Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Int Immunopharmacol ; 141: 112833, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153303

RESUMO

Mycoplasma pulmonis (M. pulmonis) is an emerging respiratory infection commonly linked to prostate cancer, and it is classified under the group of mycoplasmas. Improved management of mycoplasma infections is essential due to the frequent ineffectiveness of current antibiotic treatments in completely eliminating these pathogens from the host. The objective of this study is to design and construct effective and protective vaccines guided by structural proteomics and machine learning algorithms to provide protection against the M. pulmonis infection. Through a thorough examination of the entire proteome of M. pulmonis, four specific targets Membrane protein P80, Lipoprotein, Uncharacterized protein and GGDEF domain-containing protein have been identified as appropriate for designing a vaccine. The proteins underwent mapping of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) (IFN)-γ ±, and B-cell epitopes using artificial and recurrent neural networks. The design involved the creation of mRNA and peptide-based vaccine, which consisted of 8 CTL epitopes associated by GGS linkers, 7 HTL (IFN-positive) epitopes, and 8 B-cell epitopes joined by GPGPG linkers. The vaccine designed exhibit antigenic behavior, non-allergenic qualities, and exceptional physicochemical attributes. Structural modeling revealed that correct folding is crucial for optimal functioning. The coupling of the MEVC and Toll-like Receptors (TLR)1, TLR2, and TLR6 was examined through molecular docking experiments. This was followed by molecular simulation investigations, which included binding free energy estimations. The results indicated that the dynamics of the interaction were stable, and the binding was strong. In silico cloning and optimization analysis revealed an optimized sequence with a GC content of 49.776 % and a CAI of 0.982. The immunological simulation results showed strong immune responses, with elevated levels of active and plasma B-cells, regulatory T-cells, HTL, and CTL in both IgM+IgG and secondary immune responses. The antigen was completely cleared by the 50th day. This study lays the foundation for creating a potent and secure vaccine candidate to combat the newly identified M. pulmonis infection in people.


Assuntos
Vacinas Bacterianas , Epitopos de Linfócito B , Epitopos de Linfócito T , Aprendizado de Máquina , Infecções por Mycoplasma , Proteômica , Vacinas Bacterianas/imunologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/imunologia , Proteômica/métodos , Animais , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos , Proteínas de Bactérias/imunologia , Camundongos , Simulação de Acoplamento Molecular , Mapeamento de Epitopos/métodos , Antígenos de Bactérias/imunologia
2.
Vet Ital ; 60(1)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989625

RESUMO

Staphylococcus aureus, Escherichia coli and Mycoplasma bovis are the most commonly isolated mastitis pathogens. The aim of this study was to evaluate the efficacy of a new mixed vaccine against mastitis caused by  Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis. For this purpose, a mixed inactivated vaccine was administered subcutaneously to 24 heifers as one dose (2 mL) on the 45th day before birth and the second dose 21 days later. In 9 heifers, 2 mL of PBS was administered as placebo instead of vaccine. Then, heifers were divided into 3 groups as 7 vaccinated and 3 unvaccinated animals. Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis were administered to the groups through intramammary route. Three vaccinated heifers were considered the common control without bacteria in all groups. The parameters considered to assess the effect of vaccination were clinical findings, bacterial count in milk, somatic cell count, and antibody titers. Clinical signs were observed only in the unvaccinated placebo group. Bacteria count and somatic cell count in milk increased in vaccinated and unvaccinated heifers. However, this increase was less in vaccinated animals and gradually returned to the normal level. In the unvaccinated heifers, it was ever high. Serum antibody titers were measured before and after vaccination. Antibody titers were high in vaccinated heifers after vaccination and were negative in unvaccinated heifers. In conclusion, the mixed vaccine had beneficial effect against Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis mastitis and stimulated the immune response of vaccinated heifers.


Assuntos
Escherichia coli , Mastite Bovina , Infecções por Mycoplasma , Mycoplasma bovis , Infecções Estafilocócicas , Staphylococcus aureus , Vacinas de Produtos Inativados , Animais , Bovinos , Mycoplasma bovis/imunologia , Feminino , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia , Mastite Bovina/imunologia , Staphylococcus aureus/imunologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/imunologia
3.
Poult Sci ; 103(8): 103732, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925079

RESUMO

The incidence of chronic respiratory disease (CRD) due to Mycoplasma gallisepticum (MG) contamination in hatching eggs poses a serious threat to poultry health and hatchability. Implementing effective sanitization methods while safeguarding the hatching potential of embryos is crucial. This study aimed to explore novel techniques for sanitizing hatching-fertile eggs to prevent and manage MG-associated CRD. The primary objective was to assess the efficacy of acidic electrochemically stimulated water (ECS), focusing on MG disinfection. Additionally, the study investigated 2 application methods, 1) electrostatic disinfection (ED) and 2) cold fog (CF) disinfection, to evaluate their bactericidal effects against MG-contaminated eggs. Deliberately infected MG strains were used for the experimental design, which compared the disinfection efficacy of ECS with its acidic properties. The comparison involved ED, which applies an electrostatic charge to water particles, and CF disinfection, a cold mist technique. Both methods aimed to target MG without compromising egg-hatching potential. The results indicated a significant (p < 0.05) reduction in colony-forming units per milliliter (CFU/mL). However, both application methods demonstrated distinct bactericidal effects. Eggs treated with electrostatic disinfection showed a significant (p < 0.001) reduction in embryonic mortality during incubation (10%) compared to control untreated eggs (18%). Similarly, the CF method exhibited a significant (p < 0.001) decrease in embryonic mortality (13%). The ECS potential in reducing embryonic mortality within the pH range of 2.5 to 6.5 was noted. Both the ED and CF methods show promise for preventing MG-induced hatchery infection while maintaining egg-hatching potential. This study presents innovative techniques to control MG in hatching eggs, contributing to improved poultry health and reduced CRD incidence.


Assuntos
Desinfecção , Infecções por Mycoplasma , Mycoplasma gallisepticum , Óvulo , Doenças das Aves Domésticas , Eletricidade Estática , Animais , Desinfecção/métodos , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Mycoplasma gallisepticum/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/microbiologia , Galinhas , Temperatura Baixa , Embrião de Galinha
4.
Poult Sci ; 103(8): 103874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833744

RESUMO

Mycoplasma synoviae (MS) is a contagious pathogen that poses a significant threat to the poultry industry. Detection plays an important role in the prevention and control of MS, particularly in differentiating between wild-type MS and live attenuated vaccine strains for vaccination selection and culling of animals with wild-type only. The live attenuated ts+ vaccine strain MS-H is recognized as the most effective and widely used vaccine. In this study, we have developed a method called double enzyme-activated differentiation probes PCR (DEA-probes PCR) for the differentiation of MS-H vaccine strain from wild-type strain by targeting the single nucleotide polymorphism (SNP) of the 367th nucleotide in the Obg gene sequence. We developed 2 modified probes with the ribonucleotide insert. When the probe perfectly complements with the target, the ribonuclease H2 (RNase H2) will cleave the ribonucleotide, resulting in the generation of fluorescent signal. With a detection limit of 5.8 copies/µL, the DEA-probes PCR method demonstrates 100% specificity in distinguishing wild-type MS from MS-H strains in 1 h. The method demonstrated great performance in real application of 100 superior palate cleft swab samples from chickens in poultry farms. Twenty-eight samples were detected as MS positive, consistent with the results of the Chinese industry standard method. Additionally, our method was able to distinguish 19 wild-type MS strains from 9 MS-H vaccine strains. The DEA-probes PCR method is rapid, specific and sensitive for SNP detection, overcoming the misidentification in MS detection and differentiation. It can be also applied to the differentiation of infected from vaccinated animals (DIVA) for other pathogens.


Assuntos
Vacinas Bacterianas , Galinhas , Infecções por Mycoplasma , Mycoplasma synoviae , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas , Mycoplasma synoviae/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/prevenção & controle , Animais , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/diagnóstico , Vacinas Atenuadas , Sensibilidade e Especificidade
5.
Poult Sci ; 103(8): 103907, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878745

RESUMO

An attenuated vaccine against the Mycoplasma gallisepticum ts-11 strain has become an effective prevention and control method against MG infection. However, the ts-11 strain is usually difficult to distinguish from the non-ts-11 strain (including field isolates and other vaccine strains (F and 6/85)). Therefore, it is critical to establish a rapid and effective method to distinguish ts-11 strains from non-ts-11 strains. The gene sequences of the ts-11 strain (CP044225.1) and the non-ts-11 strain (including the wild-type (CP006916.3), 6/85 (CP044224.1), and F strains (NC_017503.1) were used to construct a conserved region containing a single point mutation in the potC gene in the ts-11 strain, after which a primer-probe combination method was designed. The primer-probe method was able to accurately and efficiently identify the ts-11 and non-ts-11 strains with minimum detection limits of 2.43 copies/µL and 1.65 copies/µL, respectively. Moreover, it could simultaneously distinguish the ts-11 strain from a non-ts-11 strain, and amplifications of avian influenza virus, infectious bronchitis virus, Newcastle disease virus, fowl adenovirus, infectious laryngotracheitis virus, infectious bursal disease virus, chicken anemia virus, Marek's disease virus, Mycoplasma synoviae, and Ornithobacter rhinotracheale were negative. The detection of clinical samples revealed that the established dual-probe fluorescence quantitative PCR method could be used to screen for mixed and single infections of the ts-11 strain and non-ts-11 strains effectively, with lower variation coefficients for intra- and interbatch repetition. The established cycleave dual-probe fluorescence quantitative PCR method showed good specificity, sensitivity, and repeatability and provides powerful technical support for the rapid and efficient differential diagnosis of the MG ts-11 strain from non-ts-11 strains.


Assuntos
Vacinas Bacterianas , Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Mycoplasma gallisepticum/isolamento & purificação , Mycoplasma gallisepticum/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Animais , Vacinas Atenuadas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária
6.
Poult Sci ; 103(8): 103942, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908119

RESUMO

Mycoplasma gallisepticum (MG) can cause chronic respiratory disease (CRD) in chickens, which has a significant negative economic impact on the global poultry sector. Respiratory flora is the guardian of respiratory health, and its disorder is closely related to respiratory immunity and respiratory diseases. As a common probiotic in the chicken respiratory tract, Lactobacillus salivarius (L. salivarius) has potential antioxidant, growth performance enhancing, and anti-immunosuppressive properties. However, the specific mechanism through which L. salivarius protects against MG infection has not yet been thoroughly examined. This study intends to investigate whether L. salivarius could reduce MG-induced tracheal inflammation by modulating the respiratory microbiota and metabolites. The results indicated that L. salivarius reduced MG colonization significantly and alleviated the anomalous morphological changes by using the MG-infection model. L. salivarius also reduced the level of Th1 cell cytokines, increased the level of Th2 cell cytokines, and ameliorated immune imbalance during MG infection. In addition, L. salivarius improved the mucosal barrier, heightened immune function, and suppressed the Janus kinase/Signal transducer, and activator of transcription (JAK/STAT) signaling pathway. Notably, MG infection changed the composition of the respiratory microbiota and metabolites, and L. salivarius therapy partially reversed the aberrant respiratory microbiota and metabolite composition. Our results highlighted that these findings demonstrated that L. salivarius played a role in MG-mediated inflammatory damage and demonstrated that L. salivarius, by altering the respiratory microbiota and metabolites, could successfully prevent MG-induced inflammatory injury in chicken trachea.


Assuntos
Galinhas , Inflamação , Ligilactobacillus salivarius , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Probióticos , Transdução de Sinais , Animais , Mycoplasma gallisepticum/fisiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/microbiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Inflamação/veterinária , Inflamação/prevenção & controle , Ligilactobacillus salivarius/fisiologia , Microbiota , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo
7.
Commun Biol ; 7(1): 779, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942984

RESUMO

The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.


Assuntos
Vacinas Bacterianas , Mycoplasma , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Mycoplasma/genética , Mycoplasma/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Regulação Bacteriana da Expressão Gênica , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/prevenção & controle , Cabras
8.
Avian Dis ; 68(2): 145-155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885057

RESUMO

Manufacturers of Mycoplasma gallisepticum (MG) modified live vaccines usually recommend a single application at 8 wk of age. This makes 12-16-wk-old layer pullets suitable for challenge studies intended to evaluate these vaccines. Numerous challenge models in different poultry species and ages have been reported. However, there is not an established layer pullet challenge model for this age. The aim of this study is to develop a suitable challenge model in 12-wk-old layer pullets. MG Rlow strain was used as the challenge strain, and its ability to induce clinical signs and lesions in 12-wk-old Hy-Line W-36 layer pullets was evaluated. Three different doses (low, 7.95 × 104 color-changing units [CCU]/bird; medium, 7.95 × 106 CCU/bird; and high, 7.95 × 108 CCU/bird) via three different routes (eye drop, fine spray, and contact infection) were compared and evaluated using different parameters. At 14 days post-challenge, there were no mortalities in any of the groups throughout the study. Layer pullets directly challenged with the high dose via the fine spray route showed the clearest and most consistent results (clinical signs, positive quantitative real-time PCR [qPCR], seroconversion, air sac scoring, and histopathological changes of the tracheal mucosa). Medium and low challenge doses applied via fine spray or eye drop did not show consistent results. Rlow strain was able to spread to the contact infection birds, as confirmed by the positive qPCR results; however, none of the contact-infected birds showed any clinical signs or gross or microscopic lesions. Our results suggest that a high dose (7.95 × 108 CCU/bird) administered through a fine spray route is the model of choice in any future MG vaccine evaluation trials in 12-wk-old layer pullets.


Nota de investigación- Desarrollo y evaluación del modelo de desafío para Mycoplasma gallisepticum en pollitas de postura. Los fabricantes de vacunas vivas modificadas contra Mycoplasma gallisepticum (MG) suelen recomendar una sola aplicación a las ocho semanas de edad. Esto hace que las pollitas de postura de 12 a 16 semanas de edad sean adecuadas para estudios de desafío destinados a evaluar estas vacunas. Se han reportado numerosos modelos de desafío en diferentes especies y edades de aves de corral. Sin embargo, no existe un modelo de desafío establecido para pollitas de postura de esta edad. El objetivo de este estudio fue desarrollar un modelo de desafío adecuado en pollitas ponedoras de 12 semanas de edad. Se utilizó la cepa Rlow de Mycoplasma gallisepticum como cepa de desafío y se evaluó su capacidad para inducir signos clínicos y lesiones en pollitas ponedoras Hy-Line W-36 de 12 semanas de edad. Tres dosis diferentes (baja, 7.95 × 104 unidades de cambio de color [CCU]/ave; media, 7.95 × 106 CCU/ave; y alta, 7.95 × 108 CCU/ave) a través de tres rutas diferentes (gota en el ojo, aerosol con gota fina e infección por contacto) se compararon y evaluaron utilizando diferentes parámetros. A los 14 días posteriores al desafío, no hubo mortalidades en ninguno de los grupos durante todo el estudio. Las pollitas de postura expuestas directamente a la dosis alta a través de la ruta de aerosol con gota fina mostraron los resultados más claros y consistentes (signos clínicos, PCR cuantitativa en tiempo real [qPCR] positiva, seroconversión, puntuación de lesiones en los sacos aéreos y cambios histopatológicos de la mucosa traqueal). Las dosis de desafío medias y bajas aplicadas mediante aerosol con gota fina o gota en el ojo no mostraron resultados consistentes. La cepa Rlow pudo propagarse a las aves infectadas por contacto, como lo confirmaron los resultados positivos de qPCR; sin embargo, ninguna de las aves infectadas por contacto mostró signos clínicos o lesiones macroscópicas o microscópicas. Estos resultados sugieren que una dosis alta (7.95 × 108 CCU/ave) administrada a través de una ruta de aerosol con gota fina es el modelo de elección en cualquier ensayo futuro de evaluación de vacunas para M. gallisepticum en pollitas de postura de 12 semanas de edad.


Assuntos
Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/microbiologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Feminino
9.
Vet Microbiol ; 293: 110093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692193

RESUMO

Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Vacinação , Animais , Mycoplasma gallisepticum/imunologia , Galinhas/imunologia , Galinhas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Organismos Livres de Patógenos Específicos , Vacinação/veterinária , Anticorpos Antibacterianos/sangue
10.
Poult Sci ; 103(7): 103690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663076

RESUMO

Routine antibiotic administration has been used in intensive animal industries for a long time for health and production benefits. There is now a concerted effort to limit antibiotics administration to only treatment of clinically affected animals and to look for other alternative solutions combined with better husbandry practices for the benefits routine antibiotic administration seems to provide in intensive farming systems. In this paper it is argued that the benefits from routine antibiotics in chickens administration in lay are from suppression of the effects of mycoplasma infections. Mycoplasma freedom has been recommended but is not always practical. Vaccination of mycoplasma negative chickens with live mycoplasma vaccines is now being used (with biosecurity) to decrease antibiotic dependence in lay of poultry in many parts of the world.


Assuntos
Criação de Animais Domésticos , Antibacterianos , Galinhas , Farmacorresistência Bacteriana , Infecções por Mycoplasma , Doenças das Aves Domésticas , Animais , Criação de Animais Domésticos/métodos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Vacinas Bacterianas , Mycoplasma/efeitos dos fármacos , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/prevenção & controle , Saúde Única , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle
11.
Front Immunol ; 15: 1367253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646533

RESUMO

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Assuntos
Herpesvirus Bovino 1 , Mycoplasma bovis , Vacinas Atenuadas , Vacinas Combinadas , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Mycoplasma bovis/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Citocinas/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Vacinas Marcadoras/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinação/veterinária , Eficácia de Vacinas , Imunidade Humoral , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/virologia
12.
Vet Microbiol ; 291: 110008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364465

RESUMO

Mycoplasma gallisepticum infection in poultry leads to disease and pathology that can reduce producer profits. Live attenuated vaccines are available that can limit or completely prevent the effects of infection. Field isolates that are genetically related to the attenuated vaccine strains have been isolated, raising the question of whether the attenuation of the vaccine strains is limited and can lead the strains to revert to more virulent forms. The 6/85 live attenuated vaccine is derived from a field isolate collected in the United States. Analysis of the genome of sequenced M. gallisepticum strains revealed a cluster of 10 6/85-like strains that group with the 6/85 vaccine strain. Four genomic regions were identified that allowed for strain differentiation. The genetic differences between strains points toward nine of the ten strains most likely being sister strains to the 6/85 vaccine strain. Insufficient differences are present in the tenth strain to make a definitive conclusion. These results suggest that most if not all strains similar to the live attenuated vaccine strain are field isolates of the parent strain used to derive the live attenuated vaccine.


Assuntos
Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Vacinas Atenuadas , Vacinas Bacterianas/genética , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária
13.
Vet Microbiol ; 291: 110029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364466

RESUMO

The antimicrobial tylosin is commonly used to control mycoplasma infections, sometimes in combination with vaccination. However, the efficacy of a live mycoplasma vaccine, when combined with subsequent antimicrobial treatment, against the effects of subsequent infection with a virulent strain is unknown. This study employed differential gene expression analysis to evaluate the effects of tylosin on the protection provided by the live attenuated Vaxsafe MG ts-304 vaccine, which has been shown to be safe and to provide long-term protective immunity against infection with Mycoplasma gallisepticum. The transcriptional profiles of the tracheal mucosa revealed significantly enhanced inflammation, immune cell proliferation and adaptive immune responses in unvaccinated, untreated birds and in unvaccinated birds treated with tylosin 2 weeks after infection with virulent M. gallisepticum. These responses, indicative of the typical immune dysregulation caused by infection with M. gallisepticum, were less severe in the unvaccinated, tylosin-treated birds than in the unvaccinated, untreated birds. This was attributable to the effect of residual levels of tylosin in the tracheal mucosa on replication of virulent M. gallisepticum. These responses were not detected in vaccinated, tylosin-treated birds or in vaccinated, untreated birds after infection. The tracheal mucosal transcriptional profiles of these birds resembled those of unvaccinated, untreated, uninfected birds, suggesting a rapid and protective secondary immune response and effective vaccination. Overall, these results show that, although tylosin treatment reduced the duration of immunity, the initial protective immunity induced by Vaxsafe MG ts-304 lasted for at least 22 weeks after vaccination, even after the administration of tylosin for 16 weeks following vaccination.


Assuntos
Anti-Infecciosos , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Tilosina/farmacologia , Vacinas Bacterianas , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Vacinas Atenuadas
14.
Avian Pathol ; 53(4): 257-263, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38353105

RESUMO

The aim of the present study was to monitor the dynamics and to measure the safety and efficacy of a live, attenuated, thermosensitive Mycoplasma anserisalpingitidis vaccine candidate, namely MA271, in geese breeder flocks under field conditions. Two rearing flocks were vaccinated with MA271 at 4 weeks of age and boosted at 24 weeks of age by cloaca inoculation (1 ml) and eye-dropping (60 µl). The geese then were transported to multi-aged breeding farms. Two breeding flocks served as controls. Colonization of the cloaca by MA271 showed 75% maximum prevalence between 4 and 6 weeks after the first vaccination. Then the prevalence decreased to 25% until the cooler, humid fall months which coincided with the booster vaccination. Boosting raised cloacal colonization to 100%. No clinical signs were observed in the vaccinated birds. After transportation to five multi-aged breeding farms, the wild-type strain appeared as well as MA271 in three flocks. In one flock, the wild-type strain completely displaced MA271, while in one flock only MA271 was detected. Only wild-type strains were detected in the control flocks; however, due to an HPAI outbreak, both flocks were exterminated before the end of the study. Based on the available data, the median percentage of infertile eggs was 3.7-5.1% in the MA271 vaccinated flocks, and 7.7% in the non-vaccinated flock. In conclusion, MA271 can colonize the cloaca of geese under field conditions. MA271 proved to be safe and presumably protects against M. anserisalpingitidis-induced reproduction losses.


Assuntos
Vacinas Bacterianas , Gansos , Infecções por Mycoplasma , Doenças das Aves Domésticas , Vacinas Atenuadas , Animais , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinação/veterinária , Cloaca/microbiologia , Mycoplasma/imunologia , Feminino , Fazendas
15.
Microb Pathog ; 187: 106511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168552

RESUMO

Mycoplasma gallisepticum (MG) infection causes infectious respiratory diseases in poultry, causing economic losses to the poultry industry. Therefore, this study aims to develop a safe, convenient, and effective multivalent recombinant Saccharomyces cerevisiae vaccine candidate and to explore its potential for oral immunization as a subunit vaccine. Mycoplasma gallisepticum Cytadhesin (MGC) and variable lipoprotein and hemagglutinin (vlhA) are associated with the pathogenesis of MG. In this study, a quadrivalent recombinant Saccharomyces cerevisiae (ST1814G-MG) displaying on MGC2, MGC3, VLH5, and VLH3, proteins was innovatively constructed, and its protective efficiency was evaluated in birds. The results showed that oral immunization with ST1814G-MG stimulates specific antibodies in chickens, reshapes the composition of the gut microbiota, reduces the Mycoplasma loading and pulmonary disease injury in the lungs. In addition, we found that oral ST1814G-MG had better protection against MG infection than an inactivated vaccine, and co-administration with the inactivated vaccine was even more effective. The results suggest that ST1814G-MG is a potentially safer and effective agent for controlling MG infection.


Assuntos
Microbioma Gastrointestinal , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Infecções Respiratórias , Animais , Galinhas , Mycoplasma gallisepticum/genética , Hemaglutininas , Saccharomyces cerevisiae/genética , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Anticorpos Antibacterianos , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Produtos Inativados , Vacinas Bacterianas
16.
Int J Biol Macromol ; 253(Pt 2): 126685, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37666406

RESUMO

Mycoplasma synoviae is an extremely significant avian pathogen, causing substantial financial harm to poultry farmers worldwide, and impacting both chicken and turkey production. Multi-epitope vaccines offer higher immunity and lower allergenicity compared to conventional vaccines. In this study, our objective is to develop a multi-epitope vaccine for M. synoviae (MSMV) and to evaluate the immune responses and protective efficacy of MSMV in chickens. We successfully identified a total of 14 B-cell, 5 MHC-I, and 16 MHC-II binding epitopes from the immunodominant proteins RS01790, BMP, GrpE, RS00900, and RS00275. Subsequently, we synthesized the multi-epitope vaccine by connecting all conserved epitopes using appropriate linkers. The resulting MSMV demonstrated notable antigenicity, non-allergenic properties, and stability. Notably, the MSMV effectively stimulated high levels of antibody production in chickens. Furthermore, MSMV the vaccine elicited a robust cellular immune response in chickens, characterized by a well-balanced Th1/Th2-type cytokine profile and enhanced lymphocyte proliferation. In immune protection experiments, the vaccinated chickens exhibited reduced air sac lesion scores and tracheal mucosal thickness compared to their non-vaccinated chickens. Additionally, vaccinated chickens displayed lower M. synoviae loads in throat swabs. These findings collectively suggested that the MSMV holds significant potential as a promising vaccine candidate for managing M. synoviae infections.


Assuntos
Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Animais , Galinhas , Epitopos , Vacinas Bacterianas , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Vacinas de Subunidades Antigênicas , Doenças das Aves Domésticas/prevenção & controle
17.
Vet Microbiol ; 284: 109818, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354700

RESUMO

The MS-H vaccine strain (Vaxsafe MS®; Bioproperties Pty. Ltd., Australia) is a live attenuated temperature sensitive derivative of a virulent strain of M. synoviae, 86079/7NS, and is used to prevent diseases from M. synoviae challenges in poultry farms. The genome sequence of MS-H includes 32 single nucleotide polymorphisms (SNPs) compared to that of 86079/7NS. To investigate the nature of mutations responsible for temperature sensitivity, MS-H strain was subjected to thermal adaptation in vitro and in vivo. The only observed variation detected in the MS-H culture following sequential passages with incremental incubation temperature from 33 °C to 39.5 °C was an Ala210Val variation in Obg protein, associated with loss of temperature sensitivity phenotype. An identical variation was detected in the MS-H culture reisolated from one out of five bird 28 days after inoculation with MS-H. These findings suggest that M. synoviae is capable of thermoadaptive evolution and Obg plays a significant role in this trait.


Assuntos
Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Animais , Vacinas Atenuadas , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Temperatura , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária
18.
Vaccine ; 41(10): 1743-1752, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774333

RESUMO

Despite numerous efforts, developing recombinant vaccines for the control of M. bovis infections has not been successful. Many factors are contributing to the lack of success including the identification of protective antigens, use of effective adjuvants, and relatively limited information on the quality of immune responses needed for protection. Experimental trials using vaccination with many M. bovis proteins resulted in significant humoral immune responses before and after the challenges, however these responses were not enough to confer protection. We explored the role of complement-fixing antibodies in the killing of M. bovis in-vitro and whether animals vaccinated with proteins that elicit antibodies capable of complement-fixing would be protected against an experimental challenge. We found that antibodies against some of these proteins fixed complement and killed M. bovis in-vitro. Vaccination and challenge experiments with proteins whose cognate antibodies either fixed complement or not resulted in lack of protection against a M. bovis experimental challenge suggesting that complement fixation does not play a role in protection.


Assuntos
Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Bovinos , Infecções por Mycoplasma/prevenção & controle , Vacinas Bacterianas , Doenças dos Bovinos/prevenção & controle , Anticorpos Antibacterianos , Proteínas do Sistema Complemento , Vacinação
19.
Br Poult Sci ; 64(2): 164-175, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36222587

RESUMO

1. This study aimed to study the preventive and therapeutic effects of andrographolide (Andro) during Mycoplasma gallisepticum HS strain (MG) infection in ArborAcres (AA) broilers.2. The minimum inhibitory concentration (MIC) of Andro against MG was measured. Broiler body weight, feed efficiency, morbidity, cure rate and mortality were recorded during the experiment. Air sac lesion scores and immune organ index were calculated. Expression of pMGA1.2 in lung tissue and serum biochemical indices were examined. Histopathological examinations of immune organs, liver, trachea and lung tissue were conducted by Haematoxylin and Eosin stain.3. MIC was 3.75 µg/mL and Andro significantly inhibited the expression of pMGA1.2 (P ≤ 0.05). Compared with control MG-infected group, Andro low-dose and high-dose prevention reduced the morbidity of chronic respiratory disease in 40.00% and 50.00%, respectively. Mortality of C, D and E group was 16.67%, 10.00% and 6.67%, respectively. Cure rate of E, F, G and H group was 92.00%, 92.86%, 93.33% and 100.0%, respectively. Compared with control MG-infected group, Andro treatment significantly increased average weight gain (AWG), relative weight gain rate (RWG) and feed conversion rate (FCR) at 18 to 24 days (P ≤ 0.05). Compared with control group, Andro alone treatment significantly increased AWG in broilers (P ≤ 0.05).4. Compared with control MG-infected group, Andro significantly attenuated MG-induced air sac lesion, immune organs, liver, trachea and lung damage in broilers. Andro alone treatment did not induce abnormal morphological changes in these organs in healthy broilers. Serum biochemical analysis results showed, comparing with control MG-infected group, Andro significantly decreased the content of total protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, urea, creatinine, uric acid, total cholesterol, and increased the albumin/globulin ratio and content of alkaline phosphatase, apolipoprotein B and apolipoprotein A-I in a dose-dependent manner (P ≤ 0.05).5. Andro could act as a potential agent against MG infection in broilers.


Assuntos
Infecções por Mycoplasma , Mycoplasma gallisepticum , Animais , Galinhas , Infecções por Mycoplasma/tratamento farmacológico , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/prevenção & controle , Aumento de Peso
20.
Vet Microbiol ; 276: 109605, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455495

RESUMO

Prophylactic use of antimicrobials after administration of live vaccines is a common practice in the poultry industry, but the impact of this on the efficacy and duration of protection induced by the vaccines is unknown. The effect of treatment with tylosin on the efficacy of vaccination with the live attenuated M. gallisepticum strain, Vaxsafe MG ts-304, was examined. This vaccine has previously been shown to provide protection for at least 57 weeks. Ten-week-old specific-pathogen-free chickens were vaccinated with Vaxsafe MG ts-304 and then treated with tylosin at a therapeutic dose in drinking water from 6 weeks after vaccination. Tylosin was withdrawn 5 days before challenge with M. gallisepticum strain Ap3AS at 6, 10, 14, 18 or 22 weeks after vaccination. Air sac lesions, tracheal mucosal thickening and the concentrations of serum antibodies against M. gallisepticum were assessed at 2 weeks after challenge. The protection induced by the vaccine in the 6 weeks before initiation of tylosin treatment persisted for 18 weeks after vaccination, with lesions only observed in the air sacs of vaccinated birds that had been treated with tylosin after challenge at 22 weeks after vaccination. Concentrations of serum antibodies against M. gallisepticum began to decrease in vaccinated birds that had been treated with tylosin from 16 weeks after vaccination. This study has suggested that treatment of chickens with tylosin after vaccination with a live attenuated mycoplasma vaccine reduces the duration of protective immunity afforded by the vaccine.


Assuntos
Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Galinhas , Tilosina/farmacologia , Vacinas Bacterianas , Anticorpos Antibacterianos , Doenças das Aves Domésticas/prevenção & controle , Vacinas Atenuadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...