Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.286
Filtrar
1.
J Gen Virol ; 105(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392059

RESUMO

The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Ranavirus , Transdução de Sinais , Animais , Ranavirus/imunologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia
2.
Sci Rep ; 14(1): 23945, 2024 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397128

RESUMO

Exposure to contagious pathogens can result in behavioural changes, which can alter the spread of infectious diseases. Healthy individuals can express generalized social distancing or avoid the sources of infection, while infected individuals can show passive or active self-isolation. Amphibians are globally threatened by contagious diseases, yet their behavioural responses to infections are scarcely known. We studied behavioural changes in agile frog (Rana dalmatina) juveniles upon exposure to a Ranavirus (Rv) using classic choice tests. We found that both non-infected and Rv-infected focal individuals spatially avoided infected conspecifics, while there were no signs of generalized social distancing, nor self-isolation. Avoidance of infected conspecifics may effectively hinder disease transmission, protecting non-infected individuals as well as preventing secondary infections in already infected individuals. On the other hand, the absence of self-isolation by infected individuals may facilitate it. Since infection status did not affect the time spent near conspecifics, it is unlikely that the pathogen manipulated host behaviour. More research is urgently needed to understand under what circumstances behavioural responses can help amphibians cope with infections, and how that affects disease dynamics in natural populations.


Assuntos
Comportamento Animal , Ranavirus , Animais , Ranavirus/fisiologia , Ranidae/virologia , Infecções por Vírus de DNA/transmissão , Infecções por Vírus de DNA/virologia
3.
J Med Virol ; 96(9): e29905, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228322

RESUMO

Torque Teno Virus (TTV) is a non-pathogenic anellovirus, highly prevalent in healthy populations. Variations in its viral load have been associated with states of diminished immunity, as occurs after organ transplantation. It is hypothesized that TTV-load might be used as a diagnostic tool to guide prescription and dosing of immunosuppressive drugs. Not much is known about the effects of combined immunosuppressive drugs on TTV replication in renal transplantation. Belatacept was introduced to counter side-effects of calcineurin inhibitors (CNI). It was never widely adopted, mainly because its association with increased risk of rejection. To investigate the differential effects of a regimen based on calcineurin inhibitors versus belatacept on TTV-loads, we measured TTV-levels in 105 patients from two randomized controlled trials in kidney transplant recipients (KTRs). We observed that time after transplantation was inversely related to TTV-levels of patients that remained on a CNI-containing regime, whereas this decline over time was diminished after conversion to belatacept. In addition, a correlation with tacrolimus-trough levels and age were found. Our study is the first report on the impact of conversion from CNI to belatacept on TTV-levels in KTR. In conclusion, the time-related decline in TTV-levels is mitigated after conversion from CNI to belatacept.


Assuntos
Abatacepte , Inibidores de Calcineurina , Imunossupressores , Transplante de Rim , Torque teno virus , Carga Viral , Humanos , Transplante de Rim/efeitos adversos , Abatacepte/uso terapêutico , Inibidores de Calcineurina/uso terapêutico , Inibidores de Calcineurina/administração & dosagem , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Masculino , Pessoa de Meia-Idade , Feminino , Torque teno virus/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Adulto , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Idoso , Transplantados , Rejeição de Enxerto/prevenção & controle
4.
Front Immunol ; 15: 1447980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295866

RESUMO

The ubiquitous Torque teno virus (TTV) establishes a chronically persistent infection in the human host. TTV has not been associated with any apparent disease, but, as part of the human virome, it may confer a regulatory imprint on the human immune system with as yet unclear consequences. However, so far, only few studies have characterized the TTV-specific immune responses or the overall immunological imprints by TTV. Here, we reveal that TTV infection leads to a highly exhausted TTV-specific CD8+ T-cell response, hallmarked by decreased IFN-γ production and the expression of the inhibitory NKG2A-receptor. On a functional level, we identified a panel of highly polymorphic TTV-encoded peptides that lead to an expansion of regulatory NKG2A+ natural killer, NKG2A+CD4+, and NKG2A+CD8+ T cells via the stabilization of the non-classical HLA-E molecule. Our results thus demonstrate that TTV leads to a distinct imprint on the human immune system that may further regulate overall human immune responses in infectious, autoimmune, and malignant diseases.


Assuntos
Linfócitos T CD8-Positivos , Infecções por Vírus de DNA , Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Torque teno virus , Humanos , Torque teno virus/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções por Vírus de DNA/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino
5.
Fish Shellfish Immunol ; 153: 109870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218416

RESUMO

Largemouth bass ranavirus (LMBV) seriously affects the development of largemouth bass (Micropterus salmoides) industry and causes huge economic losses. Oral vaccine can be a promising method for viral disease precaution. In this study, MCP2α was identified as a valuable epitope region superior to MCP and MCP2 of LMBV by neutralizing antibody experiments. Then, recombinant Lactobacillus casei expressing the fusion protein MCP2αC (MCP2α as antigen, C represents flagellin C from Aeromonas hydrophila as adjuvant) on surface was constructed and verified. Further, PLA microsphere vaccine loading recombinant MCP2αC L. casei was prepared. The PLA microspheres vaccine were observed by scanning electron microscopy and showed a smooth, regular spherical surface with a particle size distribution between 100 and 200 µm. Furthermore, we evaluated the tolerance of PLA-MCP2αC vaccine in simulated gastric fluid and simulated intestinal fluid, and the results showed that PLA-MCP2αC can effectively resist the gastrointestinal environment. Moreover, the protective effect of PLA-MCP2αC against LMBV was evaluated after oral immunization and LMBV challenge. The results showed that PLA-MCP2αC effectively up-regulated the activity of serum biochemical enzymes (T-SOD, T-AOC, LZM, complement C3) and induced the mRNA expression of representative immune genes (IL-1ß, TNF-α, IFN-γ, MHC-IIα, Mx, IgM) in spleen and head kidney tissues. The survival rate of largemouth bass vaccinated with PLA-MCP2αC increased from 24 % to 68 %. Meanwhile, PLA-MCP2αC inhibited the LMBV burden in spleen, head kidney and liver tissues and attenuated tissue damage in spleen. These results suggested that PLA-MCP2αC can be used as a candidate oral vaccine against LMBV infection in aquaculture.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Lacticaseibacillus casei , Microesferas , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Lacticaseibacillus casei/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Poliésteres/administração & dosagem , Iridoviridae
6.
Viruses ; 16(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39339873

RESUMO

Understanding the epidemiology and transmission dynamics of transboundary animal diseases (TADs) among wild pigs (Sus scrofa) will aid in preventing the introduction or containment of TADs among wild populations. Given the challenges associated with studying TADs in free-ranging populations, a surrogate pathogen system may predict how pathogens may circulate and be maintained within wild free-ranging swine populations, how they may spill over into domestic populations, and how management actions may impact transmission. We assessed the suitability of Torque teno sus virus 1 (TTSuV1) to serve as a surrogate pathogen for molecular epidemiological studies in wild pigs by investigating the prevalence, persistence, correlation with host health status and genetic variability at two study areas: Archbold's Buck Island Ranch in Florida and Savannah River Site in South Carolina. We then conducted a molecular epidemiological case study within Archbold's Buck Island Ranch site to determine how analysis of this pathogen could inform transmission dynamics of a directly transmitted virus. Prevalence was high in both study areas (40%, n = 190), and phylogenetic analyses revealed high levels of genetic variability within and between study areas. Our case study showed that pairwise host relatedness and geographic distance were highly correlated to pairwise viral genetic similarity. Molecular epidemiological analyses revealed a distinct pattern of direct transmission from pig to pig occurring within and between family groups. Our results suggest that TTSuV1 is highly suitable for molecular epidemiological analyses and will be useful for future studies of transmission dynamics in wild free-ranging pigs.


Assuntos
Infecções por Vírus de DNA , Doenças dos Suínos , Torque teno virus , Animais , Torque teno virus/genética , Torque teno virus/isolamento & purificação , Torque teno virus/classificação , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/epidemiologia , Infecções por Vírus de DNA/transmissão , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/epidemiologia , Filogenia , South Carolina , Florida , Prevalência , Sus scrofa/virologia , Variação Genética , Animais Selvagens/virologia , Epidemiologia Molecular
7.
Viruses ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39339887

RESUMO

Members of the Iridoviridae family, genus Ranavirus, represent a group of globally emerging pathogens of ecological and economic importance. In 2017, an amphibian die-off of wood frogs (Rana sylvatica) and boreal chorus frogs (Pseudacris maculata) was reported in Wood Buffalo National Park, Canada. Isolation and complete genomic sequencing of the tissues of a wood frog revealed the presence of a frog virus 3 (FV3)-like isolate, Rana sylvatica ranavirus (RSR), with a genome size of 105,895 base pairs, 97 predicted open reading frames (ORFs) bearing sequence similarity to FV3 (99.98%) and a FV3-like isolate from a spotted salamander in Maine (SSME; 99.64%). Despite high sequence similarity, RSR had a unique genomic composition containing ORFs specific to either FV3 or SSME. In addition, RSR had a unique 13 amino acid insertion in ORF 49/50L. No differences were found in the in vitro growth kinetics of FV3, SSME, and RSR; however, genomic differences between these isolates were in non-core genes, implicated in nucleic acid metabolism and immune evasion. This study highlights the importance of viral isolation and complete genomic analysis as these not only provide information on ranavirus spatial distribution but may elucidate genomic factors contributing to host tropism and pathogenicity.


Assuntos
Infecções por Vírus de DNA , Genoma Viral , Fases de Leitura Aberta , Filogenia , Ranavirus , Ranidae , Animais , Ranavirus/genética , Ranavirus/isolamento & purificação , Ranavirus/classificação , Ranavirus/fisiologia , Ranidae/virologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Parques Recreativos , Canadá , DNA Viral/genética
8.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337523

RESUMO

The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.


Assuntos
Bass , Infecções por Vírus de DNA , Resistência à Doença , Doenças dos Peixes , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Ranavirus , Animais , Bass/genética , Bass/virologia , Bass/imunologia , Ranavirus/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Resistência à Doença/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/genética , Mutação INDEL
9.
Pediatr Transplant ; 28(7): e14857, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39318279

RESUMO

BACKGROUND: Long-term renal function and survival after kidney transplantation rely on appropriate immunosuppressive treatment to prevent the risk of rejection. New biomarkers are needed to accurately assess the degree of immunosuppression in renal transplant recipients in order to avoid organ rejection and the development of opportunistic infections. Highly prevalent in humans, torque teno virus (TTV), which belongs to the family Anelloviridae, is a small, nonenveloped, single-stranded DNA virus which has not been linked with any specific human illness, but which constitutes a major component of the human virome. Host antiviral responses allow TTV levels to be controlled; however, viral persistence remains, explaining the high prevalence in human populations, including healthy individuals. Important confounders of TTV load include time since transplantation, age, gender, obesity, and smoking status. AIMS: TTV-based guidance of immunosuppressive drug dosing could help with risk stratification, reducing the risk of infection, graft rejection and oncologic disease on an individual level, enabling long-term patient and graft survival. METHODS: Original studies were accessed by a systematic search from electronic databases including PubMed, ScienceDirect and Wiley Online Library. RESULTS: The presented data mainly derive from adult transplant recipients showing an association between TTV plasma levels and the immune status of the host: High-TTV load and high immunosuppression are associated with a risk of infection, and low-TTV load and low immunosuppression indicate a risk of rejection. However, there is minimal information on pediatric transplant recipients with further research required in this cohort. To date, it has been demonstrated that longer posttransplant times are significantly associated with lower TTV levels in children with renal transplant. Meanwhile, an association between lower TTV loads and increased risk of graft reject during the first year of transplantation was also reported. More recently, Eibensteiner et al. revealed a robust, independent association between TTV plasma load and the onset of Cytomegalovirus and BK virus infections. CONCLUSION: Data from randomized controlled trials are still missing, even in adults, but a multicenter randomized controlled trial for TTV-guided immunosuppression in adult kidney recipients (TTVguideIT) began in 2022. There is, therefore, great promise for TTV levels to be used as a biomarker that could potentially improve both graft and patient survival in transplantation.


Assuntos
Biomarcadores , Infecções por Vírus de DNA , Rejeição de Enxerto , Terapia de Imunossupressão , Imunossupressores , Transplante de Rim , Torque teno virus , Carga Viral , Humanos , Criança , Infecções por Vírus de DNA/imunologia , Biomarcadores/sangue , Imunossupressores/uso terapêutico , Terapia de Imunossupressão/métodos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplantados
10.
BMC Genomics ; 25(1): 848, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251938

RESUMO

BACKGROUND: Temperature is a crucial environmental determinant for the vitality and development of teleost fish, yet the underlying mechanisms by which they sense temperature fluctuations remain largely unexplored. Transient receptor potential (TRP) proteins, renowned for their involvement in temperature sensing, have not been characterized in teleost fish, especially regarding their temperature-sensing capabilities. RESULTS: In this study, a genome-wide analysis was conducted, identifying a total of 28 TRP genes in the mandarin fish Siniperca chuatsi. These genes were categorized into the families of TRPA, TRPC, TRPP, TRPM, TRPML, and TRPV. Despite notable variations in conserved motifs across different subfamilies, TRP family members shared common structural features, including ankyrin repeats and the TRP domain. Tissue expression analysis showed that each of these TRP genes exhibited a unique expression pattern. Furthermore, examination of the tissue expression patterns of ten selected TRP genes following exposure to both high and low temperature stress indicated the expression of TRP genes were responsive to temperatures changes. Moreover, the expression profiles of TRP genes in response to mandarin fish virus infections showed significant upregulation for most genes after Siniperca chuatsi rhabdovirus, mandarin fish iridovirus and infectious spleen and kidney necrosis virus infection. CONCLUSIONS: This study characterized the TRP family genes in mandarin fish genome-wide, and explored their expression patterns in response to temperature stress and virus infections. Our work will enhance the overall understanding of fish TRP channels and their possible functions.


Assuntos
Perciformes , Filogenia , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Família Multigênica , Genoma , Temperatura , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , Iridoviridae
11.
Fish Shellfish Immunol ; 153: 109871, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218417

RESUMO

Largemouth bass ranavirus (LMBV) causes disease outbreaks and high mortality at all stages of largemouth bass farming. Therefore, live vaccine development is critical for largemouth bass prevention against LMBV by immersion immunization. Herein, an attenuated LMBV strain with good immunogenicity, designated as LMBV-2007136, was screened from the natural LMBV strains bank through challenge assay and immersion immunization experiment. After determing the safe concentration range of LMBV-2007136, the minimum immunizing dose of immersion immunization was verified. When largemouth bass were vaccinated by immersion at the lowest concentration of 102.0 TCID50/mL, all of fish were survival post virulent LMBV challenge, and the relative percent survival (RPS) was 100 %. And the immune gene expression levels of IL-10, IL-12, IFN-γ, and IgM in the spleen and kidney post-vaccination were significantly up-regulated compared to the control group, but TNF-α expression showed no significant changes. The safety and efficacy of LMBV-2007136 at passages P8, P13, and P18 were futher assessed, and no death of largemouth bass was observed within 21 days post-immunization and RPS of three vaccination groups was 100 %, suggesting that the safety and efficacy of the attenuated strain at different passages was stable. Furthermore, in the virulence reversion test, the attenuated strain was propagated through 5 times in largemouth bass by intraperitoneal injection and no abnormality and mortality were observed, further proving the attenuated vaccine candidate LMBV-2007136 was safe. These results proved that LMBV-2007136 could be a promising candidate for a live vaccine to protect largemouth bass from LMBV disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Vacinas Atenuadas , Vacinas Virais , Animais , Bass/imunologia , Ranavirus/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Imunização/veterinária , Imersão , Vacinação/veterinária
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167457, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39134287

RESUMO

DNA virus infection is a significant cause of morbidity and mortality in patients with multiple myeloma (MM). Monocyte dysfunction in MM patients plays a central role in infectious complications, but the precise molecular mechanism underlying the reduced resistance of monocytes to viruses in MM patients remains to be elucidated. Here, we found that MM cells were able to transfer microRNAs (miRNAs) to host monocytes/macrophages via MM cell-derived exosomes, resulting in the inhibition of innate antiviral immune responses. The screening of miRNAs enriched in exosomes derived from the bone marrow (BM) of MM patients revealed five miRNAs that negatively regulate the cGAS-STING antiviral immune response. Notably, silencing these miRNAs with antagomiRs in MM-bearing C57BL/KaLwRijHsd mice markedly reduced viral replication. These findings identify a novel mechanism whereby MM cells possess the capacity to inhibit the innate immune response of the host, thereby rendering patients susceptible to viral infection. Consequently, targeting the aberrant expression patterns of characteristic miRNAs in MM patients is a promising avenue for therapeutic intervention. Considering the miRNA score and relevant clinical factors, we formulated a practical and efficient model for the optimal assessment of susceptibility to DNA viral infection in patients with MM.


Assuntos
Exossomos , Imunidade Inata , Proteínas de Membrana , Camundongos Endogâmicos C57BL , MicroRNAs , Mieloma Múltiplo , Nucleotidiltransferases , MicroRNAs/genética , MicroRNAs/imunologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Animais , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/imunologia , Exossomos/imunologia , Exossomos/genética , Exossomos/metabolismo , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Infecções por Vírus de DNA/imunologia , Linhagem Celular Tumoral , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Feminino , Replicação Viral
13.
Dev Comp Immunol ; 161: 105248, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39216776

RESUMO

In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a µ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunoglobulina D , Iridoviridae , Perciformes , Filogenia , Vacinação , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Iridoviridae/fisiologia , Iridoviridae/imunologia , Perciformes/imunologia , Perciformes/virologia , Vacinação/veterinária , Infecções por Vírus de DNA/imunologia , Imunoglobulina D/genética , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Vacinas Virais/imunologia , Rim Cefálico/imunologia , Rim Cefálico/virologia , Imunidade nas Mucosas , Imunoglobulinas
14.
Gene ; 928: 148809, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089532

RESUMO

SP3 (specificity protein 3) is a transcription factor characterized by three conserved Cys2His2 zinc finger motifs that exert a transregulatory effect by binding to GC boxes, either upregulating or downregulating multiple genes or by co-regulating gene expression in coordination with other proteins. SP3 potentially regulates a series of processes, such as the cell cycle, growth, metabolic pathways, and apoptosis, and plays an important role in antiviral effect. The function of sp3 in fish is poorly understood. In this study, the Sp3a open reading frame was cloned from the orange-spotted grouper, Epinephelus coioides. The full-length open reading frame of Sp3a was 2034 bp, encoding 677 amino acids, with a predicted molecular weight of 72.34 kDa and an isoelectric point of 5.05. Phylogenetically, Sp3a in Epinephelus coioides was the most closely related to Sp3a in the Malabar grouper, Epinephelus malabaricus. RT-qPCR revealed ubiquitous expression of Sp3a in all examined grouper tissues, with no significant differences in expression levels among tissues. A eukaryotic expression vector, pEGFP-Sp3a, was constructed and transfected into grouper spleen (GS) cells. Subcellular localization of Sp3a was observed using an inverted fluorescence microscope. When Spa3 was overexpressed in GS cells, the expression of orange-spotted grouper nerve necrosis virus (RGNNV) genes (CP and RdRp) decreased significantly, indicating that Sp3a significantly inhibited RGNNV replication. siRNA inhibition of Sp3a accelerated the intracellular replication of RGNNV, implying the antiviral effect of Sp3a. Conclusively, our findings contribute to further research on the antiviral capabilities of Sp3a in grouper and other fish. Therefore, our research has potential implications on the development of the aquaculture industry.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Bass/genética , Bass/virologia , Fator de Transcrição Sp3/metabolismo , Fator de Transcrição Sp3/genética , Filogenia , Nodaviridae/genética , Clonagem Molecular , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Infecções por Vírus de RNA/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/genética , Sequência de Aminoácidos
15.
Dev Comp Immunol ; 161: 105243, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39147080

RESUMO

The yellowfin seabream (Acanthopagrus latus) is a crucial marine resource owing to its economic significance. Acanthopagrus latus aquaculture faces numerous challenges from viral diseases, but a robust in-vitro research model to understand and address these threats is lacking. Therefore, we developed a novel A. latus cell line from head kidney cells called ALHK1. This study details the development, characterisation, and viral susceptibility properties of ALHK cells. This cell line primarily comprises fibroblast-like cells and has robust proliferative capacity when cultured at 28 °C in Leibovitz's L-15 medium supplemented with 10-20% foetal bovine serum. It exhibited remarkable stability after more than 60 consecutive passages and validation through cryopreservation techniques. The specificity of the ALHK cell line's origin from A. latus was confirmed via polymerase chain reaction (PCR) amplification of the cytochrome B gene, and a chromosomal karyotype analysis revealed a diploid count of 48 (2n = 48). Furthermore, the lipofection-mediated transfection efficiency using the pEGFP-N3 plasmid was high, at nearly 40%, suggesting that ALHK cells could be used for studies involving exogenous gene manipulation. In addition, ALHK cells displayed heightened sensitivity to the large mouth bass virus (LMBV), substantiated through observations of cytopathic effects, quantitative real-time PCR, and viral titration assays. Finally, the response of ALHK cells to LMBV infection resulted in differentially expressed antiviral genes associated with innate immunity. In conclusion, the ALHK cell line is a dependable in-vitro platform for elucidating the mechanisms of viral diseases in yellowfin seabream. Moreover, this cell line could be valuable for immunology, vaccine development, and host-pathogen interaction studies.


Assuntos
Doenças dos Peixes , Rim Cefálico , Dourada , Animais , Rim Cefálico/citologia , Rim Cefálico/virologia , Rim Cefálico/imunologia , Dourada/imunologia , Dourada/virologia , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Aquicultura , Suscetibilidade a Doenças , Infecções por Vírus de DNA/imunologia
16.
Fish Shellfish Immunol ; 153: 109837, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147179

RESUMO

NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.


Assuntos
Bass , Caspase 1 , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Filogenia , Alinhamento de Sequência , Regulação para Cima , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Bass/imunologia , Bass/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Sequência de Aminoácidos , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Iridoviridae
17.
Fish Shellfish Immunol ; 153: 109841, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173984

RESUMO

Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1ß) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Bass/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Imunidade Humoral , Ranavirus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunidade Celular
18.
Fish Shellfish Immunol ; 153: 109855, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181523

RESUMO

Singapore grouper iridovirus (SGIV) always causes high transmission efficiency and mortality in the larval and juvenile stages of grouper in aquaculture industry. Although inactivated virus and recombinant DNA vaccines administered via intraperitoneal injection have shown efficacy in protection against SGIV, their potential applications in field testing were limited due to the vaccine delivery methods. Here, we developed an immersion vaccine containing inactivated virus and Montanide IMS 1312 adjuvant (IMS 1312) and evaluated its protective efficacy against SGIV infection. Compared to the PBS group, fish vaccinated with immersion inactivated vaccine with or without IMS 1312 were significantly protected against SGIV, with a relative percent survival (RPS) of 57.69 % and 38.47 %, respectively. Furthermore, the transcripts of viral core genes were reduced, and the histopathological severity caused by SGIV were relatively mild in multiple tissues of the IMS + V group. The immersion vaccine activated the AKP and ACP activities and increased the mRNA levels of IFN and inflammation-associated genes. The transcriptome analysis showed that a total of 731 and 492 genes were significantly regulated in the spleen and kidney from the IMS + V group compared to the PBS group, respectively. Among them, 129 DEGs were co-regulated, and enriched in the KEGG pathways related to immune and cell proliferation, including MAPK signaling, JAK-STAT signaling and PI3K-Akt signaling pathways. Similarly, the DEGs specially regulated in the kidney and spleen upon vaccine immunization were significantly enriched in the KEGG pathways related to interferon and inflammation response. Together, our results elucidated that the immersion vaccine of inactivated SGIV with IMS 1312 induced a protective immune response of grouper against SGIV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Ranavirus/fisiologia , Ranavirus/imunologia , Bass/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Imunidade Inata , Imersão
19.
Fish Shellfish Immunol ; 153: 109858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187140

RESUMO

Rock bream (Oplegnathus fasciatus) is one of the highly priced cultured marine fish in Korea. Rock bream iridovirus (RBIV) outbreaks in aquaculture farms may involve environmental factors, co-infection with other pathogenic microorganisms and grounded (raw) fish feed. This study evaluated the effects of RBIV-containing tissue intake on mortality and oral transmission in rock bream. Virus-containing tissues administered to rock bream [50 mg (1.53 × 108/major capsid protein, MCP gene copies) to 2400 mg (7.34 × 109)] held at 23 °C lead to 100 % mortality by 27 days post administration. Interestingly, the mortality rates were not viral dose- or concentration dependent. Further, high MCP gene copy numbers were observed in the gill, liver, intestine, stomach, spleen, heart, kidney, brain and muscle tissues (viral load range of 3.03 × 106 to 4.01 × 107/mg, average viral load 1.70 × 107/mg) of dead rock bream. Moreover, a high viral load was detected in the intestine and stomach, where the virus was directly administered. This indicated that the intake of RBIV-containing tissue feed weakens the intestinal mucosal immunity and increases viral load in the intestine. Moreover, the levels of complete blood cell count (CBC) indicators, such as red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) significantly decreased from 15 dpi with red blood cell distribution width (RDW), and white blood cells (lymphocyte, monocyte and granulocyte) significantly increased from the initial to later stage of infection. These results highlight the significance of blood-mediated indicators against RBIV infection in rock bream. We demonstrate the existence of an oral transmission route for RBIV in rock bream. Our findings indicate that pathogen-containing feed is an important risk factor for disease outbreaks in rock bream.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Animais , Perciformes/imunologia , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Iridovirus/fisiologia , Ração Animal/análise , Carga Viral , Dieta/veterinária
20.
Zool Res ; 45(5): 990-1000, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147714

RESUMO

The von Hippel-Lindau tumor suppressor protein (VHL), an E3 ubiquitin ligase, functions as a critical regulator of the oxygen-sensing pathway for targeting hypoxia-inducible factors. Recent evidence suggests that mammalian VHL may also be critical to the NF-κB signaling pathway, although the specific molecular mechanisms remain unclear. Herein, the roles of mandarin fish ( Siniperca chuatsi) VHL ( scVHL) in the NF-κB signaling pathway and mandarin fish ranavirus (MRV) replication were explored. The transcription of scVHL was induced by immune stimulation and MRV infection, indicating a potential role in innate immunity. Dual-luciferase reporter gene assays and reverse transcription quantitative PCR (RT-qPCR) results demonstrated that scVHL evoked and positively regulated the NF-κB signaling pathway. Treatment with NF-κB signaling pathway inhibitors indicated that the role of scVHL may be mediated through scIKKα, scIKKß, scIκBα, or scp65. Co-immunoprecipitation (Co-IP) analysis identified scIκBα as a novel target protein of scVHL. Moreover, scVHL targeted scIκBα to catalyze the formation of K63-linked polyubiquitin chains to activate the NF-κB signaling pathway. Following MRV infection, NF-κB signaling remained activated, which, in turn, promoted MRV replication. These findings suggest that scVHL not only positively regulates NF-κB but also significantly enhances MRV replication. This study reveals a novel function of scVHL in NF-κB signaling and viral infection in fish.


Assuntos
Doenças dos Peixes , NF-kappa B , Ranavirus , Transdução de Sinais , Replicação Viral , Animais , NF-kappa B/metabolismo , NF-kappa B/genética , Replicação Viral/fisiologia , Doenças dos Peixes/virologia , Ranavirus/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas I-kappa B/metabolismo , Proteínas I-kappa B/genética , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...