three Gram-negative environmental anaerobes produce iron-containing ferrosome granules7,8. However, it remains unclear whether ferrosomes are generated exclusively by Gram-negative bacteria. The Gram-positive bacterium Clostridioides difficile is the leading cause of nosocomial and antibiotic-associated infections in the USA9. Here we report that C. difficile undergoes an intracellular iron biomineralization process and stores iron in membrane-bound ferrosome organelles containing non-crystalline iron phosphate biominerals. We found that a membrane protein (FezA) and a P1B6-ATPase transporter (FezB), repressed by both iron and the ferric uptake regulator Fur, are required for ferrosome formation and play an important role in iron homeostasis during transition from iron deficiency to excess. Additionally, ferrosomes are often localized adjacent to cellular membranes as shown by cryo-electron tomography. Furthermore, using two mouse models of C. difficile infection, we demonstrated that the ferrosome system is activated in the inflamed gut to combat calprotectin-mediated iron sequestration and is important for bacterial colonization and survival during C. difficile infection.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Compostos Férricos , Interações entre Hospedeiro e Microrganismos , Ferro , Organelas , Animais , Camundongos , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/imunologia , Clostridioides difficile/metabolismo , Infecções por Clostridium/imunologia , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Ferro/metabolismo , Organelas/metabolismo , Homeostase , Compostos Férricos/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Modelos Animais de Doenças , Complexo Antígeno L1 Leucocitário/metabolismo , Viabilidade Microbiana , Inflamação/metabolismo , Inflamação/microbiologia , Intestinos/metabolismo , Intestinos/microbiologia
5.
Vet Res Commun ; 47(3): 1177-1184, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436554

RESUMO

Intestinal infection with C. perfringens is responsible for outbreaks of diarrhea in piglets. Janus kinase / signal transducer and activator of transcription (JAK/STAT) is a vital signaling pathway that regulates cellular activity and inflammatory response, closely correlated with multiple diseases development and advances. Currently, the potential effect of JAK/STAT on C. perfringens beta2 (CPB2) treatment on porcine intestinal epithelial (IPEC-J2) cells has not been explored. The expression of JAK/STAT genes or proteins in IPEC-J2 cells induced by CPB2 were observed by qRT-PCR and Western blot, and further used WP1066 to explore the effect of JAK2/STAT3 on mechanism employed by CPB2 on apoptosis, cytotoxicity, oxidative stress and inflammatory cytokines of IPEC-J2 cells. JAK2, JAK3, STAT1, STAT3, STAT5A and STAT6 were highly expressed in CPB2-induced IPEC-J2 cells, among which STAT3 had the highest expression. Moreover, apoptosis, cytotoxicity and oxidative stress were attenuated via blocking the activation of JAK2/STAT3 by using WP1066 in CPB2-treated IPEC-J2 cells. Furthermore, WP1066 significantly suppressed the secretion of interleukin (IL)-6, IL-1ß and TNF-α induced by CPB2 in IPEC-J2 cells.Our findings provide some insights into the functional roles of JAK2/STAT3 in piglets against to C. perfringens infection.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Transdução de Sinais , Doenças dos Suínos , Clostridium perfringens/fisiologia , Janus Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Intestinos/citologia , Intestinos/metabolismo , Animais , Suínos , Perfilação da Expressão Gênica , Piridinas/farmacologia , Tirfostinas/farmacologia , Toxinas Bacterianas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Western Blotting , Infecções por Clostridium/metabolismo , Infecções por Clostridium/patologia , Infecções por Clostridium/veterinária , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia
6.
PLoS Pathog ; 19(1): e1011034, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602960

RESUMO

Clostridioides difficile (C. difficile) is an opportunistic pathogen that leads to antibiotic-associated diarrhoea and is a leading cause of morbidity and mortality worldwide. Antibiotic usage is the main risk factor leading to C. difficile infection (CDI), as a dysbiotic gut environment allows colonisation and eventual pathology manifested by toxin production. Although colonisation resistance is mediated by the action of secondary bile acids inhibiting vegetative outgrowth, nutrient competition also plays a role in preventing CDI as the gut microbiota compete for nutrient niches inhibiting C. difficile growth. C. difficile is able to metabolise carbon dioxide, the amino acids proline, hydroxyproline, and ornithine, the cell membrane constituent ethanolamine, and the carbohydrates trehalose, cellobiose, sorbitol, and mucin degradation products as carbon and energy sources through multiple pathways. Zinc sequestration by the host response mediates metabolic adaptation of C. difficile by perhaps signalling an inflamed gut allowing it to acquire abundant nutrients. Persistence within the gut environment is also mediated by the by-products of metabolism through the production of p-cresol, which inhibit gut commensal species growth promoting dysbiosis. This review aims to explore and describe the various metabolic pathways of C. difficile, which facilitate its survival and pathogenesis within the colonised host gut.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Humanos , Clostridioides difficile/metabolismo , Clostridioides , Antibacterianos/farmacologia , Infecções por Clostridium/metabolismo
7.
mSphere ; 7(2): e0092621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35350846

RESUMO

An intact gut microbiota confers colonization resistance against Clostridioides difficile through a variety of mechanisms, likely including competition for nutrients. Recently, proline was identified as an important environmental amino acid that C. difficile uses to support growth and cause significant disease. A posttranslationally modified form, trans-4-hydroxyproline, is highly abundant in collagen, which is degraded by host proteases in response to C. difficile toxin activity. The ability to dehydrate trans-4-hydroxyproline via the HypD glycyl radical enzyme is widespread among gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. Therefore, we constructed a C. difficile ΔhypD mutant and found that it was modestly impaired in fitness in a mouse model of infection, and was associated with an altered microbiota when compared to mice challenged with the wild-type strain. Changes in the microbiota between the two groups were largely driven by members of the Lachnospiraceae family and the Clostridium genus. We found that C. difficile and type strains of three commensal Clostridia had significant alterations to their metabolic gene expression in the presence of trans-4-hydroxyproline in vitro. The proline reductase (prd) genes were elevated in C. difficile, consistent with the hypothesis that trans-4-hydroxyproline is used by C. difficile to supply proline for energy metabolism. Similar transcripts were also elevated in some commensal Clostridia tested, although each strain responded differently. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by trans-4-hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche. Further elucidation of the differences between them in the presence of hydroxyproline and other key nutrients will be important in determining their role in nutrient competition against C. difficile. IMPORTANCE Proline is an essential environmental amino acid that C. difficile uses to support growth and cause significant disease. A posttranslationally modified form, hydroxyproline, is highly abundant in collagen, which is degraded by host proteases in response to C. difficile toxin activity. The ability to dehydrate hydroxyproline via the HypD glycyl radical enzyme is widespread among gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. We found that C. difficile and three commensal Clostridia strains had significant, but different, alterations to their metabolic gene expression in the presence of hydroxyproline in vitro. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche. Further elucidation of the differences between them in the presence of hydroxyproline and other key nutrients will be important to determining their role in nutrient competition against C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Clostridioides , Clostridioides difficile/genética , Clostridium , Infecções por Clostridium/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Camundongos , Peptídeo Hidrolases , Prolina/metabolismo
8.
Gut Microbes ; 14(1): 2038854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192433

RESUMO

Clostridioides difficile is a major nosocomial pathogen that can cause severe, toxin-mediated diarrhea and pseudomembranous colitis. Recent work has shown that C. difficile exhibits heterogeneity in swimming motility and toxin production in vitro through phase variation by site-specific DNA recombination. The recombinase RecV reversibly inverts the flagellar switch sequence upstream of the flgB operon, leading to the ON/OFF expression of flagellum and toxin genes. How this phenomenon impacts C. difficile virulence in vivo remains unknown. We identified mutations in the right inverted repeat that reduced or prevented flagellar switch inversion by RecV. We introduced these mutations into C. difficile R20291 to create strains with the flagellar switch "locked" in either the ON or OFF orientation. These mutants exhibited a loss of flagellum and toxin phase variation during growth in vitro, yielding precisely modified mutants suitable for assessing virulence in vivo. In a hamster model of acute C. difficile infection, the phase-locked ON mutant caused greater toxin accumulation than the phase-locked OFF mutant but did not differ significantly in the ability to cause acute disease symptoms. In contrast, in a mouse model, preventing flagellum and toxin phase variation affected the ability of C. difficile to colonize the intestinal tract and to elicit weight loss, which is attributable to differences in toxin production during infection. These results show that the ability of C. difficile to phase vary flagella and toxins influences colonization and disease development and suggest that the phenotypic variants generated by flagellar switch inversion have distinct capacities for causing disease.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Infecções por Clostridium/metabolismo , Cricetinae , Modelos Animais de Doenças , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Variação de Fase
9.
Nat Metab ; 4(1): 19-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992297

RESUMO

The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Interações Hospedeiro-Patógeno , Ornitina/metabolismo , Oxirredução , Aminoácidos/metabolismo , Animais , Metabolismo Energético , Microbioma Gastrointestinal , Humanos , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo
10.
Autophagy ; 18(9): 2050-2067, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34989311

RESUMO

Clostridioides difficile infection (CDI) is a common cause of nosocomial diarrhea. TcdB is a major C. difficile exotoxin that activates macrophages to promote inflammation and epithelial damage. Lysosome impairment is a known trigger for inflammation. Herein, we hypothesize that TcdB could impair macrophage lysosomal function to mediate inflammation during CDI. Effects of TcdB on lysosomal function and the downstream pro-inflammatory SQSTM1/p62-NFKB (nuclear factor kappa B) signaling were assessed in cultured macrophages and in a murine CDI model. Protective effects of two lysosome activators (i.e., vitamin D3 and carbamazepine) were assessed. Results showed that TcdB inhibited CTNNB1/ß-catenin activity to downregulate MITF (melanocyte inducing transcription factor) and its direct target genes encoding components of lysosomal membrane vacuolar-type ATPase, thereby suppressing lysosome acidification in macrophages. The resulting lysosomal dysfunction then impaired autophagic flux and activated SQSTM1-NFKB signaling to drive the expression of IL1B/IL-1ß (interleukin 1 beta), IL8 and CXCL2 (chemokine (C-X-C motif) ligand 2). Restoring MITF function by enforced MITF expression or restoring lysosome acidification with 1α,25-dihydroxyvitamin D3 or carbamazepine suppressed pro-inflammatory cytokine expression in vitro. In mice, gavage with TcdB-hyperproducing C. difficile or injection of TcdB into ligated colon segments caused prominent MITF downregulation in macrophages. Vitamin D3 and carbamazepine lessened TcdB-induced lysosomal dysfunction, inflammation and histological damage. In conclusion, TcdB inhibits the CTNNB1-MITF axis to suppress lysosome acidification and activates the downstream SQSTM1-NFKB signaling in macrophages during CDI. Vitamin D3 and carbamazepine protect against CDI by restoring MITF expression and lysosomal function in mice.Abbreviations: ATP6V0B: ATPase H+ transporting V0 subunit b; ATP6V0C: ATPase H+ transporting V0 subunit c; ATP6V0E1: ATPase H+ transporting V0 subunit e1; ATP6V1H: ATPase H+ transporting V1 subunit H; CBZ: carbamazepine; CDI: C. difficile infection; CXCL: chemokine C-X-X motif ligand; IL: interleukin; LAMP1: lysosomal-associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; LEF: lymphoid enhancer binding factor 1; MITF: melanocyte inducing transcription factor; NFKB: nuclear factor kappa B; PMA: phorbol 12-myristate 13-acetate; TcdA: Clostridial toxin A; TcdB: Clostridial toxin B; TFE3: transcription factor E3; TFEB: transcription factor EB.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , ATPases Vacuolares Próton-Translocadoras , Animais , Autofagia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/farmacologia , Carbamazepina/metabolismo , Carbamazepina/farmacologia , Colecalciferol/farmacologia , Infecções por Clostridium/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteína Sequestossoma-1/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
11.
Front Immunol ; 13: 956326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726986

RESUMO

Increased risk of intestinal dysfunction has been reported in patients after Clostridioides difficile infection (CDI). Enteric glial cells (EGCs), a component of the enteric nervous system (ENS), contribute to gut homeostasis. Previous studies showed that adenosine receptors, A2A and A2B, modulate inflammation during CDI. However, it is unknown how these receptors can modulate the EGC response to the C. difficile toxins (TcdA and TcdB). We investigated the effects of these toxins on the expression of adenosine receptors in EGCs and the role of these receptors on toxin-induced EGC death. Rat EGCs line were incubated with TcdA or TcdB alone or in combination with adenosine analogues 1h prior to toxins challenge. After incubation, EGCs were collected to evaluate gene expression (adenosine receptors and proinflammatory markers) and cell death. In vivo, WT, A2A, and A2B KO mice were infected with C. difficile, euthanized on day 3 post-infection, and cecum tissue was processed. TcdA and TcdB increased A2A and A3 transcripts, as well as decreased A2B. A2A agonist, but not A2A antagonist, decreased apoptosis induced by TcdA and TcdB in EGCs. A2B blocker, but not A2B agonist, diminished apoptosis in EGCs challenged with both toxins. A3 agonist, but not A3 blocker, reduced apoptosis in EGCs challenged with TcdA and TcdB. Inhibition of protein kinase A (PKA) and CREB, both involved in the main signaling pathway driven by activation of adenosine receptors, decreased EGC apoptosis induced by both toxins. A2A agonist and A2B antagonist decreased S100B upregulation induced by C. difficile toxins in EGCs. In vivo, infected A2B KO mice, but not A2A, exhibited a decrease in cell death, including EGCs and enteric neuron loss, compared to infected WT mice, reduced intestinal damage and decreased IL-6 and S100B levels in cecum. Our findings indicate that upregulation of A2A and A3 and downregulation of A2B in EGCs and downregulation of A2B in intestinal tissues elicit a protective response against C. difficile toxins. Adenosine receptors appear to play a regulatory role in EGCs death and proinflammatory response induced by TcdA and TcdB, and thus may be potential targets of intervention to prevent post-CDI intestinal dysmotility.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Ratos , Camundongos , Animais , Toxinas Bacterianas/metabolismo , Clostridioides difficile/fisiologia , Proteínas de Bactérias/genética , Infecções por Clostridium/metabolismo , Apoptose , Neuroglia/metabolismo , Receptores Purinérgicos P1/metabolismo
12.
Front Immunol ; 12: 769204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880865

RESUMO

Background: The n6-methyladenosine (m6A) modification is present widely in mRNAs and long non-coding RNAs (lncRNAs), and is related to the occurrence and development of certain diseases. However, the role of m6A methylation in Clostridium perfringens type C infectious diarrhea remains unclear. Methods: Here, we treated intestinal porcine jejunum epithelial cells (IPEC-J2 cells) with Clostridium perfringens beta2 (CPB2) toxin to construct an in vitro model of Clostridium perfringens type C (C. perfringens type C) infectious diarrhea, and then used methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify the methylation profiles of mRNAs and lncRNAs in IPEC-J2 cells. Results: We identified 6,413 peaks, representing 5,825 m6A-modified mRNAs and 433 modified lncRNAs, of which 4,356 m6A modified mRNAs and 221 m6A modified lncRNAs were significantly differential expressed between the control group and CPB2 group. The motif GGACU was enriched significantly in both the control group and the CPB2 group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis showed that the differentially methylated modified mRNAs were mainly enriched in Hippo signaling pathway and Wnt signaling pathway. In addition, the target genes of the differentially m6A modified lncRNAs were related to defense response to virus and immune response. For example, ENSSSCG00000042575, ENSSSCG00000048701 and ENSSSCG00000048785 might regulate the defense response to virus, immune and inflammatory response to resist the harmful effects of viruses on cells. Conclusion: In summary, this study established the m6A transcription profile of mRNAs and lncRNAs in IPEC-J2 cells treated by CPB2 toxin. Further analysis showed that m6A-modified RNAs were related to defense against viruses and immune response after CPB2 toxin treatment of the cells. Threem6A-modified lncRNAs, ENSSSCG00000042575, ENSSSCG00000048785 and ENSSSCG00000048701, were most likely to play a key role in CPB2 toxin-treated IPEC-J2 cells. The results provide a theoretical basis for further research on the role of m6A modification in piglet diarrhea.


Assuntos
Adenosina/análogos & derivados , Toxinas Bacterianas/farmacologia , Células Epiteliais/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Adenosina/metabolismo , Animais , Linhagem Celular , Infecções por Clostridium/genética , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Clostridium perfringens/metabolismo , Clostridium perfringens/fisiologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Mucosa Intestinal/citologia , Metilação/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Suínos , Transcriptoma/genética
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830269

RESUMO

Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.


Assuntos
Infecções por Clostridium/metabolismo , Clostridium perfringens/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Enteropatias/metabolismo , Enteropatias/veterinária , Mucosa Intestinal/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia , Substâncias Protetoras/farmacologia , Doenças dos Suínos/metabolismo , Animais , Aderência Bacteriana , Linhagem Celular , Infecções por Clostridium/microbiologia , Clostridium perfringens/metabolismo , Técnicas de Cocultura/métodos , Células Epiteliais/microbiologia , Enteropatias/microbiologia , Mucosa Intestinal/microbiologia , Probióticos/metabolismo , Substâncias Protetoras/metabolismo , Suínos , Doenças dos Suínos/microbiologia
14.
PLoS Pathog ; 17(10): e1010015, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665847

RESUMO

Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.


Assuntos
Ácidos e Sais Biliares/metabolismo , Infecções por Clostridium/metabolismo , Resistência à Doença/fisiologia , Microbioma Gastrointestinal/fisiologia , Animais , Camundongos , Camundongos Knockout
15.
PLoS Pathog ; 17(10): e1009959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673840

RESUMO

Clostridioides difficile is an opportunistic diarrheal pathogen responsible for significant morbidity and mortality worldwide. A disrupted (dysbiotic) gut microbiome, commonly engendered by antibiotic treatment, is the primary risk factor for C. difficile infection, highlighting that C. difficile-microbiome interactions are critical for determining the fitness of this pathogen. Here, we review short chain fatty acids (SCFAs): a major class of metabolites present in the gut, their production by the gut microbiome, and their impacts on the biology of the host and of C. difficile. We use these observations to illustrate a conceptual model whereby C. difficile senses and responds to SCFAs as a marker of a healthy gut and tunes its virulence accordingly in order to maintain dysbiosis. Future work to learn the molecular mechanisms and genetic circuitry underlying the relationships between C. difficile and SCFAs will help to identify precision approaches, distinct from antibiotics and fecal transplant, for mitigating disease caused by C. difficile and will inform similar investigations into other gastrointestinal pathogens.


Assuntos
Clostridioides difficile/metabolismo , Infecções por Clostridium/metabolismo , Ácidos Graxos Voláteis/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Animais , Microbioma Gastrointestinal/fisiologia , Humanos
16.
mSphere ; 6(5): e0066921, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704776

RESUMO

Clostridioides difficile infection (CDI) is the most common hospital-acquired infection in the United States. Antibiotic-induced dysbiosis is the primary cause of susceptibility, and fecal microbiota transplantation (FMT) has emerged as an effective therapy for recurrence. We previously demonstrated in the mouse model of CDI that antibiotic-induced dysbiosis reduced colonic expression of interleukin 25 (IL-25) and that FMT protected in part by restoring IL-25 signaling. Here, we conducted a prospective study in humans to test if FMT induced IL-25 expression in the colons of patients with recurrent CDI (rCDI). Colonic biopsy specimens and blood were collected at the time of FMT and 60 days later. Colon biopsy specimens were analyzed for IL-25 protein levels, total tissue transcriptome, and epithelium-associated microbiota before and after FMT, and peripheral immune cells were immunophenotyped. FMT increased alpha diversity of the colonic microbiota and levels of IL-25 in colonic tissue. In addition, FMT increased expression of homeostatic genes and repressed inflammatory genes. Finally, circulating Th17 cells were decreased post-FMT. The increase in levels of the cytokine IL-25 accompanied by decreased inflammation is consistent with FMT acting in part to protect from recurrent CDI via restoration of commensal activation of type 2 immunity. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for C. difficile infection for most patients; however, introducing a complex mixture of microbes also has had unintended consequences for some patients. Attempts to create a standardized probiotic therapeutic that recapitulates the efficacy of FMT have been unsuccessful to date. We sought to understand what immune markers are changed in patients undergoing FMT to treat recurrent C. difficile infection and identified an immune signaling molecule, IL-25, that was restored by FMT. This finding indicates that adjunctive therapy with IL-25 could be useful in treating C. difficile infection.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Interleucina-17/metabolismo , Idoso , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Colo/patologia , Fezes/microbiologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/terapia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recidiva , Resultado do Tratamento
17.
Cell Rep ; 36(10): 109683, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496241

RESUMO

Clostridioides difficile is the leading cause of nosocomial intestinal infections in the United States. Ingested C. difficile spores encounter host bile acids and other cues that are necessary for germinating into toxin-producing vegetative cells. While gut microbiota disruption (often by antibiotics) is a prerequisite for C. difficile infection (CDI), the mechanisms C. difficile employs for colonization remain unclear. Here, we pioneered the application of imaging mass spectrometry to study how enteric infection changes gut metabolites. We find that CDI induces an influx of bile acids into the gut within 24 h of the host ingesting spores. In response, the host reduces bile acid biosynthesis gene expression. These bile acids drive C. difficile outgrowth, as mice receiving the bile acid sequestrant cholestyramine display delayed colonization and reduced germination. Our findings indicate that C. difficile may facilitate germination upon infection and suggest that altering flux through bile acid pathways can modulate C. difficile outgrowth in CDI-prone patients.


Assuntos
Antibacterianos/farmacologia , Ácidos e Sais Biliares/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Animais , Infecções por Clostridium/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
PLoS One ; 16(8): e0256259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407120

RESUMO

Clostridioides difficile infection (CDI) is an important infectious cause of antibiotic-associated diarrhea, with significant morbidity and mortality. Current diagnostic algorithms are based on identifying toxin by enzyme immunoassay (EIA) and toxin gene by real-time polymerase chain reaction (PCR) in patients with diarrhea. EIA's sensitivity is poor, and PCR, although highly sensitive and specific, cannot differentiate infection from colonization. An ideal test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection, and assess prognosis and recurrence. The study of volatile organic compounds (VOCs) has the potential to be an ideal diagnostic test. The presence of VOCs accounts for the characteristic odor of stool in CDI but their presence in breath and plasma has not been studied yet. A cross-sectional proof-of-concept study analyzing VOCs using selected ion flow tube mass spectrometry (SIFT-MS) was done on breath, stool, and plasma of patients with clinical features and positive PCR for CDI (cases) and compared with patients with clinical features but a negative PCR (control). Our results showed that VOC patterns in breath, stool, and plasma, had good accuracy [area under the receiver operating characteristic curve (ROC) 93%, 86%, and 91%, respectively] for identifying patients with CDI.


Assuntos
Testes Respiratórios/métodos , Clostridioides difficile/metabolismo , Infecções por Clostridium/diagnóstico , Diarreia/diagnóstico , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Adulto , Idoso , Área Sob a Curva , Biomarcadores/análise , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Estudos Transversais , Diarreia/metabolismo , Diarreia/microbiologia , Expiração , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Masculino , Espectrometria de Massas/instrumentação , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Curva ROC
19.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1290-1299, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34379099

RESUMO

Clostridioides difficile infection (CDI) is a common infection of the gastrointestinal tract. Typically, 20%-30% of CDI patients experience recurrent C.difficile infection (RCDI). Although the role of Th17 in infectious and inflammatory diseases including CDI has gained attention, reports on the correlation between Th17 and RCDI are scarce. In this study, CDI and RCDI mice models were challenged with C. difficile. Serum lactic acid dehydrogenase, inflammatory factor levels, reverse transcriptase-polymerase chain reaction, western blot analysis, hematoxylin and eosin staining, immunohistochemistry, flow cytometry analysis, and enzyme-linked immunosorbent assay were performed on the CDI, RCDI, and control group mice. The results showed more serious clinical manifestations in the RCDI group compared with those in the CDI group. More severe gut barrier disruption and higher degree of microbiota translocation were observed in the RCDI group compared with those in the CDI group. Moreover, extremely severe apoptosis was observed in HCT-116 cells incubated with the serum from RCDI mice model. In addition, higher levels of Th17 and IL-17 were detected in the blood or serum from the RCDI mouse model. Treatment with RORγt small molecule inhibitor SR1001 increased the expression of occludin, decreased the apoptotic rate of HCT-116 cells, and decreased the concentrations of Th17 and IL-17. Concisely, Th17 and IL-17 are potential indicators of RCDI and may serve as therapeutic targets for RCDI treatment. This study lays the foundation for future research on RCDI diagnosis and treatment.


Assuntos
Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/imunologia , Células Th17/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Infecções por Clostridium/metabolismo , Infecções por Clostridium/patologia , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Janus Quinase 2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Recidiva , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Células Th17/imunologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico
20.
Sci Rep ; 11(1): 15007, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294848

RESUMO

Clostridioides difficile infection (CDI) represents the leading cause of nosocomial diarrhea worldwide and is associated with gut dysbiosis and intestinal damage. Clostridium butyricum MIYAIRI 588 (CBM 588) contributes significantly to reduce epithelial damage. However, the impacts of CBM 588 on antibacterial therapy for CDI are not clear. Here we show that CBM 588 enhanced the antibacterial activity of fidaxomicin against C. difficile and negatively modulated gut succinate levels to prevent C. difficile proliferation and downregulate tumor necrosis factor-α (TNF-α) producing macrophages in the colon lumina propria (cLP), resulting in a significant decrease in colon epithelial damage. Additionally, CBM 588 upregulated T cell-dependent pathogen specific immunoglobulin A (IgA) via interleukin (IL)-17A producing CD4+ cells and plasma B cells in the cLP, and Th17 cells in the cLP enhanced the gut epithelial barrier function. IL-17A and succinic acid modulations with CBM 588 enhance gut colonization resistance to C. difficile and protect the colon tissue from CDI.


Assuntos
Antibiose , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Clostridium butyricum/fisiologia , Metabolismo Energético , Imunomodulação , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Microbioma Gastrointestinal , Imunoglobulina A/imunologia , Interleucina-17/biossíntese , Camundongos , Modelos Biológicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...