Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
1.
J Med Virol ; 96(9): e29920, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283000

RESUMO

Immune profiling of Nipah virus (NiV) infection survivors is essential for advancing our understanding of NiV pathogenesis, improving diagnostic and therapeutic strategies, and guiding public health efforts to prevent future outbreaks. There is currently limited data available on the immune response to NiV infection. We aimed to elucidate the specific immune mechanisms involved in protection against NiV infection by analyzing the immune profiles of survivors of the Nipah outbreak in Kerala, India 2023. Immune cell populations were quantified and compared between survivors (up to 4 months post onset day of illness) and healthy controls. Statistical analysis was performed to explore associations between immune profiles and clinical outcomes. Immune signatures common to all three cases were: a heretofore undescribed persistent lymphopenia including the CD4+ Treg compartment with the relative expansion of memory Tregs; trends indicative of global leukopenic modulation were observed in monocytes and granulocytes including an expansion of putatively immunosuppressive low-density granulocytes described recently in the context of severe COVID-19; altered mucosal homing with respect to integrin beta-7 (ITGB7) expressing subsets; increased mobilization of activated T-cells (CD4+ and CD8+) and plasmablasts in the early phase of infection. Comparative analysis based on clinical presentation and outcome yielded lower initial viremia, increased activated T-cell responses, expanded plasmablasts, and restoration of ITGB7 expressing CD8+ T-cells as possible protective signatures. This longitudinal study delineates putative protective signatures associated with milder NiV disease. It emphasizes the need for the development of immunotherapeutic interventions such as monoclonal antibodies to blunt early viremia and ameliorate pathogenesis.


Assuntos
Surtos de Doenças , Infecções por Henipavirus , Vírus Nipah , Humanos , Índia/epidemiologia , Vírus Nipah/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/epidemiologia , Masculino , Adulto , Feminino , Sobreviventes , Linfócitos T CD8-Positivos/imunologia , Pessoa de Meia-Idade
2.
Nat Commun ; 15(1): 6892, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134522

RESUMO

Nipah virus infection, one of the top priority diseases recognized by the World Health Organization, underscores the urgent need to develop effective countermeasures against potential epidemics and pandemics. Here, we identify a fully human single-domain antibody that targets a highly conserved cryptic epitope situated at the dimeric interface of the Nipah virus G protein (receptor binding protein, RBP), as elucidated through structures by high-resolution cryo-electron microscopy (cryo-EM). This unique binding mode disrupts the tetramerization of the G protein, consequently obstructing the activation of the F protein and inhibiting viral membrane fusion. Furthermore, our investigations reveal that this compact antibody displays enhanced permeability across the blood-brain barrier (BBB) and demonstrates superior efficacy in eliminating pseudovirus within the brain in a murine model of Nipah virus infection, particularly compared to the well-characterized antibody m102.4 in an IgG1 format. Consequently, this single-domain antibody holds promise as a therapeutic candidate to prevent Nipah virus infections and has potential implications for vaccine development.


Assuntos
Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Infecções por Henipavirus , Vírus Nipah , Anticorpos de Domínio Único , Vírus Nipah/imunologia , Humanos , Animais , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Epitopos/imunologia , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Anticorpos Antivirais/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Feminino , Células HEK293
3.
Emerg Microbes Infect ; 13(1): 2398640, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39194145

RESUMO

Nipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological diseases in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations.


Assuntos
Anticorpos Antivirais , Técnicas Biossensoriais , Infecções por Henipavirus , Vírus Nipah , Vírus Nipah/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos , Técnicas Biossensoriais/métodos , Animais , Bangladesh/epidemiologia , Luciferases/genética , Sensibilidade e Especificidade , Feminino , Adulto , Ensaio de Imunoadsorção Enzimática/métodos , Masculino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201788

RESUMO

Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin's interaction with NiV-G's central hole and EphrinB2's G-H loop, which could be the possible reason for its fusion inhibitory activity.


Assuntos
Baculoviridae , Avaliação Pré-Clínica de Medicamentos , Células Gigantes , Vírus Nipah , Vírus Nipah/genética , Vírus Nipah/efeitos dos fármacos , Baculoviridae/genética , Animais , Humanos , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Vetores Genéticos/genética , Antivirais/farmacologia , Suramina/farmacologia , Efrina-B2/metabolismo , Efrina-B2/genética , Infecções por Henipavirus/virologia , Células Sf9 , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos
5.
Biomed Res Int ; 2024: 4066641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962403

RESUMO

The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.


Assuntos
Simulação por Computador , Infecções por Henipavirus , Vírus Nipah , Vírus Nipah/imunologia , Humanos , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Vacinas Virais/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Vacinação , Simulação de Acoplamento Molecular , Proteínas Virais/imunologia , Proteínas Virais/química , Proteínas Virais/genética , Animais
6.
Sci Rep ; 14(1): 17532, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080433

RESUMO

In the last two decades, Nipah virus (NiV) has emerged as a significant paramyxovirus transmitted by bats, causing severe respiratory illness and encephalitis in humans. NiV has been included in the World Health Organization's Blueprint list of priority pathogens due its potential for human-to-human transmission and zoonotic characteristics. In this paper, a mathematical model is formulated to analyze the dynamics and optimal control of NiV. In formulation of the model we consider two modes of transmission: human-to-human and food-borne. Further, the impact of contact with an infected corpse as a potential route for virus transmission is also consider in the model. The analysis identifies the model with constant controls has three equilibrium states: the NiV-free equilibrium, the infected flying foxes-free equilibrium, and the NiV-endemic equilibrium state. Furthermore, a theoretical analysis is conducted to presents the stability of the model equilibria. The model fitting to the reported cases in Bangladesh from 2001 to 2015, and the estimation of parameters are performed using the standard least squares technique. Sensitivity analysis of the model-embedded parameters is provided to set the optimal time-dependent controls for the disease eradication. The necessary optimality conditions are derived using Pontryagin's maximum principle. Finally, numerical simulation is performed to determine the most effective strategy for disease eradication and to confirm the theoretical results.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinação , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Humanos , Animais , Quirópteros/virologia , Modelos Teóricos , Bangladesh/epidemiologia
7.
Vet Microbiol ; 295: 110167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954881

RESUMO

Hendra virus (HeV) is lethal to horses and a zoonotic threat to humans in Australia, causing severe neurological and/or respiratory disease with high mortality. An equine vaccine has been available since 2012. Foals acquire antibodies from their dams by ingesting colostrum after parturition, therefore it is assumed that foals of mares vaccinated against HeV will have passive HeV antibodies circulating during the first several months of life until they are actively vaccinated. However, no studies have yet examined passive or active immunity against HeV in foals. Here, we investigated anti-HeV antibody levels in vaccinated mares and their foals. Testing for HeV neutralising antibodies is cumbersome due to the requirement for Biosafety level 4 (BSL-4) containment to conduct virus neutralisation tests (VNT). For this study, a subset of samples was tested for HeV G-specific antibodies by both an authentic VNT with infectious HeV and a microsphere-based immunoassay (MIA), revealing a strong correlation. An indicative neutralising level was then applied to the results of a larger sample set tested using the MIA. Mares had high levels of HeV-specific neutralising antibodies at the time of parturition. Foals acquired high levels of maternal antibodies which then waned to below predictive protective levels in most foals by 6 months old when vaccination commenced. Foals showed a suboptimal response to vaccination, suggesting maternal antibodies may interfere with active vaccination. The correlation analysis between the authentic HeV VNT and HeV MIA will enable further high throughput serological studies to inform optimal vaccination protocols for both broodmares and foals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus Hendra , Infecções por Henipavirus , Doenças dos Cavalos , Vacinação , Vacinas Virais , Animais , Cavalos , Vírus Hendra/imunologia , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/virologia , Doenças dos Cavalos/imunologia , Anticorpos Antivirais/sangue , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Feminino , Vacinação/veterinária , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Neutralizantes/sangue , Imunidade Materno-Adquirida , Animais Recém-Nascidos/imunologia , Gravidez , Testes de Neutralização/veterinária , Austrália , Colostro/imunologia
10.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969474

RESUMO

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vírus Nipah/fisiologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Humanos , Animais , Quirópteros/virologia , Sudeste Asiático/epidemiologia , Filogenia , Zoonoses/epidemiologia , Zoonoses/virologia
11.
Front Immunol ; 15: 1387811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911870

RESUMO

The Nipah virus (NiV), a highly deadly bat-borne paramyxovirus, poses a substantial threat due to recurrent outbreaks in specific regions, causing severe respiratory and neurological diseases with high morbidity. Two distinct strains, NiV-Malaysia (NiV-M) and NiV-Bangladesh (NiV-B), contribute to outbreaks in different geographical areas. Currently, there are no commercially licensed vaccines or drugs available for prevention or treatment. In response to this urgent need for protection against NiV and related henipaviruses infections, we developed a novel homotypic virus-like nanoparticle (VLP) vaccine co-displaying NiV attachment glycoproteins (G) from both strains, utilizing the self-assembling properties of ferritin protein. In comparison to the NiV G subunit vaccine, our nanoparticle vaccine elicited significantly higher levels of neutralizing antibodies and provided complete protection against a lethal challenge with NiV infection in Syrian hamsters. Remarkably, the nanoparticle vaccine stimulated the production of antibodies that exhibited superior cross-reactivity to homologous or heterologous henipavirus. These findings underscore the potential utility of ferritin-based nanoparticle vaccines in providing both broad-spectrum and long-term protection against NiV and emerging zoonotic henipaviruses challenges.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ferritinas , Infecções por Henipavirus , Mesocricetus , Nanopartículas , Vírus Nipah , Vacinas Virais , Animais , Vírus Nipah/imunologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Ferritinas/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Cricetinae , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Feminino , Humanos , Nanovacinas
12.
Expert Rev Mol Diagn ; 24(6): 473-485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924448

RESUMO

INTRODUCTION: Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses. AREAS COVERED: This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered. EXPERT OPINION: Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Vírus Nipah/genética , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Animais , Técnicas de Diagnóstico Molecular/métodos , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Zoonoses/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Surtos de Doenças
13.
Emerg Microbes Infect ; 13(1): 2368217, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38865205

RESUMO

Nipah virus (NiV), a highly pathogenic Henipavirus in humans, has been responsible for annual outbreaks in recent years. Experiments involving live NiV are highly restricted to biosafety level 4 (BSL-4) laboratories, which impedes NiV research. In this study, we developed transcription and replication-competent NiV-like particles (trVLP-NiV) lacking N, P, and L genes. This trVLP-NiV exhibited the ability to infect and continuously passage in cells ectopically expressing N, P, and L proteins while maintaining stable genetic characteristics. Moreover, the trVLP-NiV displayed a favourable safety profile in hamsters. Using the system, we found the NiV nucleoprotein residues interacting with viral RNA backbone affected viral replication in opposite patterns. This engineered system was sensitive to well-established antiviral drugs, innate host antiviral factors, and neutralizing antibodies. We then established a high-throughput screening platform utilizing the trVLP-NiV, leading to the identification of tunicamycin as a potential anti-NiV compound. Evidence showed that tunicamycin inhibited NiV replication by decreasing the infectivity of progeny virions. In conclusion, this trVLP-NiV system provided a convenient and versatile molecular tool for investigating NiV molecular biology and conducting antiviral drug screening under BSL-2 conditions. Its application will contribute to the development of medical countermeasures against NiV infections.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Replicação Viral , Vírus Nipah/fisiologia , Vírus Nipah/genética , Vírus Nipah/efeitos dos fármacos , Animais , Cricetinae , Humanos , Infecções por Henipavirus/virologia , Transcrição Gênica , Vírion/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Antivirais/farmacologia , Células Vero , Chlorocebus aethiops , Linhagem Celular , RNA Viral/genética
14.
Vaccine ; 42(23): 126051, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38902187

RESUMO

Multinational epidemics of emerging infectious diseases are increasingly common, due to anthropogenic pressure on ecosystems and the growing connectivity of human populations. Early and efficient vaccination can contain outbreaks and prevent mass mortality, but optimal vaccine stockpiling strategies are dependent on pathogen characteristics, reservoir ecology, and epidemic dynamics. Here, we model major regional outbreaks of Nipah virus and Middle East respiratory syndrome, and use these to develop a generalized framework for estimating vaccine stockpile needs based on spillover geography, spatially-heterogeneous healthcare capacity and spatially-distributed human mobility networks. Because outbreak sizes were highly skewed, we found that most outbreaks were readily contained (median stockpile estimate for MERS-CoV: 2,089 doses; Nipah: 1,882 doses), but the maximum estimated stockpile need in a highly unlikely large outbreak scenario was 2-3 orders of magnitude higher (MERS-CoV: ∼87,000 doses; Nipah âˆ¼ 1.1 million doses). Sensitivity analysis revealed that stockpile needs were more dependent on basic epidemiological parameters (i.e., death and recovery rate) and healthcare availability than any uncertainty related to vaccine efficacy or deployment strategy. Our results highlight the value of descriptive epidemiology for real-world modeling applications, and suggest that stockpile allocation should consider ecological, epidemiological, and social dimensions of risk.


Assuntos
Doenças Transmissíveis Emergentes , Infecções por Henipavirus , Humanos , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/prevenção & controle , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Estoque Estratégico , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Vírus Nipah/imunologia , Surtos de Doenças/prevenção & controle , Epidemias/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinação/estatística & dados numéricos
15.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793674

RESUMO

The Nipah virus (NiV) and the Hendra virus (HeV) are highly pathogenic zoonotic diseases that can cause fatal infections in humans and animals. Early detection is critical for the control of NiV and HeV infections. We present the development of two antigen-detection ELISAs (AgELISAs) using the henipavirus-receptor EphrinB2 and monoclonal antibodies (mAbs) to detect NiV and HeV. The NiV AgELISA detected only NiV, whereas the NiV/HeV AgELISA detected both NiV and HeV. The diagnostic specificities of the NiV AgELISA and the NiV/HeV AgELISA were 100% and 97.8%, respectively. Both assays were specific for henipaviruses and showed no cross-reactivity with other viruses. The AgELISAs detected NiV antigen in experimental pig nasal wash samples taken at 4 days post-infection. With the combination of both AgELISAs, NiV can be differentiated from HeV. Complementing other henipavirus detection methods, these two newly developed AgELISAs can rapidly detect NiV and HeV in a large number of samples and are suitable for use in remote areas where other tests are not available.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Efrina-B2 , Infecções por Henipavirus , Animais , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Efrina-B2/metabolismo , Vírus Hendra , Infecções por Henipavirus/diagnóstico , Vírus Nipah , Receptores Virais/metabolismo , Sensibilidade e Especificidade , Suínos
16.
Nat Commun ; 15(1): 4330, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773072

RESUMO

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Infecções por Henipavirus , Proteínas Virais de Fusão , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Anticorpos Antivirais/imunologia , Infecções por Henipavirus/virologia , Infecções por Henipavirus/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Vírus Nipah/imunologia , Internalização do Vírus/efeitos dos fármacos , Henipavirus/imunologia , Cricetinae , Reações Cruzadas/imunologia , Vírus Hendra/imunologia , Macaca , Mesocricetus , Cristalografia por Raios X
17.
Indian J Med Ethics ; IX(2): 169-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38755764

RESUMO

As the world grapples with the constant threat of new pathogens, the role of government oversight in research and response efforts has become a topic of considerable debate in the academic community. In the recently released "SOP [standard operating procedure] for Nipah virus research in Kerala for studies involving human participants / human samples" by the Government of Kerala, the SOP, apart from administrative permission, requires the proposal to be cleared by the Institutional Research Committee at a Government Medical College, and the inclusion of an investigator from a government institution [1]. In these challenging times, it is crucial to weigh the pros and cons of stringent administrative controls to ensure an effective and ethical approach to tackling emerging infectious diseases.


Assuntos
Doenças Transmissíveis Emergentes , Humanos , Doenças Transmissíveis Emergentes/prevenção & controle , Índia , Pesquisa Biomédica/ética , Regulamentação Governamental , Vírus Nipah , Infecções por Henipavirus/prevenção & controle , Comitês de Ética em Pesquisa/normas
18.
J Integr Neurosci ; 23(5): 90, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812392

RESUMO

The genome of the Nipah virus (NiV) encodes a variety of structural proteins linked to a diverse array of symptoms, including fevers, headaches, somnolence, and respiratory impairment. In instances of heightened severity, it can also invade the central nervous system (CNS), resulting in more pronounced problems. This work investigates the effects of NiV on the blood-brain barrier (BBB), the vital physiological layer responsible for safeguarding the CNS by regulating the passage of chemicals into the brain selectively. To achieve this, the researchers (MMJAO, AM and MNMD) searched a variety of databases for relevant articles on NiV and BBB disruption, looking for evidence of work on inflammation, immune response (cytokines and chemokines), tight junctions (TJs), and basement membranes related to NiV and BBB. Based on these works, it appears that the affinity of NiV for various receptors, including Ephrin-B2 and Ephrin-B3, has seen many NiV infections begin in the respiratory epithelium, resulting in the development of acute respiratory distress syndrome. The virus then gains entry into the circulatory system, offering it the potential to invade brain endothelial cells (ECs). NiV also has the ability to infect the leukocytes and the olfactory pathway, offering it a "Trojan horse" strategy. When NiV causes encephalitis, the CNS generates a strong inflammatory response, which makes the blood vessels more permeable. Chemokines and cytokines all have a substantial influence on BBB disruption, and NiV also has the ability to affect TJs, leading to disturbances in the structural integrity of the BBB. The pathogen's versatility is also shown by its capacity to impact multiple organ systems, despite particular emphasis on the CNS. It is of the utmost importance to comprehend the mechanisms by which NiV impacts the integrity of the BBB, as such comprehension has the potential to inform treatment approaches for NiV and other developing viral diseases. Nevertheless, the complicated pathophysiology and molecular pathways implicated in this phenomenon have offered several difficult challenges to researchers to date, underscoring the need for sustained scientific investigation and collaboration in the ongoing battle against this powerful virus.


Assuntos
Barreira Hematoencefálica , Infecções por Henipavirus , Vírus Nipah , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Vírus Nipah/fisiologia , Humanos , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/virologia , Infecções por Henipavirus/fisiopatologia , Animais , Tropismo Viral/fisiologia
19.
PLoS One ; 19(5): e0300507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728300

RESUMO

According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.


Assuntos
Glicoproteínas , Vírus Nipah , Vacinas Virais , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Glicoproteínas/imunologia , Glicoproteínas/química , Humanos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Simulação por Computador , Epitopos/imunologia , Epitopos/química , Simulação de Dinâmica Molecular , Nucleocapsídeo/imunologia , Simulação de Acoplamento Molecular
20.
Front Immunol ; 15: 1384417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726013

RESUMO

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Animais , Vírus Nipah/imunologia , Vírus Nipah/genética , Suínos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Imunogenicidade da Vacina , Imunização Secundária , Citocinas/imunologia , Vacinas Sintéticas/imunologia , Lipossomos , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...