Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.591
Filtrar
1.
Methods Mol Biol ; 2838: 77-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126624

RESUMO

Epizootic hemorrhagic disease virus (EHDV), like other orbiviruses, infects and replicates in mammalian and insect vector cells. Within its ruminant hosts EHDV, like bluetongue virus (BTV), it has mainly been associated with infection of endothelial cells of capillaries as well as leukocyte subsets. Furthermore, EHDV infects and replicates within its biological vector, Culicoides biting midges and Culicoides-derived cells. A wide range of common laboratory cell lines such as BHK, BSR, and Vero cells are susceptible to infection with certain EHDV strains. Cell culture supernatants of infected cells are commonly used for both in vivo and in vitro infection studies. For specific virological or immunological studies, using highly purified virus particles, however, might be beneficial or even required. Here we describe a purification method for EHDV particles, which had been originally developed for certain strains of BTV.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Vírion , Animais , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Linhagem Celular , Vírion/isolamento & purificação , Chlorocebus aethiops , Células Vero , Orbivirus/isolamento & purificação , Ceratopogonidae/virologia , Insetos/virologia , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Cricetinae
2.
Methods Mol Biol ; 2838: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126627

RESUMO

The virus neutralization test (VNT) is a functional immunoassay which detects the presence and quantity of neutralizing antibodies. It is a highly sensitive and specific test. As with most neutralization assays, the EHDV VNT does not react with all virus-targeting antibodies, but specifically with those antibodies that bind to VP2, the outermost capsid structural protein of the virus. The interaction between VP2 and neutralizing antibodies can block EHDV cell binding, neutralizing its infectivity. The detection and quantification of neutralizing antibodies are indicative of how protected an animal is against reinfection. The EHD VNT can therefore be a useful tool to monitor the efficacy of a vaccination campaign. VP2 is also the main determinant of EHDV serotype specificity, and so EHDV-neutralizing antibodies which target VP2 are also serotype-specific. Throughdetecting and quantifying neutralizing antibodies, the VNT can discriminate the EHDV serotype responsible for an infection and provides insights into the time of infection. It is considered the gold standard test for identifying and quantifying antibodies against EHDV serotypes present in test serum samples. The assay is performed in vitro and is based on inhibition of virus infectivity in the presence of neutralizing antibodies. A neutralizing antibody titer is determined through the presence or absence of cytopathic effect in a cell monolayer. The VNT is a relatively inexpensive assay using standard laboratory equipment; however, to perform the assay, cell cultures, significant time, intensive labor, and technical skill are required.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Doença Hemorrágica Epizoótica , Testes de Neutralização , Testes de Neutralização/métodos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vírus da Doença Hemorrágica Epizoótica/imunologia , Sorogrupo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/diagnóstico , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia
3.
Methods Mol Biol ; 2838: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126621

RESUMO

Risk assessment is the cornerstone of working safely with biological agents. The World Health Organization (WHO) Laboratory Biosafety Manual Fourth Edition Monograph on Risk Assessment provides stepwise guidance for completing a risk assessment, from information gathering and identifying hazards to evaluating the risks, developing, and implementing controls and review.To support the development of a mature safety culture within laboratories, it is important that all staff who handle biological agents understand the fundamentals of risk assessment and receive training in identifying hazards created by their work activities (or tasks) and understand how to mitigate the risks arising from carrying out that work. Any "competent" person may be involved in assessing the risks posed by carrying out an activity. Those closest to the work, who understand the details of the task being undertaken, should be involved in creating the risk assessment. The guidance in this chapter is not just applicable to biosafety professionals, laboratory scientists, or facility managers but can be used by any competent worker familiar with the activity being assessed.This chapter uses the guidance from the WHO to apply the principles of risk assessment to working with Epizootic hemorrhagic disease virus (EHDV), using an example activity-virus isolation from EHDV test samples in cell culture.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Animais , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Medição de Risco/métodos , Humanos , Gestão de Riscos , Contenção de Riscos Biológicos/métodos , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Organização Mundial da Saúde , Orbivirus/genética
4.
Methods Mol Biol ; 2838: 17-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126622

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is an arthropod-borne RNA virus in the genus Orbivirus, family Sedoreoviridae. Globally, seven known EHDV serotypes circulate among ruminant hosts and Culicoides species vectors. A variety of domestic and wild ruminant species are susceptible to EHDV infection, but infection outcome is highly variable between species, as well as between individuals of the same species. Thus, this disease system inherently operates at the wildlife-livestock interface. Domestic cattle are important hosts for EHDV, and while inapparent infection is the most common outcome, reports of clinical disease have increased in some parts of the world. However, fatal infection of cattle is rare. Among wildlife, white-tailed deer (Odocoileus virginianus) are highly susceptible to severe and often fatal disease. Considering the paucity of data and poorly characterized pathology of EHD in cattle, white-tailed deer represent a case study for describing the field signs and necropsy lesions associated with EHD. Here we describe the field signs that commonly define EHD outbreaks in North America, a basic approach to a gross necropsy examination of white-tailed deer, description of the gross lesions that may be present, and diagnostic sample collection. Field investigations of large-scale EHD outbreaks are common in North America. The necropsy examination is an essential tool in the study of disease and when coupled with other disciplines (e.g., virology, immunology, epidemiology) has been fundamentally important to understanding EHD in North America.


Assuntos
Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Animais , Vírus da Doença Hemorrágica Epizoótica/genética , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Cervos/virologia , Autopsia/veterinária , Bovinos , Animais Selvagens/virologia
5.
Methods Mol Biol ; 2838: 163-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126631

RESUMO

Real-time RT-PCR for the detection of epizootic hemorrhagic disease virus (EHDV) in clinical samples is a fast and sensitive tool for the diagnosis and confirmation of disease. Several real-time RT-PCR methods have been reported over the last 10 years. In this chapter, we describe seven duplex real-time RT-PCR assays to amplify part of genome segment 2 of EHDV to enable serotype identification. The assay includes the detection of an endogenous control gene-beta-actin.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Vírus da Doença Hemorrágica Epizoótica/classificação , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/diagnóstico , RNA Viral/genética
6.
Methods Mol Biol ; 2838: 145-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126629

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a relatively inexpensive, rapid, and high-throughput diagnostic tool to detect antibodies raised against epizootic hemorrhagic disease virus (EHDV) in ruminant serum. While the presence of EHDV antibodies only confirms prior exposure to the virus, it does not conclusively determine infection status. The c-ELISA can be used in conjunction with other diagnostic tests (e.g., real-time PCR) to reinforce diagnosis of infection or as a surveillance tool to support disease control. The EHDV competition ELISA (c-ELISA) described here is a commercial diagnostic assay, recommended by the World Organisation for Animal Health (WOAH), that detects ruminant antibodies against the highly conserved EHDV structural protein, VP7.


Assuntos
Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Vírus da Doença Hemorrágica Epizoótica , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vírus da Doença Hemorrágica Epizoótica/imunologia , Infecções por Reoviridae/diagnóstico , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Ovinos
7.
Methods Mol Biol ; 2838: 101-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126626

RESUMO

The titration of viruses onto susceptible cell lines is an important virological technique used to quantify infectious viral titers. It forms an integral component of epizootic hemorrhagic disease virus (EHDV) research, including estimating infectivity, calculating multiplicity of infection, and confirming virus propagation in cell culture. However, the ability to quantify infectious EHDV is also critical for disease control, particularly in the event of an outbreak. Routine EHD diagnostics do not accurately quantify infectious virus, which would allow accurate prediction of the onward transmission risk, but instead are typically more qualitative in nature (e.g., virus isolation) or only quantify viral genome copies (e.g., real-time PCR) which often remain detectable long after infectious virus is cleared from the host.Infectious EHDV titers are typically quantified through the detection of visible cytopathic effect (CPE) in the monolayer of susceptible mammalian cell cultures. However, not all susceptible cell lines demonstrate visible CPE upon EHDV infection, including cell lines such as KC cells, which are derived from the EHDV biological insect vector, Culicoides sonorensis. This chapter presents a comprehensive method for the titration of EHDV-positive samples onto relevant, susceptible mammalian (Vero) and insect (KC) cell lines and describes alternative methods that can be used to visualize EHDV infection, by CPE or immunofluorescent labeling of viral proteins, to enable the calculation of infectious EHDV titers.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Vírus da Doença Hemorrágica Epizoótica/genética , Animais , Linhagem Celular , Carga Viral , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Efeito Citopatogênico Viral , Cultura de Vírus/métodos
8.
Methods Mol Biol ; 2838: 185-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126633

RESUMO

The emergence of EHDV in Europe during the autumn of 2022 reinforces the need for molecular tools (RT-PCR) for rapid detection of animals infected with this virus. Viral genome testing can be performed on whole blood under anticoagulant, spleen, and bloody organ homogenates from ruminants. It can also be performed on cell culture following viral isolation tests. Various so-called classical or end-point RT-PCRs will be described, which permit the amplification of a part of the viral genome (targeting segment 7) allowing the detection of EHDV whatever the serotype (pan-RT-PCR) and also to amplify a portion of the gene coding the viral protein (VP) 2 enabling serotyping. The PCR amplification products are visualized by agarose gel electrophoresis. Sequencing of the type-specific RT-PCR amplification products allows for the serotype of the virus to be determined.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Animais , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Vírus da Doença Hemorrágica Epizoótica/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/diagnóstico , RNA Viral/genética , Genoma Viral , Sorotipagem/métodos
9.
Methods Mol Biol ; 2838: 155-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126630

RESUMO

Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) has become an essential tool in rapid and reliable detection of animal diseases such as epizootic hemorrhagic disease (EHD). Here we provide a protocol for the detection of epizootic hemorrhagic disease virus (EHDV) genetic material in blood and tissue samples, using a real-time RT-PCR that targets a conserved region in segment 9 of the EHDV genome. This protocol can be used to detect up to approximately 90 samples in a single run and can be completed in less than 4 h.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Reoviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Reoviridae/diagnóstico , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética
10.
Methods Mol Biol ; 2838: 171-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126632

RESUMO

Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) is a molecular diagnostic assay that is particularly useful for the detection of viral diseases of livestock. A major advantage of RT-LAMP is that it can be used either as a rapid field test or as a high-throughput screening tool in veterinary laboratories, with sensitivity comparable to the real-time RT-PCR assay. Unlike conventional or qPCR, RT-LAMP uses a strand displacement polymerase and a set of four to six primers that bind to several regions of the target nucleic acid. Amplification occurs without thermal cycling, and coupled with the numerous primers, RT-LAMP offers a rapid and highly specific molecular assay. In this chapter, we describe the RT-LAMP protocol for the detection of epizootic hemorrhagic disease virus (EHDV) as a low-cost, specific, and sensitive screening tool in veterinary diagnostic laboratories. We also provide guidance on how to adapt the RT-LAMP assay for rapid field testing.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecções por Reoviridae , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Infecções por Reoviridae/diagnóstico , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Sensibilidade e Especificidade , Primers do DNA/genética , RNA Viral/genética
11.
Methods Mol Biol ; 2838: 65-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126623

RESUMO

Virus isolation is used to assist in the diagnosis and confirmation of viral infections. Successful isolation of a virus is highly dependent upon the quality of starting material. Here we describe the preparation and isolation of epizootic hemorrhagic disease virus (EHDV) from blood and tissue samples in tissue culture flasks (TCFs) through the inoculation of susceptible cell lines including Vero, BHK, and KC cells.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Animais , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Chlorocebus aethiops , Linhagem Celular , Células Vero , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Técnicas de Cultura de Células/métodos , Cricetinae , Cultura de Vírus/métodos
12.
Methods Mol Biol ; 2838: 211-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126635

RESUMO

Next-generation sequencing (NGS) technologies are continuously being developed and are becoming a more cost-effective tool for the characterization of viral genomes. Whole genome sequencing of segmented viruses, such as epizootic hemorrhagic disease virus (EHDV), provides insights into the molecular epidemiology as well as such viral evolutionary mechanisms as genetic reassortment. Here, we present a detailed method for obtaining full genome sequence data for EHDV using Illumina technology. The protocol includes details from RNA extraction and purification, the synthesis of cDNA, sequencing library preparation, to genome assembly.


Assuntos
Genoma Viral , Vírus da Doença Hemorrágica Epizoótica , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento Completo do Genoma , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , Animais , RNA Viral/genética , Biblioteca Gênica , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária
13.
Methods Mol Biol ; 2838: 197-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126634

RESUMO

Molecular methods are routinely used for the differential diagnosis and genetic characterization of viral disease of livestock. Real-time, quantitative PCR (qPCR) allows RNA/DNA sequence detection and quantification and is considered the gold standard diagnostic method for most viruses. However, Sanger sequencing offers additional information and opportunity to differentiate closely related virus strains and/or serotypes, by providing the full sequence of a genetic region of interest. Therefore, to determine epizootic hemorrhagic disease virus (EHDV) serotype or identify additional genetic markers, end-point RT-PCR can be performed on EHDV-positive clinical samples, followed by Sanger sequencing and data analysis. Here we describe a detailed method for the molecular characterization of EHDV serotype using Sanger sequencing.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Sorotipagem , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/classificação , Animais , Sorotipagem/métodos , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , RNA Viral/genética , Sorogrupo , Análise de Sequência de DNA/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
Methods Mol Biol ; 2838: 221-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126636

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is transmitted by Culicoides biting midges. Studies aiming to predict the likely spread of EHDV require an understanding of the viral infection and replication kinetics within these insects, including the proportion of the insect population that are able to support virus transmission. Here, we describe methods for the infection of Culicoides with EHDV in the laboratory via oral infection using an artificial membrane system or a cotton pledget and intrathoracic (IT) inoculation. Each method can be used to explore determinants of vector competence of Culicoides species and populations for EHDV.


Assuntos
Ceratopogonidae , Vírus da Doença Hemorrágica Epizoótica , Insetos Vetores , Infecções por Reoviridae , Animais , Ceratopogonidae/virologia , Vírus da Doença Hemorrágica Epizoótica/fisiologia , Insetos Vetores/virologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária
15.
Sci Rep ; 14(1): 19887, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191841

RESUMO

Mammalian orthoreoviruses (MRVs), belonging to the genus Orthoreovirus in the family Spinareoviridae, possess a double-stranded RNA segmented genome. Due to the segmented nature of their genome, MRVs are prone to gene reassortment, which allows for evolutionary diversification. Recently, a genotyping system for each MRV gene segment was proposed based on nucleotide differences. In the present study, MRVs were isolated from the fecal samples of Japanese Black cattle kept on a farm in Japan. Complete genome sequencing and analysis of 41 MRV isolates revealed that these MRVs shared almost identical sequences in the L1, L2, L3, S3, and S4 gene segments, while two different sequences were found in the S1, M1, M2, M3, and S2 gene segments. By plaque cloning, at least six genetic constellation patterns were identified, indicating the occurrence of multiple inter- (S1 and M2) and intra- (M1, M3, and S2) reassortment events. This paper represents the first report describing multiple reassortant MRVs on a single cattle farm. These MRV gene segments exhibited sequence similarity to those of MRVs isolated from cattle in the U.S. and China, rather than to MRVs previously isolated in Japan. Genotypes consisting solely of bovine MRVs were observed in the L1, M1, and M2 segments, suggesting that they might have evolved within the cattle population.


Assuntos
Fazendas , Genoma Viral , Genótipo , Orthoreovirus de Mamíferos , Filogenia , Vírus Reordenados , Animais , Bovinos , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Japão , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Orthoreovirus de Mamíferos/classificação , Doenças dos Bovinos/virologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Fezes/virologia
16.
Dev Comp Immunol ; 161: 105254, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39214323

RESUMO

Grass carp (Ctenopharyngodon idella), crucial to global inland aquaculture with a production of 5.8 million tones in 2020, faces significant challenges from hemorrhagic disease caused by grass carp reovirus (GCRV). Rapid mutations compromise current vaccines, underscoring the need for a deeper understanding of antiviral mechanisms to enhance molecular marker-assisted selection. This study investigates the role of Tripartite Motif (TRIM) family in the innate immune response of grass carp, focusing on TRIM103 from Ctenopharyngodon Idella (CiTRIM103), a member of the TRIM-B30.2 family, which includes proteins with the B30.2 domain at the N-terminus, known for antiviral properties in teleosts. CiTRIM103 bind to the outer coat proteins VP5 and VP7 of GCRV. This binding is theorized to strengthen the function of the RIG-I-like Receptor (RLR) signaling pathway, crucial for antiviral responses. Demonstrations using overexpression and RNA interference (RNAi) techniques have shown that CiTRIM103 effectively inhibits GCRV replication. Moreover, molecular docking and pulldown assays suggest potential binding interactions of CiTRIM103's B30.2 domain with GCRV outer coat proteins VP5 and VP7. These interactions impede viral replication, enhance RLR receptor expression, and activate key transcription factors to induce type I interferons (IFNs). These findings elucidate the antiviral mechanisms of CiTRIM103, provide a foundation for future Molecular genetic breeding in grass carp.


Assuntos
Proteínas do Capsídeo , Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Infecções por Reoviridae , Reoviridae , Transdução de Sinais , Proteínas com Motivo Tripartido , Animais , Reoviridae/fisiologia , Reoviridae/imunologia , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/imunologia , Carpas/imunologia , Infecções por Reoviridae/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Transdução de Sinais/imunologia , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Replicação Viral , Ligação Proteica , Simulação de Acoplamento Molecular , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética
17.
Viruses ; 16(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39205247

RESUMO

In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all family members suggested recent exposure to arthropod-borne viruses. Dengue virus 1 (Genus Orthoflavivirus) was isolated (isolate no. SA397) from the serum of the 45-year-old female via intracerebral injection in neonatal mice and subsequent passage in VeroE6 cells. Phylogenetic analysis of this strain indicated close genetic identity with cosmopolitan genotype 1 DENV1 strains from Southeast Asia, assigned to major lineage K, minor lineage 1 (DENV1I_K.1), such as GZ8H (99.92%) collected in November 2018 from China, and DV1I-TM19-74 isolate (99.72%) identified in Bangkok, Thailand, in 2019. Serum samples from the 46-year-old male yielded a virus isolate that could not be confirmed as DENV1, prompting unbiased metagenomic sequencing for virus identification and characterization. Illumina sequencing identified multiple segments of a mammalian orthoreovirus (MRV), designated as Human/SA395/SA/2017. Genomic and phylogenetic analyses classified Human/SA395/SA/2017 as MRV-3 and assigned a tentative genotype, MRV-3d, based on the S1 segment. Genomic analyses suggested that Human/SA395/SA/2017 may have originated from reassortments of segments among swine, bat, and human MRVs. The closest identity of the viral attachment protein σ1 (S1) was related to a human isolate identified from Tahiti, French Polynesia, in 1960. This indicates ongoing circulation and co-circulation of Southeast Asian and Polynesian strains, but detailed knowledge is hampered by the limited availability of genomic surveillance. This case represents the rare concurrent detection of two distinct viruses with different transmission routes in the same family with similar clinical presentations. It highlights the complexity of diagnosing diseases with similar sequelae in travelers returning from tropical areas.


Assuntos
Vírus da Dengue , Dengue , Filogenia , Vírus Reordenados , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Dengue/virologia , Dengue/epidemiologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Genoma Viral , Genótipo , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Orthoreovirus de Mamíferos/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/classificação , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , África do Sul , Tailândia , Viagem , Células Vero
18.
J Virol ; 98(9): e0102824, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194247

RESUMO

Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, belonging to the family Spinareoviridae. Members of the Spinareoviridae family are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, the detailed mechanism underlying GCRV viroplasm formation and its specific roles in virus infection remains largely unknown. Here, we demonstrate that GCRV viroplasms form through liquid-liquid phase separation (LLPS) of the nonstructural protein NS80 and elucidate the specific role of LLPS during reovirus infection and immune evasion. We observe that viroplasms coalesce within the cytoplasm of GCRV-infected cells. Immunofluorescence and transmission electron microscopy indicate that GCRV viroplasms are membraneless structures. Live-cell imaging and fluorescence recovery after photobleaching assay reveal that GCRV viroplasms exhibit liquid-like properties and are highly dynamic structures undergoing fusion and fission. Furthermore, by using a reagent to inhibit the LLPS process and constructing an NS80 mutant defective in LLPS, we confirm that the liquid-like properties of viroplasms are essential for recruiting viral dsRNA, viral RdRp, and viral proteins to participate in viral genome replication and virion assembly, as well as for sequestering host antiviral factors for immune evasion. Collectively, our findings provide detailed insights into reovirus viroplasm formation and reveal the specific functions of LLPS during virus infection and immune evasion, identifying potential targets for the prevention and control of this virus. IMPORTANCE: Grass carp reovirus (GCRV) poses a significant threat to the aquaculture industry, particularly in China, where grass carp is a vital commercial fish species. However, detailed information regarding how GCRV viroplasms form and their specific roles in GCRV infection remains largely unknown. We discovered that GCRV viroplasms exhibit liquid-like properties and are formed through a physico-chemical biological phenomenon known as liquid-liquid phase separation (LLPS), primarily driven by the nonstructural protein NS80. Furthermore, we confirmed that the liquid-like properties of viroplasms are essential for virus replication, assembly, and immune evasion. Our study not only contributes to a deeper understanding of GCRV infection but also sheds light on broader aspects of viroplasm biology. Given that viroplasms are a universal feature of reovirus infection, inhibiting LLPS and then blocking viroplasms formation may serve as a potential pan-reovirus inhibition strategy.


Assuntos
Carpas , Evasão da Resposta Imune , Infecções por Reoviridae , Reoviridae , Proteínas não Estruturais Virais , Replicação Viral , Reoviridae/genética , Reoviridae/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Carpas/virologia , Infecções por Reoviridae/virologia , Corpos de Inclusão Viral/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Citoplasma/virologia , Citoplasma/metabolismo , Genoma Viral , Linhagem Celular , RNA Viral/genética , Separação de Fases
19.
Fish Shellfish Immunol ; 153: 109861, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216711

RESUMO

This study explored the key molecules and signal pathways in the pathogenesis of grass carp reovirus (GCRV). Using immunoprecipitation mass spectrometry and Co-IP validation, the protein CiANXA4 was identified which interacts indirectly with CiLGP2. CiANXA4 encodes 321 amino acids, including 4 ANX domains. To explore the role of CiANXA4 in the anti-GCRV immune response, we used overexpression and siRNA knockdown in cells. The results showed that overexpression of the CiANXA4 gene significantly increased the mRNA content of vp2 and vp7 in GCRV-infected cells, and the virus titer greatly increased. Knockdown of CiANXA4 significantly inhibited the mRNA levels of vp2 and vp7, and the protein levels of viral protein VP7 also significantly decreased. This suggests that CiANXA4 promotes viral proliferation. Further, we demonstrate that the ANX3 and ANX4 domains are key domains that limit CiANXA4 function by constructing domain-deletion mutants. Finally, we investigated the relationship between CiLGP2 and CiANXA4. RT-PCR and Western blot results showed that CiLGP2 mRNA and protein expression levels were not affected by CiANXA4 overexpression. In contrast, overexpression of CiLGP2 resulted in significant reductions in CiANXA4 mRNA and protein levels. This suggests that the function of CiANXA4 is restricted by CiLGP2, and CiANXA4 is a downstream molecule of CiLGP2. These results reveal that CiANXA4 plays a critical role in the anti-GCRV innate immune response of grass carp, and provides new targets and strategies to develop antiviral drugs and improve disease resistance in grass carp.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Infecções por Reoviridae , Reoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Carpas/genética , Carpas/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Reoviridae/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Replicação Viral
20.
Viruses ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39066213

RESUMO

In this study, we provide a genomic description of the first isolation of the Umattila virus (UMAV) in Brazil. The virus was obtained from the blood of a bird (Turdus fumigatus) and isolated in a C6/36 cell culture. The viral genome contains ten segments, and its organization is characteristic of viruses of the genus Orbivirus (family Sedoreoviridae). The coding region of each segment was sequenced, demonstrating the nucleotide identity with UMAV. The phylogenetic inference results were in line with these findings and demonstrated the formation of two distinct monophyletic clades containing strains isolated around the world, where our isolate, belonging to the same clade as the prototype strain, was allocated to a different subclade, highlighting the genetic divergence between them. This work reports the first isolation of UMAV in Brazil, and due to the scarcity of information on this viral agent in the scientific literature, it is essential to carry out further studies to better understand its epidemiology, dispersion, and, in particular, its interactions with vertebrate hosts, vectors, and the environment.


Assuntos
Genoma Viral , Orbivirus , Filogenia , Brasil , Animais , Orbivirus/isolamento & purificação , Orbivirus/genética , Orbivirus/classificação , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Aves/virologia , Doenças das Aves/virologia , RNA Viral/genética , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...