Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.776
Filtrar
1.
BMC Microbiol ; 24(1): 213, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886632

RESUMO

BACKGROUND: Addressing microbial resistance urgently calls for alternative treatment options. This study investigates the impact of a bimetallic formulation containing colistin, silver, and copper oxide on a pandrug-resistant, highly virulent Pseudomonas aeruginosa (P. aeruginosa) isolate from a cancer patient at the National Cancer Institute, Cairo University, Egypt. METHODS: Silver nanoparticles (Ag NPs), copper oxide nanoparticles (CuO NPs), and bimetallic silver-copper oxide nanoparticles (Ag-CuO NPs) were synthesized using gamma rays, combined with colistin (Col), and characterized by various analytical methods. The antimicrobial activity of Col-Ag NPs, Col-CuO NPs, and bimetallic Col-Ag-CuO NPs against P. aeruginosa was evaluated using the agar well diffusion method, and their minimum inhibitory concentration (MIC) was determined using broth microdilution. Virulence factors such as pyocyanin production, swarming motility, and biofilm formation were assessed before and after treatment with bimetallic Col-Ag-CuO NPs. The in vivo efficacy was evaluated using the Galleria mellonella model, and antibacterial mechanism were examined through membrane leakage assay. RESULTS: The optimal synthesis of Ag NPs occurred at a gamma ray dose of 15.0 kGy, with the highest optical density (OD) of 2.4 at 375 nm. Similarly, CuO NPs had an optimal dose of 15.0 kGy, with an OD of 1.5 at 330 nm. Bimetallic Ag-CuO NPs were most potent at 15.0 kGy, yielding an OD of 1.9 at 425 nm. The MIC of colistin was significantly reduced when combined with nanoparticles: 8 µg/mL for colistin alone, 0.046 µg/mL for Col-Ag NPs, and 0.0117 µg/mL for Col-Ag-CuO NPs. Bimetallic Col-Ag-CuO NPs reduced the MIC four-fold compared to Col-Ag NPs. Increasing the sub-inhibitory concentration of bimetallic nanoparticles from 0.29 × 10-2 to 0.58 × 10-2 µg/mL reduced P. aeruginosa swarming by 32-64% and twitching motility by 34-97%. At these concentrations, pyocyanin production decreased by 39-58%, and biofilm formation was inhibited by 33-48%. The nanoparticles were non-toxic to Galleria mellonella, showing 100% survival by day 3, similar to the saline-treated group. CONCLUSIONS: The synthesis of bimetallic Ag-CuO NPs conjugated with colistin presents a promising alternative treatment for combating the challenging P. aeruginosa pathogen in hospital settings. Further research is needed to explore and elucidate the mechanisms underlying the inhibitory effects of colistin-bimetallic Ag-CuO NPs on microbial persistence and dissemination.


Assuntos
Antibacterianos , Biofilmes , Colistina , Cobre , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Prata , Pseudomonas aeruginosa/efeitos dos fármacos , Colistina/farmacologia , Colistina/química , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Animais , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Mariposas/microbiologia , Fatores de Virulência , Egito
2.
Sci Rep ; 14(1): 13362, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862754

RESUMO

The Increase in infections caused by resistant strains of Pseudomonas aeruginosa poses a formidable challenge to global healthcare systems. P. aeruginosa is capable of causing severe human infections across diverse anatomical sites, presenting considerable therapeutic obstacles due to its heightened drug resistance. Niosomal drug delivery systems offer enhanced pharmaceutical potential for loaded contents due to their desirable properties, mainly providing a controlled-release profile. This study aimed to formulate an optimized niosomal drug delivery system incorporating stearylamine (SA) to augment the anti-bacterial and anti-biofilm activities of quercetin (QCT) against both standard and clinical strains of P. aeruginosa. QCT-loaded niosome (QCT-niosome) and QCT-loaded SA- niosome (QCT-SA- niosome) were synthesized by the thin-film hydration technique, and their physicochemical characteristics were evaluated by field emission scanning electron microscopy (FE-SEM), zeta potential measurement, entrapment efficacy (EE%), and in vitro release profile. The anti-P. aeruginosa activity of synthesized niosomes was assessed using minimum inhibitory and bactericidal concentrations (MICs/MBCs) and compared with free QCT. Additionally, the minimum biofilm inhibitory and eradication concentrations (MBICs/MBECs) were carried out to analyze the ability of QCT-niosome and QCT-SA-niosome against P. aeruginosa biofilms. Furthermore, the cytotoxicity assay was conducted on the L929 mouse fibroblasts cell line to evaluate the biocompatibility of the formulated niosomes. FE-SEM analysis revealed that both synthesized niosomal formulations exhibited spherical morphology with different sizes (57.4 nm for QCT-niosome and 178.9 nm for QCT-SA-niosome). The EE% for cationic and standard niosomal formulations was reported at 75.9% and 59.6%, respectively. Both formulations showed an in vitro sustained-release profile, and QCT-SA-niosome exhibited greater stability during a 4-month storage time compared to QCT-niosome. Microbial experiments indicated that both prepared formulations had higher anti-bacterial and anti-biofilm activities than free QCT. Also, the QCT-SA-niosome exhibited greater reductions in MIC, MBC, MBIC, and MBEC values compared to the QCT-niosome at equivalent concentrations. This study supports the potential of QCT-niosome and QCT-SA-niosome as effective agents against P. aeruginosa infections, manifesting significant anti-bacterial and anti-biofilm efficacy alongside biocompatibility with L929 cell lines. Furthermore, our results suggest that optimized QCT-niosome with cationic lipids could efficiently target P. aeruginosa cells with negligible cytotoxic effect.


Assuntos
Antibacterianos , Biofilmes , Sistemas de Liberação de Medicamentos , Lipossomos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Quercetina , Pseudomonas aeruginosa/efeitos dos fármacos , Lipossomos/química , Quercetina/farmacologia , Quercetina/química , Quercetina/administração & dosagem , Animais , Biofilmes/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Cátions/química , Humanos , Lipídeos/química , Linhagem Celular , Aminas
3.
Respir Res ; 25(1): 236, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844921

RESUMO

BACKGROUND: The effect of dual systemic antibiotic therapy against Pseudomonas aeruginosa in patients with pre-existing lung disease is unknown. To assess whether dual systemic antibiotics against P. aeruginosa in outpatients with COPD, non-cystic fibrosis (non-CF) bronchiectasis, or asthma can improve outcomes. METHODS: Multicenter, randomised, open-label trial conducted at seven respiratory outpatient clinics in Denmark. Outpatients with COPD, non-CF bronchiectasis, or asthma with a current P. aeruginosa-positive lower respiratory tract culture (clinical routine samples obtained based on symptoms of exacerbation not requiring hospitalisation), regardless of prior P. aeruginosa-status, no current need for hospitalisation, and at least two moderate or one hospitalisation-requiring exacerbation within the last year were eligible. Patients were assigned 1:1 to 14 days of dual systemic anti-pseudomonal antibiotics or no antibiotic treatment. Primary outcome was time to prednisolone or antibiotic-requiring exacerbation or death from day 20 to day 365. RESULTS: The trial was stopped prematurely based in lack of recruitment during the COVID-19 pandemic, this decision was endorsed by the Data and Safety Monitoring Board. Forty-nine outpatients were included in the study. There was a reduction in risk of the primary outcome in the antibiotic group compared to the control group (HR 0.51 (95%CI 0.27-0.96), p = 0.037). The incidence of admissions with exacerbation within one year was 1.1 (95%CI 0.6-1.7) in the dual antibiotic group vs. 2.9 (95%CI 1.3-4.5) in the control group, p = 0.037. CONCLUSIONS: Use of dual systemic antibiotics for 14 days against P. aeruginosa in outpatients with chronic lung diseases and no judged need for hospitalisation, improved clinical outcomes markedly. The main limitation was the premature closure of the trial. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03262142, registration date 2017-08-25.


Assuntos
Antibacterianos , Pacientes Ambulatoriais , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Masculino , Feminino , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/epidemiologia , Antibacterianos/uso terapêutico , Idoso , Pessoa de Meia-Idade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Dinamarca/epidemiologia , Progressão da Doença , Resultado do Tratamento , Hospitalização , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico
4.
Ann Clin Microbiol Antimicrob ; 23(1): 50, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858708

RESUMO

BACKGROUND: Detection of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) in humans is important to prevent transmission. However, the most optimal culture method to detect CR-PA is unknown. This systematic review aims to determine which culture method is most sensitive and which culture methods are used to detect CR-PA in humans. Second, to establish the most feasible culture method taking into account the turnaround time (TAT), and third, to provide an overview of the sampling sites used to detect carriage. METHODS: We systematically searched the electronic databases Embase, Medline Ovid, Cochrane, Scopus, CINAHL, and Web of Science until January 27, 2023. All diagnostic accuracy studies comparing two or more culture methods to detect CR-PA and recent outbreak or surveillance reports on CR-PA carriage or infection in humans, which describe culture methods and their results, were eligible for inclusion. We used QUADAS-2 guideline for diagnostic accuracy studies and the STROBE or ORION guideline for outbreak-surveillance studies to assess the risk of bias. RESULTS: Six diagnostic accuracy studies were included. An enrichment broth was found to increase the detection of CR-PA. Using an enrichment broth extended the TAT by 18-24 h, yet selective media could reduce the TAT by 24 h compared to routine media. In total, 124 outbreak-surveillance studies were included, of which 17 studies with surveillance samples and 116 studies with clinical samples. In outbreak-surveillance studies with surveillance samples, perianal, rectal swabs or stools were the most common sampling site/specimen (13/17, 76%). A large variety was observed in whether and which kind of enrichment broth and selective media were used. CONCLUSIONS: We found a benefit of using an enrichment step prior to inoculation of the material onto selective media for the detection of CR-PA. More research is needed to determine the most sensitive sampling site and culture method. TRAIL REGISTRATION: This study was registered in the PROSPERO International prospective register of systematic reviews (registration number: CRD42020207390, http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020207390 ).


Assuntos
Carbapenêmicos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Carbapenêmicos/farmacologia , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Portador Sadio/microbiologia , Portador Sadio/diagnóstico , Testes de Sensibilidade Microbiana/métodos , Meios de Cultura/química
5.
Genome Med ; 16(1): 78, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849863

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is an intensifying threat that requires urgent mitigation to avoid a post-antibiotic era. Pseudomonas aeruginosa represents one of the greatest AMR concerns due to increasing multi- and pan-drug resistance rates. Shotgun sequencing is gaining traction for in silico AMR profiling due to its unambiguity and transferability; however, accurate and comprehensive AMR prediction from P. aeruginosa genomes remains an unsolved problem. METHODS: We first curated the most comprehensive database yet of known P. aeruginosa AMR variants. Next, we performed comparative genomics and microbial genome-wide association study analysis across a Global isolate Dataset (n = 1877) with paired antimicrobial phenotype and genomic data to identify novel AMR variants. Finally, the performance of our P. aeruginosa AMR database, implemented in our AMR detection and prediction tool, ARDaP, was compared with three previously published in silico AMR gene detection or phenotype prediction tools-abritAMR, AMRFinderPlus, ResFinder-across both the Global Dataset and an analysis-naïve Validation Dataset (n = 102). RESULTS: Our AMR database comprises 3639 mobile AMR genes and 728 chromosomal variants, including 75 previously unreported chromosomal AMR variants, 10 variants associated with unusual antimicrobial susceptibility, and 281 chromosomal variants that we show are unlikely to confer AMR. Our pipeline achieved a genotype-phenotype balanced accuracy (bACC) of 85% and 81% across 10 clinically relevant antibiotics when tested against the Global and Validation Datasets, respectively, vs. just 56% and 54% with abritAMR, 58% and 54% with AMRFinderPlus, and 60% and 53% with ResFinder. ARDaP's superior performance was predominantly due to the inclusion of chromosomal AMR variants, which are generally not identified with most AMR identification tools. CONCLUSIONS: Our ARDaP software and associated AMR variant database provides an accurate tool for predicting AMR phenotypes in P. aeruginosa, far surpassing the performance of current tools. Implementation of ARDaP for routine AMR prediction from P. aeruginosa genomes and metagenomes will improve AMR identification, addressing a critical facet in combatting this treatment-refractory pathogen. However, knowledge gaps remain in our understanding of the P. aeruginosa resistome, particularly the basis of colistin AMR.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Humanos , Genômica/métodos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Bases de Dados Genéticas , Fenótipo
6.
PLoS Pathog ; 20(6): e1012252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833496

RESUMO

Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.


Assuntos
Drosophila melanogaster , Imunidade Inata , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Drosophila melanogaster/microbiologia , Drosophila melanogaster/imunologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Virulência , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia
7.
Arch Microbiol ; 206(7): 294, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850339

RESUMO

Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.


Assuntos
Antibacterianos , Biofilmes , Compostos Fitoquímicos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
8.
Microb Cell Fact ; 23(1): 175, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872163

RESUMO

INTRODUCTION: Bacterial infections and the rising antimicrobial resistance pose a significant threat to public health. Pseudomonas aeruginosa produces bacteriocins like pyocins, especially S-type pyocins, which are promising for biological applications. This research focuses on clinical P. aeruginosa isolates to assess their bacteriocin production, inhibitory spectrum, chemical structure, antibacterial agents, and preservative potential. METHODS: The identification of P. aeruginosa was conducted through both phenotypic and molecular approaches. The inhibitory spectrum and antibacterial potential of the isolates were assessed. The kinetics of antibacterial peptide production were investigated, and the activity of bacteriocin was quantified in arbitrary units (AU ml-1). Physico-chemical characterization of the antibacterial peptides was performed. Molecular weight estimation was carried out using SDS-PAGE. qRT-PCR analysis was employed to validate the expression of the selected candidate gene. RESULT: The antibacterial activity of P. aeruginosa was attributed to the secretion of bacteriocin compounds, which belong to the S-type pyocin family. The use of mitomycin C led to a significant 65.74% increase in pyocin production by these isolates. These S-type pyocins exhibited the ability to inhibit the growth of both Gram-negative (P. mirabilis and P. vulgaris) and Gram-positive (S. aureus, S. epidermidis, E. hirae, S. pyogenes, and S. mutans) bacteria. The molecular weight of S-type pyocin was 66 kDa, and its gene expression was confirmed through qRT-PCR. CONCLUSION: These findings suggest that S-type pyocin hold significant potential as therapeutic agents against pathogenic strains. The Physico-chemical resistance of S-type pyocin underscores its potential for broad applications in the pharmaceutical, hygiene, and food industries.


Assuntos
Antibacterianos , Bacteriocinas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Piocinas/metabolismo , Piocinas/farmacologia , Piocinas/biossíntese , Humanos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
9.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836744

RESUMO

Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.


Assuntos
Genótipo , Redes e Vias Metabólicas , Fenótipo , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Humanos , Infecções por Pseudomonas/microbiologia , Redes e Vias Metabólicas/genética , Sequenciamento Completo do Genoma/métodos , Tipagem de Sequências Multilocus , Genoma Bacteriano , Variação Genética
11.
PLoS One ; 19(5): e0304491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805522

RESUMO

Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.


Assuntos
Antibacterianos , Biofilmes , Pseudomonas aeruginosa , Staphylococcus aureus , Infecção dos Ferimentos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Humanos , Virulência/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
12.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808066

RESUMO

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Assuntos
Abscesso , Antibacterianos , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Camundongos , Abscesso/tratamento farmacológico , Abscesso/microbiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Feminino , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Azitromicina/administração & dosagem , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Colistina/administração & dosagem
13.
BMC Vet Res ; 20(1): 234, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822333

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an important opportunistic pathogen in dogs and cats and is resistant to several antimicrobial drugs; however, data on the clonal distribution of P. aeruginosa in veterinary hospital are limited. This study aimed to investigate the clonal dissemination and antimicrobial resistance of clinical P. aeruginosa in a veterinary teaching hospital in Thailand within a 1-year period. Minimum inhibitory concentration determination and whole genome sequencing were used for antimicrobial susceptibility analysis and genetic determination, respectively. RESULTS: Forty-nine P. aeruginosa were isolated mostly from the skin, urinary tract, and ear canal of 39 dogs and 10 cats. These isolates belonged to 39 sequence types (STs) that included 9 strains of high-risk clones of ST235 (n = 2), ST244 (n = 2), ST274 (n = 2), ST277 (n = 1), ST308 (n = 1), and ST357 (n = 1). Overall antimicrobial resistance rate was low (< 25%), and no colistin-resistant strains were found. Two carbapenem-resistant strains belonging to ST235 and ST3405 were identified. CONCLUSIONS: Clinical P. aeruginosa in dogs and cats represent STs diversity. High-risk clones and carbapenem-resistant strains are a public health concern. Nevertheless, this study was limited by a small number of isolates. Continuous monitoring is needed, particularly in large-scale settings with high numbers of P. aeruginosa, to restrict bacterial transfer from companion animal to humans in a veterinary hospital.


Assuntos
Antibacterianos , Doenças do Gato , Doenças do Cão , Hospitais Veterinários , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Cães , Gatos , Tailândia/epidemiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Doenças do Gato/microbiologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Hospitais de Ensino , Sequenciamento Completo do Genoma
14.
mBio ; 15(6): e0061624, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771052

RESUMO

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Assuntos
Macrófagos , Fagocitose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/imunologia , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Humanos , Células RAW 264.7
15.
Otol Neurotol ; 45(6): e490-e493, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38773842

RESUMO

OBJECTIVE: To present and evaluate the treatment of ciprofloxacin-resistant Pseudomonas mastoid cavity otorrhea with a ceftazidime thermosensitive poloxamer gel. STUDY DESIGN: A retrospective clinical capsule report. PATIENTS: Three patients diagnosed with ciprofloxacin-resistant Pseudomonas otorrhea in the setting of a previous canal-wall-down mastoidectomy between March 2019 and June 2023 visiting our tertiary care institution were retrospectively reviewed. INTERVENTION: Application of a 2% ceftazidime thermosensitive poloxamer gel to mastoid cavity. MAIN OUTCOME MEASURES: No evidence of disease during microscopic inspection of the ear within a month of initial treatment or bacterial eradication on subsequent culture. RESULTS: Two patients had complete resolution of symptoms and achieved a safe and dry ear after topical application of the hydrogel. The second patient had pseudomonal eradication on culture, but persistent otorrhea due to other multidrug-resistant bacteria and an anatomically unfavorable mastoid cavity, which ultimately resolved after revision surgery. CONCLUSIONS: This small case series suggests that topical treatment of mastoid cavity otorrhea with a 2% ceftazidime poloxomer gel is a potential therapeutic avenue in patients with ciprofloxacin-resistant Pseudomonas .


Assuntos
Antibacterianos , Ceftazidima , Ciprofloxacina , Géis , Poloxâmero , Infecções por Pseudomonas , Humanos , Ciprofloxacina/uso terapêutico , Ciprofloxacina/administração & dosagem , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Ceftazidima/uso terapêutico , Ceftazidima/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Processo Mastoide/cirurgia , Farmacorresistência Bacteriana , Otite Média com Derrame/tratamento farmacológico , Otite Média com Derrame/microbiologia , Otite Média com Derrame/cirurgia , Idoso , Adulto , Administração Tópica
16.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38730561

RESUMO

Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.


Assuntos
Antibacterianos , Biofilmes , Gases em Plasma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gases em Plasma/farmacologia , Animais , Humanos , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Modelos Animais de Doenças , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico
18.
J Ethnopharmacol ; 332: 118373, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782309

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Yucatan Peninsula has a privileged wealth of vascular plants with which various Mayan herbal formulations have been developed. However, studies on their antipathogenic and antivirulence properties are scarce. AIM OF THE STUDY: Identify antivirulence properties in Mayan herbal remedies and determine their antipathogenic capacity in burn wounds infected with Pseudomonas aeruginosa. MATERIALS AND METHODS: An ethnobotanical study was conducted in Mayan communities in central and southern Quintana Roo, Mexico. Furthermore, the antipathogenic capacity of three Mayan herbal remedies was analyzed using an animal model of thermal damage and P. aeruginosa infection. Antivirulence properties were determined by inhibiting phenotypes regulated by quorum sensing (pyocyanin, biofilm, and swarming) and by the secretion of the ExoU toxin. The chemical composition of the most active herbal remedy was analyzed using molecular network analysis. RESULTS: It was found that topical administration of the remedy called "herbal soap" (HS) for eleven days maintained 100% survival of the animals, reduced establishment of the bacteria in the burn and prevented its systemic dispersion. Although no curative effect was recorded on tissue damaged by HS treatment, its herbal composition strongly reduced swarming and ExoU secretion. Through analysis of Molecular Networks, it was possible to carry out a global study of its chemical components, and identify the family of oxindole monoterpenoid alkaloids and carboline and tetrahydropyrididole alkaloids. In addition, flavonols, flavan-3-ols, and quinic acid derivatives were detected. CONCLUSIONS: The antipathogenic and antivirulence capacity of ancient Mayan remedies makes them a potential resource for developing new antibacterial therapies to treat burns infected by P. aeruginosa.


Assuntos
Antibacterianos , Queimaduras , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , México , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Masculino , Percepção de Quorum/efeitos dos fármacos , Virulência/efeitos dos fármacos , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Biofilmes/efeitos dos fármacos , Camundongos , Plantas Medicinais/química , Fitoterapia
19.
Sci Adv ; 10(22): eadl5576, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820163

RESUMO

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Escarro , Eletricidade Estática , Escarro/microbiologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Humanos , Fibrose Cística/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Difusão , Biofilmes/efeitos dos fármacos , Bacteriófagos
20.
Microb Biotechnol ; 17(5): e14487, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801351

RESUMO

Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.


Assuntos
Antibacterianos , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Porinas/metabolismo , Porinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA