Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
J Gen Virol ; 105(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392059

RESUMO

The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Ranavirus , Transdução de Sinais , Animais , Ranavirus/imunologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia
2.
Front Immunol ; 15: 1447980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295866

RESUMO

The ubiquitous Torque teno virus (TTV) establishes a chronically persistent infection in the human host. TTV has not been associated with any apparent disease, but, as part of the human virome, it may confer a regulatory imprint on the human immune system with as yet unclear consequences. However, so far, only few studies have characterized the TTV-specific immune responses or the overall immunological imprints by TTV. Here, we reveal that TTV infection leads to a highly exhausted TTV-specific CD8+ T-cell response, hallmarked by decreased IFN-γ production and the expression of the inhibitory NKG2A-receptor. On a functional level, we identified a panel of highly polymorphic TTV-encoded peptides that lead to an expansion of regulatory NKG2A+ natural killer, NKG2A+CD4+, and NKG2A+CD8+ T cells via the stabilization of the non-classical HLA-E molecule. Our results thus demonstrate that TTV leads to a distinct imprint on the human immune system that may further regulate overall human immune responses in infectious, autoimmune, and malignant diseases.


Assuntos
Linfócitos T CD8-Positivos , Infecções por Vírus de DNA , Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Torque teno virus , Humanos , Torque teno virus/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções por Vírus de DNA/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino
3.
Fish Shellfish Immunol ; 153: 109870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218416

RESUMO

Largemouth bass ranavirus (LMBV) seriously affects the development of largemouth bass (Micropterus salmoides) industry and causes huge economic losses. Oral vaccine can be a promising method for viral disease precaution. In this study, MCP2α was identified as a valuable epitope region superior to MCP and MCP2 of LMBV by neutralizing antibody experiments. Then, recombinant Lactobacillus casei expressing the fusion protein MCP2αC (MCP2α as antigen, C represents flagellin C from Aeromonas hydrophila as adjuvant) on surface was constructed and verified. Further, PLA microsphere vaccine loading recombinant MCP2αC L. casei was prepared. The PLA microspheres vaccine were observed by scanning electron microscopy and showed a smooth, regular spherical surface with a particle size distribution between 100 and 200 µm. Furthermore, we evaluated the tolerance of PLA-MCP2αC vaccine in simulated gastric fluid and simulated intestinal fluid, and the results showed that PLA-MCP2αC can effectively resist the gastrointestinal environment. Moreover, the protective effect of PLA-MCP2αC against LMBV was evaluated after oral immunization and LMBV challenge. The results showed that PLA-MCP2αC effectively up-regulated the activity of serum biochemical enzymes (T-SOD, T-AOC, LZM, complement C3) and induced the mRNA expression of representative immune genes (IL-1ß, TNF-α, IFN-γ, MHC-IIα, Mx, IgM) in spleen and head kidney tissues. The survival rate of largemouth bass vaccinated with PLA-MCP2αC increased from 24 % to 68 %. Meanwhile, PLA-MCP2αC inhibited the LMBV burden in spleen, head kidney and liver tissues and attenuated tissue damage in spleen. These results suggested that PLA-MCP2αC can be used as a candidate oral vaccine against LMBV infection in aquaculture.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Lacticaseibacillus casei , Microesferas , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Lacticaseibacillus casei/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Poliésteres/administração & dosagem , Iridoviridae
4.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337523

RESUMO

The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.


Assuntos
Bass , Infecções por Vírus de DNA , Resistência à Doença , Doenças dos Peixes , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Ranavirus , Animais , Bass/genética , Bass/virologia , Bass/imunologia , Ranavirus/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Resistência à Doença/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/genética , Mutação INDEL
5.
Pediatr Transplant ; 28(7): e14857, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39318279

RESUMO

BACKGROUND: Long-term renal function and survival after kidney transplantation rely on appropriate immunosuppressive treatment to prevent the risk of rejection. New biomarkers are needed to accurately assess the degree of immunosuppression in renal transplant recipients in order to avoid organ rejection and the development of opportunistic infections. Highly prevalent in humans, torque teno virus (TTV), which belongs to the family Anelloviridae, is a small, nonenveloped, single-stranded DNA virus which has not been linked with any specific human illness, but which constitutes a major component of the human virome. Host antiviral responses allow TTV levels to be controlled; however, viral persistence remains, explaining the high prevalence in human populations, including healthy individuals. Important confounders of TTV load include time since transplantation, age, gender, obesity, and smoking status. AIMS: TTV-based guidance of immunosuppressive drug dosing could help with risk stratification, reducing the risk of infection, graft rejection and oncologic disease on an individual level, enabling long-term patient and graft survival. METHODS: Original studies were accessed by a systematic search from electronic databases including PubMed, ScienceDirect and Wiley Online Library. RESULTS: The presented data mainly derive from adult transplant recipients showing an association between TTV plasma levels and the immune status of the host: High-TTV load and high immunosuppression are associated with a risk of infection, and low-TTV load and low immunosuppression indicate a risk of rejection. However, there is minimal information on pediatric transplant recipients with further research required in this cohort. To date, it has been demonstrated that longer posttransplant times are significantly associated with lower TTV levels in children with renal transplant. Meanwhile, an association between lower TTV loads and increased risk of graft reject during the first year of transplantation was also reported. More recently, Eibensteiner et al. revealed a robust, independent association between TTV plasma load and the onset of Cytomegalovirus and BK virus infections. CONCLUSION: Data from randomized controlled trials are still missing, even in adults, but a multicenter randomized controlled trial for TTV-guided immunosuppression in adult kidney recipients (TTVguideIT) began in 2022. There is, therefore, great promise for TTV levels to be used as a biomarker that could potentially improve both graft and patient survival in transplantation.


Assuntos
Biomarcadores , Infecções por Vírus de DNA , Rejeição de Enxerto , Terapia de Imunossupressão , Imunossupressores , Transplante de Rim , Torque teno virus , Carga Viral , Humanos , Criança , Infecções por Vírus de DNA/imunologia , Biomarcadores/sangue , Imunossupressores/uso terapêutico , Terapia de Imunossupressão/métodos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplantados
6.
Fish Shellfish Immunol ; 153: 109871, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218417

RESUMO

Largemouth bass ranavirus (LMBV) causes disease outbreaks and high mortality at all stages of largemouth bass farming. Therefore, live vaccine development is critical for largemouth bass prevention against LMBV by immersion immunization. Herein, an attenuated LMBV strain with good immunogenicity, designated as LMBV-2007136, was screened from the natural LMBV strains bank through challenge assay and immersion immunization experiment. After determing the safe concentration range of LMBV-2007136, the minimum immunizing dose of immersion immunization was verified. When largemouth bass were vaccinated by immersion at the lowest concentration of 102.0 TCID50/mL, all of fish were survival post virulent LMBV challenge, and the relative percent survival (RPS) was 100 %. And the immune gene expression levels of IL-10, IL-12, IFN-γ, and IgM in the spleen and kidney post-vaccination were significantly up-regulated compared to the control group, but TNF-α expression showed no significant changes. The safety and efficacy of LMBV-2007136 at passages P8, P13, and P18 were futher assessed, and no death of largemouth bass was observed within 21 days post-immunization and RPS of three vaccination groups was 100 %, suggesting that the safety and efficacy of the attenuated strain at different passages was stable. Furthermore, in the virulence reversion test, the attenuated strain was propagated through 5 times in largemouth bass by intraperitoneal injection and no abnormality and mortality were observed, further proving the attenuated vaccine candidate LMBV-2007136 was safe. These results proved that LMBV-2007136 could be a promising candidate for a live vaccine to protect largemouth bass from LMBV disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Vacinas Atenuadas , Vacinas Virais , Animais , Bass/imunologia , Ranavirus/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Imunização/veterinária , Imersão , Vacinação/veterinária
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167457, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39134287

RESUMO

DNA virus infection is a significant cause of morbidity and mortality in patients with multiple myeloma (MM). Monocyte dysfunction in MM patients plays a central role in infectious complications, but the precise molecular mechanism underlying the reduced resistance of monocytes to viruses in MM patients remains to be elucidated. Here, we found that MM cells were able to transfer microRNAs (miRNAs) to host monocytes/macrophages via MM cell-derived exosomes, resulting in the inhibition of innate antiviral immune responses. The screening of miRNAs enriched in exosomes derived from the bone marrow (BM) of MM patients revealed five miRNAs that negatively regulate the cGAS-STING antiviral immune response. Notably, silencing these miRNAs with antagomiRs in MM-bearing C57BL/KaLwRijHsd mice markedly reduced viral replication. These findings identify a novel mechanism whereby MM cells possess the capacity to inhibit the innate immune response of the host, thereby rendering patients susceptible to viral infection. Consequently, targeting the aberrant expression patterns of characteristic miRNAs in MM patients is a promising avenue for therapeutic intervention. Considering the miRNA score and relevant clinical factors, we formulated a practical and efficient model for the optimal assessment of susceptibility to DNA viral infection in patients with MM.


Assuntos
Exossomos , Imunidade Inata , Proteínas de Membrana , Camundongos Endogâmicos C57BL , MicroRNAs , Mieloma Múltiplo , Nucleotidiltransferases , MicroRNAs/genética , MicroRNAs/imunologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Animais , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/imunologia , Exossomos/imunologia , Exossomos/genética , Exossomos/metabolismo , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Infecções por Vírus de DNA/imunologia , Linhagem Celular Tumoral , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Feminino , Replicação Viral
8.
Dev Comp Immunol ; 161: 105248, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39216776

RESUMO

In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a µ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunoglobulina D , Iridoviridae , Perciformes , Filogenia , Vacinação , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Iridoviridae/fisiologia , Iridoviridae/imunologia , Perciformes/imunologia , Perciformes/virologia , Vacinação/veterinária , Infecções por Vírus de DNA/imunologia , Imunoglobulina D/genética , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Vacinas Virais/imunologia , Rim Cefálico/imunologia , Rim Cefálico/virologia , Imunidade nas Mucosas , Imunoglobulinas
9.
Dev Comp Immunol ; 161: 105243, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39147080

RESUMO

The yellowfin seabream (Acanthopagrus latus) is a crucial marine resource owing to its economic significance. Acanthopagrus latus aquaculture faces numerous challenges from viral diseases, but a robust in-vitro research model to understand and address these threats is lacking. Therefore, we developed a novel A. latus cell line from head kidney cells called ALHK1. This study details the development, characterisation, and viral susceptibility properties of ALHK cells. This cell line primarily comprises fibroblast-like cells and has robust proliferative capacity when cultured at 28 °C in Leibovitz's L-15 medium supplemented with 10-20% foetal bovine serum. It exhibited remarkable stability after more than 60 consecutive passages and validation through cryopreservation techniques. The specificity of the ALHK cell line's origin from A. latus was confirmed via polymerase chain reaction (PCR) amplification of the cytochrome B gene, and a chromosomal karyotype analysis revealed a diploid count of 48 (2n = 48). Furthermore, the lipofection-mediated transfection efficiency using the pEGFP-N3 plasmid was high, at nearly 40%, suggesting that ALHK cells could be used for studies involving exogenous gene manipulation. In addition, ALHK cells displayed heightened sensitivity to the large mouth bass virus (LMBV), substantiated through observations of cytopathic effects, quantitative real-time PCR, and viral titration assays. Finally, the response of ALHK cells to LMBV infection resulted in differentially expressed antiviral genes associated with innate immunity. In conclusion, the ALHK cell line is a dependable in-vitro platform for elucidating the mechanisms of viral diseases in yellowfin seabream. Moreover, this cell line could be valuable for immunology, vaccine development, and host-pathogen interaction studies.


Assuntos
Doenças dos Peixes , Rim Cefálico , Dourada , Animais , Rim Cefálico/citologia , Rim Cefálico/virologia , Rim Cefálico/imunologia , Dourada/imunologia , Dourada/virologia , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Aquicultura , Suscetibilidade a Doenças , Infecções por Vírus de DNA/imunologia
10.
Fish Shellfish Immunol ; 153: 109837, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147179

RESUMO

NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.


Assuntos
Bass , Caspase 1 , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Filogenia , Alinhamento de Sequência , Regulação para Cima , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Bass/imunologia , Bass/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Sequência de Aminoácidos , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Iridoviridae
11.
Fish Shellfish Immunol ; 153: 109841, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173984

RESUMO

Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1ß) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Bass/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Imunidade Humoral , Ranavirus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunidade Celular
12.
Fish Shellfish Immunol ; 153: 109855, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181523

RESUMO

Singapore grouper iridovirus (SGIV) always causes high transmission efficiency and mortality in the larval and juvenile stages of grouper in aquaculture industry. Although inactivated virus and recombinant DNA vaccines administered via intraperitoneal injection have shown efficacy in protection against SGIV, their potential applications in field testing were limited due to the vaccine delivery methods. Here, we developed an immersion vaccine containing inactivated virus and Montanide IMS 1312 adjuvant (IMS 1312) and evaluated its protective efficacy against SGIV infection. Compared to the PBS group, fish vaccinated with immersion inactivated vaccine with or without IMS 1312 were significantly protected against SGIV, with a relative percent survival (RPS) of 57.69 % and 38.47 %, respectively. Furthermore, the transcripts of viral core genes were reduced, and the histopathological severity caused by SGIV were relatively mild in multiple tissues of the IMS + V group. The immersion vaccine activated the AKP and ACP activities and increased the mRNA levels of IFN and inflammation-associated genes. The transcriptome analysis showed that a total of 731 and 492 genes were significantly regulated in the spleen and kidney from the IMS + V group compared to the PBS group, respectively. Among them, 129 DEGs were co-regulated, and enriched in the KEGG pathways related to immune and cell proliferation, including MAPK signaling, JAK-STAT signaling and PI3K-Akt signaling pathways. Similarly, the DEGs specially regulated in the kidney and spleen upon vaccine immunization were significantly enriched in the KEGG pathways related to interferon and inflammation response. Together, our results elucidated that the immersion vaccine of inactivated SGIV with IMS 1312 induced a protective immune response of grouper against SGIV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Ranavirus/fisiologia , Ranavirus/imunologia , Bass/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Imunidade Inata , Imersão
13.
Fish Shellfish Immunol ; 153: 109858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187140

RESUMO

Rock bream (Oplegnathus fasciatus) is one of the highly priced cultured marine fish in Korea. Rock bream iridovirus (RBIV) outbreaks in aquaculture farms may involve environmental factors, co-infection with other pathogenic microorganisms and grounded (raw) fish feed. This study evaluated the effects of RBIV-containing tissue intake on mortality and oral transmission in rock bream. Virus-containing tissues administered to rock bream [50 mg (1.53 × 108/major capsid protein, MCP gene copies) to 2400 mg (7.34 × 109)] held at 23 °C lead to 100 % mortality by 27 days post administration. Interestingly, the mortality rates were not viral dose- or concentration dependent. Further, high MCP gene copy numbers were observed in the gill, liver, intestine, stomach, spleen, heart, kidney, brain and muscle tissues (viral load range of 3.03 × 106 to 4.01 × 107/mg, average viral load 1.70 × 107/mg) of dead rock bream. Moreover, a high viral load was detected in the intestine and stomach, where the virus was directly administered. This indicated that the intake of RBIV-containing tissue feed weakens the intestinal mucosal immunity and increases viral load in the intestine. Moreover, the levels of complete blood cell count (CBC) indicators, such as red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) significantly decreased from 15 dpi with red blood cell distribution width (RDW), and white blood cells (lymphocyte, monocyte and granulocyte) significantly increased from the initial to later stage of infection. These results highlight the significance of blood-mediated indicators against RBIV infection in rock bream. We demonstrate the existence of an oral transmission route for RBIV in rock bream. Our findings indicate that pathogen-containing feed is an important risk factor for disease outbreaks in rock bream.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Animais , Perciformes/imunologia , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Iridovirus/fisiologia , Ração Animal/análise , Carga Viral , Dieta/veterinária
14.
Fish Shellfish Immunol ; 152: 109774, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019127

RESUMO

Singapore grouper iridovirus (SGIV) belongs to the family Iridoviridae and the genus Ranavirus, which is a large cytoplasmic DNA virus. Infection of grouper with SGIV can cause hemorrhage and swelling of the spleen of the fish. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. In the present study, the protein encoded by SGIV ORF128 (VP128) was identified. VP128 is predominantly localized within the endoplasmic reticulum (ER). Overexpression of VP128 significantly promoted SGIV replication. VP128 inhibited the interferon (IFN)-3 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), and TANK-binding kinase 1 (EcTBK1). Moreover, VP128 interacted with EcSTING and EcTBK1. The interaction between VP128 and EcSTING was independent of any specific structural domain of EcSTING. Together, our results demonstrated that SGIV VP128 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Ranavirus , Transdução de Sinais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Transdução de Sinais/imunologia , Imunidade Inata/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Evasão da Resposta Imune , Bass/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos
15.
Fish Shellfish Immunol ; 152: 109770, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025166

RESUMO

Prohibitin 1 (PHB1) is ubiquitously expressed in multiple compartments within cells and is involved in the cell cycle, cell signaling, apoptosis, transcriptional regulation, and mitochondrial biogenesis at the cellular level and in the inflammation-associated and immunological functions of B and T lymphocytes. PHB1 is an important protein that performs antioxidant regulation and immune functions inside and outside cells but has not been sufficiently studied in teleost fish. Our study aimed to elucidate the functional properties and gain new insights into the biological processes and immune system of red seabream (Pagrus major), a commercially important fish cultured in South Korea and East Asia. PHB1 mRNA was most abundantly expressed in the head kidney of healthy red seabream, and significant changes in its expression were observed after artificial infection with bacteria and viruses. On analysis, reporter gene was also significantly upregulated by polyinosinic-polycytidylic acid, lipopolysaccharides, and hydrogen peroxide. Consequent to the functional characterization of PHB1 in cells via recombinant protein preparation, the activity of leukocytes was enhanced and the reactive oxygen species-induced stress in red blood cells was reduced. The results reveal the functional characteristics of PHB1 and provide new insights into the biological processes and immune system of P. major, with beneficial implications in the study of stress responses.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunidade Inata , Proibitinas , Proteínas Repressoras , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Poli I-C/farmacologia , Filogenia , Dourada/imunologia , Dourada/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Lipopolissacarídeos/farmacologia , Perciformes/imunologia , Perciformes/genética , Iridoviridae/fisiologia , Vibrio/fisiologia
16.
Fish Shellfish Immunol ; 152: 109784, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067495

RESUMO

Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Filogenia , Ranavirus , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Bass/imunologia , Ranavirus/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária
17.
Fish Shellfish Immunol ; 151: 109748, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964434

RESUMO

The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 µM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.


Assuntos
Antivirais , Bass , Infecções por Vírus de DNA , Eugenol , Doenças dos Peixes , Ranavirus , Animais , Eugenol/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Antivirais/farmacologia , Bass/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/tratamento farmacológico , Ranavirus/fisiologia , Baço/imunologia , Baço/efeitos dos fármacos , Baço/citologia , Células Cultivadas
18.
J Med Virol ; 96(7): e29806, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007420

RESUMO

Optimization of individual immunosuppression, which reduces the risks of both graft loss and patients' death, is considered the best approach to improve long-term outcomes of renal transplantation. Torque Teno Virus (TTV) DNAemia has emerged as a potential biomarker reflecting the depth of therapeutic immunosuppression during the initial year post-transplantation. However, its efficacy in long-term monitoring remains uncertain. In a cohort study involving 34 stable kidney transplant recipients and 124 healthy volunteers, we established lower and upper TTV DNAemia thresholds (3.75-5.1 log10 cp/mL) correlating with T-cell activatability, antibody response against flu vaccine, and risk for subsequent serious infections or cancer over 50 months. Validation in an independent cohort of 92 recipients confirmed that maintaining TTV DNAemia within this range in >50% of follow-up time points was associated with reduced risks of complications due to inadequate immunosuppression, including de novo DSA, biopsy-proven antibody-mediated rejection, graft loss, infections, or cancer. Multivariate analysis highlighted "in-target" TTV DNAemia as the sole independent variable significantly linked to decreased risk for long-term complications due to inadequate immunosuppression (odds ratio [OR]: 0.27 [0.09-0.77]; p = 0.019). Our data suggest that the longitudinal monitoring of TTV DNAemia in kidney transplant recipients could help preventing the long-term complications due to inadequate immunosuppression.


Assuntos
Infecções por Vírus de DNA , DNA Viral , Terapia de Imunossupressão , Transplante de Rim , Torque teno virus , Transplantados , Humanos , Torque teno virus/genética , Transplante de Rim/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , DNA Viral/sangue , Adulto , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/sangue , Infecções por Vírus de DNA/imunologia , Terapia de Imunossupressão/efeitos adversos , Estudos Longitudinais , Idoso , Rejeição de Enxerto , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Estudos de Coortes , Viremia
19.
Vet Res ; 55(1): 88, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010235

RESUMO

Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Peixes , Iridoviridae , Vacinação , Vacinas Virais , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/prevenção & controle , Iridoviridae/fisiologia , Vacinas Virais/imunologia , Peixes/virologia , Peixes/imunologia , Vacinação/veterinária
20.
J Med Virol ; 96(7): e29814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015038

RESUMO

Novel biomarkers reflecting the degree of immunosuppression in transplant patients are required to ensure eventual personalized equilibrium between rejection and infection risks. With the above aim, Torque Teno Virus (TTV) viremia was precisely examined in a large cohort of transplanted immunocompromised patients (192 hematological and 60 solid organ transplant recipients) being monitored for Cytomegalovirus reactivation. TTV load was measured in 2612 plasma samples from 448 patients. The results revealed a significant increase in TTV viral load approximately 14 days following CMV reactivation/infection in solid organ transplant (SOT) patients. No recognizable difference in TTV load was noted among hematological patients during the entire timeframe analyzed. Furthermore, a temporal gap of approximately 30 days was noted between the viral load peaks reached by the two viruses, with Cytomegalovirus (CMV) preceding TTV. It was not possible to establish a correlation between CMV reactivation/infection and TTV viremia in hematological patients. On the other hand, the SOT patient cohort allowed us to analyze viral kinetics and draw intriguing conclusions. Taken together, the data suggest, to our knowledge for the first time, that CMV infection itself could potentially cause an increase in TTV load in the peripheral blood of patients undergoing immunosuppressive therapy.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Infecções por Vírus de DNA , Hospedeiro Imunocomprometido , Torque teno virus , Carga Viral , Viremia , Humanos , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/sangue , Masculino , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/sangue , Infecções por Vírus de DNA/imunologia , Pessoa de Meia-Idade , Feminino , Adulto , Terapia de Imunossupressão/efeitos adversos , Ativação Viral , Transplantados/estatística & dados numéricos , Idoso , Estudos de Coortes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...