Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Vet Microbiol ; 292: 110071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574695

RESUMO

Duck Tembusu virus (DTMUV) is a newly emerging pathogen that causes massive economic losses to the poultry industry in China and neighbouring countries. Vimentin, an intermediate filament protein, has been demonstrated to be involved in viral replication during infection. However, the specific role of vimentin in DTMUV replication has not been determined. In this study, we found that overexpression of vimentin in BHK-21 cells can inhibit DTMUV replication. Moreover, DTMUV replication was enhanced after vimentin expression was reduced in BHK-21 cells via small interfering RNA (siRNA). Further research indicated that DTMUV infection had no effect on the transcription or expression of vimentin. However, we found that DTMUV infection induced vimentin rearrangement, and the rearrangement of vimentin was subsequently confirmed to negatively modulate viral replication through the use of a vimentin network disrupting agent. Vimentin rearrangement is closely associated with its phosphorylation. Our experiments revealed that the phosphorylation of vimentin at Ser56 was promoted in the early stage of DTMUV infection. In addition, by inhibiting the phosphorylation of vimentin at Ser56 with a CDK5 inhibitor, vimentin rearrangement was suppressed, and DTMUV replication was significantly enhanced. These results indicated that DTMUV infection induced vimentin phosphorylation and rearrangement through CDK5, resulting in the inhibition of DTMUV replication. In summary, our study reveals a role for vimentin as a negative factor in the process of DTMUV replication, which helps to elucidate the function of cellular proteins in regulating DTMUV replication.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos , Vimentina/genética , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Replicação Viral
2.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675940

RESUMO

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Assuntos
Aves , Infecções por Flavivirus , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Europa (Continente)/epidemiologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Humanos , Flavivirus/classificação , Flavivirus/genética , Flavivirus/patogenicidade , Flavivirus/isolamento & purificação , Flavivirus/fisiologia , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/veterinária , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/transmissão , Aves/virologia , Culicidae/virologia , Mosquitos Vetores/virologia , Surtos de Doenças
3.
Poult Sci ; 103(4): 103469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335667

RESUMO

Tembusu virus (TMUV), an avian pathogenic flavivirus, has emerged as a significant threat to the duck industry in Southeast Asia, causing substantial economic losses. Due to the antibody-dependent enhancement (ADE) effect of TMUV subneutralizing antibodies, there is a pressing need to further develop new TMUV vaccine target antigens that ensure both safety and efficacy. Here, the TMUV non-structural protein 1 (NS1) as a target for development of effective anti-TMUV vaccines was unveiled. The amino acid sequences of TMUV NS1 exhibit a high degree of conservation across different strains (92.63-100%). To investigate the potential of TMUV NS1 as a vaccine target, the TMUV NS1-based plasmids were constructed and identified the C-terminal 30 amino acids residues of TMUV E (EC30) as an effective signal peptide for promoting NS1 expression and secretion. Subsequently, the plasmid pVAX1-EC30-NS1 was employed to immunize ducks, resulting in specific anti-NS1 IgG responses being stimulated, while without inducing anti-TMUV neutralizing antibodies. Furthermore, the cellular immune responses triggered by the TMUV NS1 were evaluated, observing a notable increase in lymphocyte proliferation at 4 wk and 6 wk postinjection with the pVAX1-EC30-NS1. Additionally, there was a significant up-regulation of NS1-specific Il-4 and Ifnγ levels at these time points. Following this, ducks from different groups were challenged with TMUV, and remarkably, those immunized with the NS1 vaccine displayed significantly lower viral copies both at 3 d postinfection (dpi) and 7 dpi (P < 0.05) compared to ducks immunized with the control vector. Notably, the NS1 demonstrated remarkable protection against TMUV challenge without causing severe gross lesions. Collectively, these findings highlighted the impressive immunogenicity and protectivity of the TMUV NS1. Consequently, NS1 holds great promise as a novel antigen target for the development of efficient and safe TMUV vaccines.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Vacinas , Animais , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/veterinária , Galinhas , Patos , Anticorpos Antivirais/metabolismo , Desenvolvimento de Vacinas
4.
Biotechnol J ; 19(1): e2300254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750498

RESUMO

The novel mosquito-borne Tembusu virus (TMUV, family Flaviviridae) was discovered as the cause of a severe outbreak of egg-drop syndrome affecting ducks in Southeast Asia in 2010. TMUV infection can also lead to high mortality in various additional avian species such as geese, pigeons, and chickens. This study describes the construction of an infectious cDNA clone of a contemporary duck-isolate (TMUV WU2016). The virus recovered after transfection of BHK-21 cells shows enhanced virus replication compared to the mosquito-derived MM1775 strain. Next, the WU2016 cDNA clone was modified to create a SP6 promoter-driven, self-amplifying mRNA (replicon) capable of expressing a range of different reporter genes (Renilla luciferase, mScarlet, mCherry, and GFP) and viral (glyco)proteins of avian influenza virus (AIV; family Orthomyxoviridae), infectious bursal disease virus (IDBV; family Bunyaviridae) and infectious bronchitis virus (IBV; family Coronaviridae). The current study demonstrates the flexibility of the TMUV replicon system, to produce different heterologous proteins over an extended period of time and its potential use as a platform technology for novel poultry vaccines.


Assuntos
Culicidae , Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/genética , Aves Domésticas/genética , Genes Reporter/genética , DNA Complementar , Antígenos Heterófilos , Doenças das Aves Domésticas/genética , Galinhas , Flavivirus/genética , Patos/genética , Células Clonais , Replicon
5.
Theriogenology ; 215: 312-320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128224

RESUMO

Duck Tembusu virus (DTMUV) is an emerging mosquito-borne flavivirus that infects mainly poultry and has caused huge economic losses to the poultry farming industry in China. Also known as duck hemorrhagic ovarian disease, DTMUV principally destroys ovarian tissue in ducks, causing a dramatic drop in egg production. and can also invade the male reproductive system causing lesions. Currently, little research has been done to reveal the underlying mechanisms of reproductive dysfunction in ducks caused by DTMUV infection. In this study, histopathological analysis and electron microscopy of testes of ducks infected with DTMUV showed that DTMUV caused testicular atrophy and cytoplasmic vacuolation in ducks. Terminal Deoxynucleotidyl Transferase-Mediated Nick-End Labeling (TUNEL) staining and real-time quantitative PCR(RT-qPCR) results further indicated that DTMUV induced spermatogenic cells apoptosis. After DTMUV infection, a large amount of cytochrome c(Cytc) was released from the mitochondrial matrix into the cytoplasm, activating downstream target proteins and causing apoptosis. To sum up, DTMUV induces spermatogenic cell apoptosis through the Cytc-induced mitochondrial apoptosis pathway, our study provides evidence for DTMUV infection-induced male reproductive disorders.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Masculino , Animais , Infecções por Flavivirus/veterinária , Transdução de Sinais , Patos , Apoptose
6.
Vet Microbiol ; 288: 109951, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101078

RESUMO

Duck Tembusu virus (DTMUV) infection poses a serious threat to ducks, chickens, and geese, causing a range of detrimental effects, including reduced egg production, growth retardation, and even death. These consequences lead to substantial economic losses for the Chinese poultry industry. Although it is established that various viral infections can trigger activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the precise role and mechanisms underlying p38 MAPK activation in DTMUV infection remain poorly understood. To address this knowledge gap, we conducted a study to investigate whether the replication of DTMUV necessitates the activation of p38 MAPK. We found that DTMUV infection stimulates activation of the MKK3/6-p38 MAPK pathway, and the activation of p38 MAPK increases with viral titer. Subsequently, the use of the small molecule inhibitor SB203580 significantly reduced DTMUV replication by inhibiting p38 MAPK activity. Furthermore, downregulation of p38 MAPK protein expression by siRNA also inhibited DTMUV replication, whereas transient transfection of p38 MAPK protein promoted DTMUV replication. Interestingly, we found that the DTMUV capsid protein activates p38 MAPK, and there is interaction between DTMUV capsid and p38 MAPK. Finally, we found that DTMUV infection induces elevated mRNA expression of IFN-α, IFN-ß, IFN-γ, IL-1ß, IL-6, and IL-12, which is associated with p38 MAPK activity. These results indicated that virus hijacking of p38 activation is a crucial event for DTMUV replication, and that pharmacological blockade of p38 activation represents a potential anti-DTMUV strategy.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos , Infecções por Flavivirus/veterinária , Galinhas , Flavivirus/genética , Replicação Viral , Transdução de Sinais , Proteínas do Capsídeo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
7.
Poult Sci ; 103(2): 103332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128459

RESUMO

In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Infecções por Flavivirus/veterinária , Gansos , Galinhas , Filogenia , Virulência , Cetuximab , Doenças das Aves Domésticas/patologia , Patos
8.
Vet Microbiol ; 287: 109907, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951010

RESUMO

Laboratory of Genetics and Physiology 2 (LGP2), along with Retinoic Acid Induced Gene-I (RIG-I) and Melanoma Differentiation Associated Gene 5, are members of the retinoic acid-inducible gene-I-like receptors (RLRs) in pattern recognition receptors, playing an important role in the host's innate immunity. Due to lacking a caspase activation and recruitment domain, LGP2 is controversially regarded as a positive or negative regulator in the antiviral response. This study aimed to explore how duck LGP2 (duLGP2) participates in duck innate immunity and its role in countering the duck Tembusu virus (DTMUV). In duck embryo fibroblast cells, the overexpression of duLGP2 significantly reduced the cell's antiviral capacity by inhibiting type I interferon (IFN) production and the expression of downstream IFN-stimulated genes. Conversely, duLGP2 knockdown had the opposite effect. For the first time, we introduced the LGP2 gene fragment into duck embryos using a lentiviral vector to ensure persistent expression and generated gene-edited ducks with LGP2 overexpression. We demonstrated that duLGP2 facilitates DTMUV replication in both in vitro and in vivo experiments, leading to robust inflammatory and antiviral responses. Interestingly, the repressive effects of duLGP2 on type I IFN production were only observed in the early stage of DTMUV infection, with type I IFN responses becoming enhanced as the viral load increased. These results indicate that duLGP2 acts as a negative regulator during the resting state and early stages of DTMUV infection. This study provides a theoretical basis for further research on duck RLRs and developing new anti-DTMUV drugs or vaccine adjuvants.


Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Animais , Patos , Transdução de Sinais , Flavivirus/genética , Imunidade Inata/genética , Infecções por Flavivirus/veterinária , Interferon Tipo I/genética , Antivirais , Tretinoína
9.
Vet Microbiol ; 287: 109889, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913673

RESUMO

Duck Tembusu Virus (DTMUV) is a newly emerging avian flavivirus that causes substantial economic losses to the duck industry in Asia by causing severe egg drop syndrome and fatal encephalitis in domestic ducks. During viral replication, host cells recognize the RNA structures produced by DTMUV, which triggers the production of interferons (IFNs) to inhibit viral replication. However, the function of duck type I and type III IFNs in inhibiting DTMUV infection remains largely unknown. In this study, we expressed and purified recombinant duck IFN-ß (duIFN-ß) and IFN-λ (duIFN-λ) in Escherichia coli and evaluated their antiviral activity against vesicular stomatitis virus (VSV). Furthermore, we found that both duIFN-ß and duIFN-λ activated the ISRE promoter and induced the expression of ZAP, OAS, and RNaseL in duck embryo fibroblasts (DEFs). Notably, duIFN-ß showed faster and more potent induction of ISGs in vitro and in vivo compared to duIFN-λ. Moreover, both duIFN-ß and duIFN-λ showed high potential to inhibit DTMUV infection in DEFs, with duIFN-ß demonstrating better antiviral efficacy than duIFN-λ against DTMUV in ducks. In conclusion, our results revealed that both duIFN-ß and duIFN-λ can induce ISGs production and exhibit significant antiviral activity against DTMUV in vitro and in vivo, providing new insights for the development of antiviral therapeutic strategies in ducks.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Interferon lambda , Infecções por Flavivirus/veterinária , Patos , Flavivirus/genética , Antivirais/farmacologia
10.
Vet Immunol Immunopathol ; 265: 110666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37979488

RESUMO

China is the country with the largest amount of duck breeding as well as duck meat and egg production. In recent years, the emergence and spread of duck Tembusu virus (DTMUV) has become one of the important factors in reducing the amount of duck slaughter, which seriously endangers the duck breeding industry in our country. In-depth research on the mechanism of duck innate immunity facilitates the exploration of new models for the treatment of DTMUV infection. IRF1 can induce the expression of many antiviral immune factors in the animal organism and play an important role in the innate immune response. In this study, we used interfering RNA to knock down the IRF1 gene in DEF cells and then the cells were infected with DTMUV. We found that knockdown of IRF1 promoted DTMUV replication at an early stage and caused downregulation of the expression of several major pattern recognition receptors (PRRs), interleukins (IL), interferons (IFN), antiviral proteins, and MHC molecules by assay, showing that the duIRF1-mediated signaling pathway plays an extremely important role in DTMUV-induced host innate immunity. In addition, we constructed the recombinant expression plasmid pET32a(+)-duIRF1-His, and finally prepared the polyclonal antibody of duIRF1 with good specificity, hoping to provide a detection means for research on the mechanism of IRF1 in innate immunity in our laboratory and in this field.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Patos/genética , Infecções por Flavivirus/veterinária , Flavivirus/genética , Transdução de Sinais , Doenças das Aves Domésticas/genética
11.
Vet Res ; 54(1): 103, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936178

RESUMO

Duck Tembusu virus (DTMUV) is a neurotropic virus in the genus Flavivirus that causes massive economic losses to the poultry industry in China and neighbouring countries. Autophagy is pivotal in cellular responses to pathogens and in viral pathogenesis. However, little is known about the roles of autophagy in DTMUV replication and viral pathogenesis, especially in neuropathogenesis. In this study, mouse neuroblastoma cells (Neuro-2a) were used to establish a cell model of DTMUV infection. Our experiments indicated that DTMUV infection induced incomplete autophagy in Neuro-2a cells. Then, we used different autophagy regulators to alter the autophagy induced by DTMUV and found that incomplete autophagy promoted DTMUV replication. Furthermore, we showed that DTMUV infection activated the ERK and AMPK pathways, resulting in decreased phosphorylation of the autophagy repressor mTOR, subsequently leading to autophagic induction. In addition, we utilized ICR mice in an animal model of DTMUV infection to evaluate the autophagic responses in brain tissues and investigate the effects of autophagy on viral replication and tissue lesions. Our results confirmed that DTMUV induced incomplete autophagy in mouse brain tissues and that autophagy inducer treatment promoted DTMUV replication and aggravated DTMUV-induced lesions, whereas autophagy inhibitor treatment had the opposite effects. In summary, DTMUV infection induced incomplete autophagy through the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in mouse neuronal cells, and DTMUV-induced incomplete autophagy contributed to the neuropathogenesis of DTMUV.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Camundongos , Infecções por Flavivirus/veterinária , Proteínas Quinases Ativadas por AMP , Camundongos Endogâmicos ICR , Flavivirus/fisiologia , Replicação Viral , Patos , Serina-Treonina Quinases TOR , Autofagia
12.
PLoS Negl Trop Dis ; 17(10): e0011203, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782665

RESUMO

Usutu virus (USUV) is a mosquito-borne flavivirus that is widely distributed in southern and central Europe. The zoonotic virus circulates primarily between birds and mosquitoes, can, however, in rare cases infect other mammals including humans. In the past, USUV has been repeatedly associated with mass mortalities in birds, primarily blackbirds and owls. Birds commonly succumb either due to the peracute nature of the infection or due to severe encephalitis. In Germany, USUV has spread rapidly since its first detection in 2010 in mosquitoes under the presence of susceptible host and vector species. Nonetheless, there is to date limited access to whole genome sequences resulting in the absence of in-depth phylogenetic and phylodynamic analyses. In this study, 118 wild and captive birds were sequenced using a nanopore sequencing platform with prior target enrichment via amplicons. Due to the high abundancy of Europe 3 and Africa 3 in Germany an ample quantity of associated whole genome sequences was generated and the most recent common ancestor could be determined for each lineage. The corresponding clock phylogeny revealed an introduction of USUV Europe 3 and Africa 3 into Germany three years prior to their first isolation in the avifauna in 2011 and 2014, respectively. Based on the clustering and temporal history of the lineages, evidence exists for the genetic evolution of USUV within Germany as well as new introductions thereof into the country.


Assuntos
Culicidae , Infecções por Flavivirus , Flavivirus , Animais , Humanos , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Filogenia , Mosquitos Vetores , Alemanha , Aves , Evolução Molecular , Mamíferos
13.
Virol J ; 20(1): 234, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833787

RESUMO

The mosquito-borne flaviviruses West Nile virus (WNV) and Usutu virus (USUV) pose a significant threat to the health of humans and animals. Both viruses co-circulate in numerous European countries including Germany. Due to their overlapping host and vector ranges, there is a high risk of co-infections. However, it is largely unknown if WNV and USUV interact and how this might influence their epidemiology. Therefore, in-vitro infection experiments in mammalian (Vero B4), goose (GN-R) and mosquito cell lines (C6/36, CT) were performed to investigate potential effects of co-infections in vectors and vertebrate hosts. The growth kinetics of German and other European WNV and USUV strains were determined and compared. Subsequently, simultaneous co-infections were performed with selected WNV and USUV strains. The results show that the growth of USUV was suppressed by WNV in all cell lines. This effect was independent of the virus lineage but depended on the set WNV titre. The replication of WNV also decreased in co-infection scenarios on vertebrate cells. Overall, co-infections might lead to a decreased growth of USUV in mosquitoes and of both viruses in vertebrate hosts. These interactions can strongly affect the epidemiology of USUV and WNV in areas where they co-circulate.


Assuntos
Coinfecção , Culicidae , Infecções por Flavivirus , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Coinfecção/veterinária , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Aves , Mosquitos Vetores , Mamíferos
14.
Microb Pathog ; 185: 106419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866549

RESUMO

Duck Tembusu virus (DTMUV) is an infectious disease that emerged in China in 2010. It has caused serious economic losses to the poultry industry and may pose a threat to public health. We aimed to develop a new Bacillus subtilis (B. subtilis)-based oral vaccine to control DTMUV transmission among poultry; to this end, we constructed a B. subtilis strain that can secrete DTMUV E protein. Ducklings were orally immunized, and serum antibodies, mucosal antibodies, and splenic cytokines were detected. The results showed that, in addition to high levels of specific IgG, there were also high levels of specific secretory immunoglobulin A (sIgA) in ducklings orally treated with recombinant B. subtilis. In addition, the levels of IFN-γ, IL-2, IL-4, and IL-10 in spleens were significantly boosted by recombinant B. subtilis. Recombinant B. subtilis could effectively enhance ducklings resistance to DTMUV and significantly reduce viral load (p<0.01), along with pathological damage in the brain, heart, and spleen. This is the first study to apply a B. subtilis live-vector vaccine platform for DTMUV disease prevention and control, and our results suggest that B. subtilis expressing DTMUV E protein may be a candidate vaccine against DTMUV.


Assuntos
Bacillus , Infecções por Flavivirus , Doenças das Aves Domésticas , Vacinas , Animais , Bacillus subtilis , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/veterinária , Patos , Anticorpos Antivirais , Fatores de Transcrição
15.
Vet Microbiol ; 286: 109894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879239

RESUMO

The tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) is a key signaling molecule in the retinoic acid-inducible gene I (RIG-I) signaling pathway and plays an important role in host innate immune regulation. The function of TRAF3 has been extensively studied in mammals, however, the role of TRAF3 in ducks remains unclear. In order to reveal the function of duck TRAF3 (duTRAF3) in the innate immune response induced by virus infection, the TRAF3 homologue of mallard (Anas platyrhynchos) has been cloned and the function of duTRAF3 is investigated in this study. We sequenced duTRAF3 and found that the open reading frame (ORF) region of duTRAF3 is 1704 bp long and encodes 567 amino acids (aa), which has a similar functional domain to the mammalian gene. Analysis of tissue distribution of duTRAF3 in 7-day-old ducks showed that the expression of duTRAF3 was highest in harderian gland, followed by heart and lung. Subsequently, duck Tembusu virus (DTMUV) has been shown to enhance duTRAF3 expression, and overexpression of duTRAF3 inhibits DTMUV replication in a dose-dependent manner. In addition, duTRAF3 activates the transcriptional activity of IFN-α and its downstream interferon-stimulating genes (ISGs) induced after DTMUV infection. In this process, DTMUV non-structural (NS) protein 5 resists this innate immune process by interacting with TRAF3 and inhibiting TRAF3 expression. These data support the conclusion that duTRAF3 is an antiviral protein that plays a key role in the defense against DTMUV invasion. These results lay a theoretical foundation for developing new anti-DTMUV strategies.


Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Infecções por Flavivirus/veterinária , Flavivirus/genética , Imunidade Inata/genética , Transdução de Sinais , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Mamíferos
16.
Arch Virol ; 168(10): 262, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773423

RESUMO

Tembusu virus (TMUV) is an emerging pathogenic flavivirus associated with acute egg-drop and fatal encephalitis in domestic waterfowl. Since its initial identification in mosquitoes in 1955, TMUV has been confirmed to infect ducks, pigeons, sparrows, geese, and chickens, posing a significant threat to the poultry industry. Here, we sequenced two DTMUV strains isolated in 2019 and systematically investigated the possible origin, genetic relationships, evolutionary dynamics, and transmission patterns of TMUV based on complete virus genome sequences in the public database. We found that TMUV can be divided into four major clusters: TMUV, cluster 1, cluster 2, and cluster 3. Interestingly, we found that cluster 2.2 (within cluster 2) is the most commonly involved in interspecies transmission events, and subcluster 2.1.2 (within cluster 2.1) is currently the most prevalent cluster circulating in Asia. Notably, we also identified three positively selected sites in the E and NS1 proteins, which may be involved in virus replication, immune evasion, and host adaptation. Finally, phylogeographic analysis revealed that cluster dispersal originated in Southeast Asia and that short-distance transmission events have occurred frequently. Altogether, these data provide novel insights into the evolution and dispersal of TMUV, facilitating the development of rapid diagnostics, vaccines, and therapeutics against TMUV infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Animais , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Epidemiologia Molecular , Galinhas , Patos
17.
Poult Sci ; 102(12): 103065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751643

RESUMO

Tembusu virus (TMUV), a pathogenic member of the Flavivirus family, is an infectious diseases that seriously jeopardize duck health in 2010 in China. TMUV disease causes significant economic losses to the duck industry. This study aimed to prepare monoclonal antibodies against TMUV prM protein and to identify their epitopes. The 501bp prM gene was amplified to the pET-32a prokaryotic expression vector and expressed as a recombinant protein of size 38 KD in Escherichia coli. The purified recombinant proteins were inoculated into BALB/c mice to generate splenic lymphocytes capable of secreting anti-prM antibodies, and hybridoma cells were obtained after fusion with SP2/0 cells. A new hybridoma cell line named B27, which stably secreted IgG1-antibody against TMUV prM with high antibody titers up to 1:1:3,276,800 was screened. This monoclonal antibody (mAb) is well specific and can be used for ELISA/Western-blot (WB)/indirect fluorescence assay (IFA) etc. The mAb B27 has poor neutralization ability and concentration dependence, with a maximum neutralization degree of 23.87% at antibody dilution 10-6. Next, we truncated prM gene and expressed the truncated protein to screen antigen epitopes. The mAb's linear antigen epitope of the TMUV prM protein was first identified and was accurate to 6 consecutive amino acids 59GYEPED64, which located in the pr protein. Bioinformatic analysis showed that this antigenic epitope was located on the surface of the antigen, which was conducive to the direct contact of antigen antibody and conformed to the properties of antigenic epitopes. In addition, its 6 amino acids are highly homologous among 27 published TMUV strains, indicating that its epitope is stable. This study will help to further understand the protein structure and the function of prM, and lay the foundation for establishing specific prM detection methods and the mechanistic study of TMUV prM protein.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Camundongos , Animais , Infecções por Flavivirus/veterinária , Anticorpos Monoclonais , Galinhas , Proteínas Recombinantes/genética , Epitopos , Aminoácidos , Patos
19.
Genes (Basel) ; 14(7)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37510221

RESUMO

The Duck Tembusu virus (DTMUV), a pathogenic flavivirus, has been causing significant economic losses in the Chinese poultry industry since 2010. This virus can severely decrease egg production and inhibit the growth of laying ducks and ducklings. While many vaccines have been developed to prevent DTMUV infection, fresh outbreaks continue to occur, as few effective vaccines are available. The E glycoprotein of DTMUV is the primary target for inducing protective immunity in the natural host. Therefore, we conducted an investigation and successfully developed a recombinant baculovirus containing the DTMUV E gene. Ducklings were then vaccinated with the purified protein derived from this virus as a potential vaccine candidate. Our findings demonstrated that the E glycoprotein of DTMUV was highly expressed in Sf9 cells. The vaccination of ducklings with the recombinant baculovirus Bac-E resulted in the induction of strong humoral and cellular immune responses. Most significantly, we observed that the vaccine provided 100% protective immunity against lethal challenges with the DTMUV YY5 strain.


Assuntos
Infecções por Flavivirus , Flavivirus , Vacinas Virais , Animais , Patos , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/veterinária , Baculoviridae/genética , Anticorpos Antivirais , Vacinas Virais/genética , Flavivirus/genética , Glicoproteínas , Fatores de Transcrição
20.
Poult Sci ; 102(9): 102867, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390547

RESUMO

Tembusu virus (TMUV) is a member of the genus Flavivirus in the family Flaviviridae. Currently, TMUV was classified into 4 distinct clusters, with cluster 2 strains widely distributed in duck and goose populations in Asia, causing significant economic losses to the producing industries. In this study, a novel TMUV strain TMUV/goose/CHN/2019/HNU-NX2 (HNU-NX2-2019) was isolated and characterized from geese with ovaritis from Hunan province, China. Phylogenetic analyses of genome and the E gene indicated the present TMUV could be grouped into the newly defined TMUV cluster 3. The genome of HNU-NX2-2019 showed the highest identities of 98.1% to 98.2% to the cluster 3 TMUVs newly identified in 2020 and 2021 from chickens with a severe egg-drop syndrome from Guangdong, Guangxi and Shandong provinces of China, which were all showing a close relation to a mosquito-origin TMUV (KT607936) identified in 2012. Further experiments confirmed HNU-NX2-2019 could grow well in chicken fibroblast cell line DF-1 and in SPF chicken embryos, with titers varied from 107.3 to 108.8 viral genomic copies per mL in the culture solutions. A pilot virus challenge study in 3-day-old chicks demonstrated that this virus could efficiently infect chicks with virus distributed in the brains, small intestines and other visceral organs, with titers varied from 105.4 to 106.7viral genomic copies per gram of the tissues. Furthermore, HNU-NX2-2019 can induce specific antibody in ducklings but with no obvious disease and virus shedding, and on necropsy no TMUV was detected in the tissues in the present study. This is the first report to identify a novel cluster 3 TUMV from goose, and further demonstrated this goose TMUV strain could infect chicken efficiently but not in ducklings under the present experimental conditions, which highlighted intensive attentions may be paid to this novel mosquito-origin cluster 3 TMUV.


Assuntos
Infecções por Flavivirus , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Infecções por Flavivirus/veterinária , Filogenia , Galinhas , China , Patos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA