Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.079
Filtrar
1.
Arch Virol ; 169(7): 136, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847927

RESUMO

Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish's skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.


Assuntos
Proteínas do Capsídeo , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Filogenia , Animais , Doenças dos Peixes/virologia , Índia , Iridoviridae/genética , Iridoviridae/isolamento & purificação , Iridoviridae/classificação , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Proteínas do Capsídeo/genética , Peixes/virologia , Genótipo , Ilhas
2.
Arch Virol ; 169(7): 148, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888759

RESUMO

The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1ß and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1ß showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.


Assuntos
Ciclídeos , Doenças dos Peixes , Inflamassomos , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/genética , Linhagem Celular , Peptidoglicano/farmacologia , Fígado/virologia , Fígado/imunologia , Lipopolissacarídeos/farmacologia , Imunidade Inata , Proteínas de Peixes/genética , Interleucina-18/genética , Interleucina-18/metabolismo , Ligantes , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia
3.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793557

RESUMO

Frog virus 3 (FV3) in the genus Ranavirus of the family Iridoviridae causes mass mortality in both anurans and urodeles worldwide; however, the phylogenetic origin of FV3-like ranaviruses is not well established. In Asia, three FV3-like ranaviruses have been reported in farmed populations of amphibians and reptiles. Here, we report the first case of endemic FV3-like ranavirus infections in the Korean clawed salamander Onychodactylus koreanus, caught in wild mountain streams in the Republic of Korea (ROK), through whole-genome sequencing and phylogenetic analysis. Two isolated FV3-like ranaviruses (Onychodactylus koreanus ranavirus, OKRV1 and 2) showed high similarity with the Rana grylio virus (RGV, 91.5%) and Rana nigromaculata ranavirus (RNRV, 92.2%) but relatively low similarity with the soft-shelled turtle iridovirus (STIV, 84.2%) in open reading frame (ORF) comparisons. OKRV1 and 2 formed a monophyletic clade with previously known Asian FV3-like ranaviruses, a sister group of the New World FV3-like ranavirus clade. Our results suggest that OKRV1 and 2 are FV3-like ranaviruses endemic to the ROK, and RGV and RNRV might also be endemic strains in China, unlike previous speculation. Our data have great implications for the study of the phylogeny and spreading routes of FV3-like ranaviruses and suggest the need for additional detection and analysis of FV3-like ranaviruses in wild populations in Asian countries.


Assuntos
Infecções por Vírus de DNA , Genoma Viral , Filogenia , Ranavirus , Urodelos , Animais , Ranavirus/genética , Ranavirus/isolamento & purificação , Ranavirus/classificação , Urodelos/virologia , República da Coreia/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/epidemiologia , Fases de Leitura Aberta , Sequenciamento Completo do Genoma
4.
Viruses ; 16(5)2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793597

RESUMO

In September 2021, 14 smallmouth bass (SMB; Micropterus dolomieu) with skin lesions were collected from Green Bay waters of Lake Michigan and submitted for diagnostic evaluation. All the skin samples tested positive for largemouth bass virus (LMBV) by conventional PCR. The complete genome of the LMBV (99,328 bp) isolated from a homogenized skin sample was determined using an Illumina MiSeq sequencer. A maximum likelihood (ML) phylogenetic analysis based on the 21 core iridovirus genes supported the LMBV isolated from SMB (LMBV-WVL21117) as a member of the species Santee-Cooper ranavirus. Pairwise nucleotide comparison of the major capsid protein (MCP) gene showed that LMBV-WVL21117 is identical to other LMBV reported from the United States and nearly identical to doctor fish virus and guppy virus 6 (99.2%) from Southeast Asia, as well as LMBV isolates from China and Thailand (99.1%). In addition, ML phylogenetic analysis based on the MCP gene suggests three genotypes of LMBV separated by region: genotype one from the United States, genotype two from Southeast Asia, and genotype three from China and Thailand. Additional research is needed to understand the prevalence and genetic diversity of LMBV strains circulating in wild and managed fish populations from different regions.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Genoma Viral , Filogenia , Ranavirus , Animais , Ranavirus/genética , Ranavirus/isolamento & purificação , Ranavirus/classificação , Bass/virologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Proteínas do Capsídeo/genética , Genótipo , Lagos/virologia
5.
Fish Shellfish Immunol ; 150: 109643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763177

RESUMO

The lymphocystis disease (LCD), caused by Lymphocystis disease virus (LCDV), is a benign and self-limiting disease described in a many freshwater and marine fish species. Hypertrophic fibroblasts and extensive aggregation of inflammatory cells are characteristics of LCD. In the present study, small animal imaging and ultrastructural investigations were carried out on the lymphocystis nodules of black rockfish (Sebastes schlegelii) naturally infected with lymphocystis iridovirus, to assess pathology, and the exudate with particular attention to the formation of extracellular traps (ETs) in vivo. Ex vivo were examined by nodules sections and primary cells stimulation. By histopathological analysis, the nodules contained infiltrated inflammatory cells and extensive basophilic fibrillar filaments at the periphery of the hypertrophied fibroblasts. ETs were assessed in nodules samples using indirect immunofluorescence to detect DNA and myeloperoxidase. Moreover, LCDV was able to infect peritoneal cells of black rockfish in vitro and induce the formation of ETs within 4 h. In summary, this study proved that ETs are involved in the response to LCDV infection and may be involved in formation of lymphoid nodules. Taken together, the findings provide a new perspective to determine the impact factors on the growth of nodules.


Assuntos
Infecções por Vírus de DNA , Armadilhas Extracelulares , Doenças dos Peixes , Iridoviridae , Perciformes , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Armadilhas Extracelulares/imunologia , Iridoviridae/fisiologia , Perciformes/imunologia , Pele/virologia , Pele/patologia , Peixes/imunologia , Peixes/virologia
6.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661138

RESUMO

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Assuntos
Aquicultura , Infecções por Vírus de DNA , Surtos de Doenças , Doenças dos Peixes , Iridovirus , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Surtos de Doenças/veterinária , Iridovirus/genética , Dourada/virologia , Peixes , Medição de Risco , Japão/epidemiologia , Animais Selvagens
7.
Zool Res ; 45(3): 520-534, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682434

RESUMO

Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.


Assuntos
Doenças dos Peixes , Iridovirus , Fígado , Ácido alfa-Linolênico , Animais , Ácido alfa-Linolênico/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Fígado/metabolismo , Fígado/virologia , Iridovirus/fisiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Metabolômica , Antivirais/farmacologia , Transcriptoma , Reprogramação Metabólica , Multiômica
8.
J Clin Virol ; 172: 105673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564881

RESUMO

BACKGROUND: Long-term allograft and patient survival after kidney transplantation (KTX) depends on the balance between over- and under-immunosuppression (IS). High levels of IS predispose to opportunistic infections. Plasma load of Torque Teno Virus (TTV), a non-pathogenic highly prevalent Annellovirus, is associated with its hosts immune status, especially after solid organ transplantation. OBJECTIVES: To investigate the association of plasma TTV load and opportunistic viral infections after pediatric KTX. STUDY DESIGN: This retrospective study includes all pediatric KTX patients followed at the Medical University of Vienna 2014-2020. PCR for Cytomegalovirus (CMV), Epstein-Barr virus (EBV), BK virus (BKV), and TTV was performed every 4-8 weeks at routine follow-up visits. RESULTS: 71 pediatric KTX patients were followed with TTV measurements for a median of 2.7 years. TTV plasma load was associated with CMV DNAemia at the next visit with an OR of 2.37 (95 % CI 1.15-4.87; p = 0.03) after adjustment for time after KTX and recipient age. For a cut-off of 7.68 log10 c/mL TTV a sensitivity of 100 %, a specificity of 61 %, a NPV 100 %, and a PPV of 46 % to detect CMV DNAemia at the next visit was calculated. TTV plasma loads were also associated with BKV DNAuria and BKV DNAemia at the next visit, but not with EBV DNAemia. CONCLUSIONS: This is the first study to analyse associations between TTV plasma loads and opportunistic viral infections in pediatric KTX. We were able to present a TTV cut-off for the prediction of clinically relevant CMV DNAemia that might be useful in clinical care.


Assuntos
Vírus BK , Infecções por Citomegalovirus , Citomegalovirus , Infecções por Vírus de DNA , Transplante de Rim , Infecções por Polyomavirus , Torque teno virus , Carga Viral , Humanos , Transplante de Rim/efeitos adversos , Torque teno virus/genética , Torque teno virus/isolamento & purificação , Criança , Infecções por Citomegalovirus/virologia , Estudos Retrospectivos , Masculino , Vírus BK/isolamento & purificação , Vírus BK/genética , Adolescente , Feminino , Infecções por Polyomavirus/virologia , Citomegalovirus/genética , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/sangue , Infecções por Vírus de DNA/epidemiologia , Pré-Escolar , DNA Viral/sangue , Infecções Oportunistas/virologia , Infecções Oportunistas/diagnóstico , Transplantados/estatística & dados numéricos , Lactente
9.
Virulence ; 15(1): 2349027, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38680083

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Replicação Viral , Animais , Iridoviridae/fisiologia , Iridoviridae/genética , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Humanos
10.
Braz J Microbiol ; 55(2): 1961-1966, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38589741

RESUMO

The FTA card has emerged as a promising alternative for nucleic acid extraction. The FTA card is a filter paper impregnated with chemicals that preserve and stabilize the genetic material present in the sample, allowing for its storage and transport at room temperature. The aim of this study was to test the card for the detection of RNA and DNA nucleic acids. Two RNA viruses (Senecavirus A and classical swine fever virus) and two DNA viruses (African swine fever virus and suid alphaherpesvirus 1) were tested, and in all cases, there was a decrease in sensitivity. The methods exhibited good repeatability and demonstrated a rapid and practical use for sample transport and nucleic acid extraction.


Assuntos
Vírus da Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/isolamento & purificação , Herpesvirus Suídeo 1/isolamento & purificação , Herpesvirus Suídeo 1/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Medicina Veterinária/métodos , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Picornaviridae/classificação , Sensibilidade e Especificidade , DNA Viral/genética , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Manejo de Espécimes/métodos , Manejo de Espécimes/instrumentação
11.
Dev Comp Immunol ; 156: 105160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38485065

RESUMO

The lacking of stable and susceptible cell lines has hampered research on pathogenic mechanism of crustacean white spot syndrome virus (WSSV). To look for the suitable cell line which can sustain WSSV infection, we performed the studies on WSSV infection in the Spodoptera frugiperda (Sf9) insect cells. In consistent with our previous study in vitro in crayfish hematopoietic tissue cells, the WSSV envelope was detached from nucleocapsid around 2 hpi in Sf9 cells, which was accompanied with the cytoplasmic transport of nucleocapsid toward the cell nucleus within 3 hpi. Furthermore, the expression profile of both gene and protein of WSSV was determined in Sf9 cells after viral infection, in which a viral immediate early gene IE1 and an envelope protein VP28 exhibited gradually increased presence from 3 to 24 hpi. Similarly, the significant increase of WSSV genome replication was found at 3-48 hpi in Sf9 cells after infection with WSSV, indicating that Sf9 cells supported WSSV genome replication. Unfortunately, no assembled progeny virion was observed at 24 and 48 hpi in Sf9 cell nuclei as determined by transmission electron microscope, suggesting that WSSV progeny could not be assembled in Sf9 cell line as the viral structural proteins could not be transported into cell nuclei. Collectively, these findings provide a cell model for comparative analysis of WSSV infection mechanism with crustacean cells.


Assuntos
Spodoptera , Vírion , Montagem de Vírus , Replicação Viral , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Spodoptera/virologia , Células Sf9 , Vírion/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Nucleocapsídeo/metabolismo , Nucleocapsídeo/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Genoma Viral , Linhagem Celular
13.
J Fish Dis ; 47(6): e13930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38349841

RESUMO

Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Técnicas de Amplificação de Ácido Nucleico , Perciformes , Sensibilidade e Especificidade , Animais , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Iridovirus/isolamento & purificação , Iridovirus/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Viral/genética , Proteínas do Capsídeo/genética
14.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882518

RESUMO

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Interferons , Infecções por Vírus de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Interferons/antagonistas & inibidores , Interferons/biossíntese , Transdução de Sinais , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Retroalimentação Fisiológica , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
15.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240024

RESUMO

A next-generation sequencing (NGS) study identified a very high viral load of Torquetenovirus (TTV) in KD patients. We aimed to evaluate the feasibility of a newly developed quantitative species-specific TTV-PCR (ssTTV-PCR) method to identify the etiology of KD. We applied ssTTV-PCR to samples collected from 11 KD patients and 22 matched control subjects who participated in our previous prospective study. We used the NGS dataset from the previous study to validate ssTTV-PCR. The TTV loads in whole blood and nasopharyngeal aspirates correlated highly (Spearman's R = 0.8931, p < 0.0001, n = 33), supporting the validity of ssTTV-PCR. The ssTTV-PCR and NGS results were largely consistent. However, inconsistencies occurred when ssTTV-PCR was more sensitive than NGS, when the PCR primer sequences mismatched the viral sequences in the participants, and when the NGS quality score was low. Interpretation of NGS requires complex procedures. ssTTV-PCR is more sensitive than NGS but may fail to detect a fast-evolving TTV species. It would be prudent to update primer sets using NGS data. With this precaution, ssTTV-PCR can be used reliably in a future large-scale etiological study for KD.


Assuntos
Infecções por Vírus de DNA , Síndrome de Linfonodos Mucocutâneos , Reação em Cadeia da Polimerase , Torque teno virus , Torque teno virus/genética , Torque teno virus/isolamento & purificação , Síndrome de Linfonodos Mucocutâneos/virologia , Reação em Cadeia da Polimerase/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Conjuntos de Dados como Assunto , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Criança , Estudos Prospectivos , DNA Viral/genética , DNA Viral/isolamento & purificação , Infecções por Vírus de DNA/virologia
16.
Commun Biol ; 5(1): 433, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538147

RESUMO

The DNA sensor cGAS detects cytosolic DNA and instigates type I interferon (IFN) expression. Recent studies find that cGAS also localizes in the nucleus and binds the chromatin. Despite the mechanism controlling nuclear cGAS activation is well elucidated, whether nuclear cGAS participates in DNA sensing is unclear. Here, we report that herpes simplex virus 1 (HSV-1) infection caused the release of cGAS from the chromatin into the nuclear soluble fraction. Like its cytosolic counterpart, the leaked nuclear soluble cGAS also sensed viral DNA, produced cGAMP, and induced mRNA expression of type I IFN and interferon-stimulated genes. Consistently, the nuclear soluble cGAS limited HSV-1 infection. Furthermore, enzyme-deficient mutation (D307A) or cGAS inhibitor RU.251 abolished nuclear cGAS-mediated innate immune responses, suggesting that enzymatic activity is also required for nuclear soluble cGAS. Taken all together, our study demonstrates that nuclear soluble cGAS acts as a nuclear DNA sensor detecting nuclear-replicating DNA viruses.


Assuntos
Infecções por Vírus de DNA , Vírus de DNA , Nucleotidiltransferases , Cromatina , DNA/genética , DNA/metabolismo , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/metabolismo , Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , Vírus de DNA/metabolismo , Herpes Simples/genética , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
17.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215774

RESUMO

Considerable attention has been paid to the roles of lipid metabolism in virus infection due to its regulatory effects on virus replication and host antiviral immune response. However, few literature has focused on whether lipid metabolism is involved in the life cycle of lower vertebrate viruses. Singapore grouper iridovirus (SGIV) is the causative aquatic virus that extensively causes fry and adult groupers death. Here, the potential roles of cellular de novo fatty acid synthesis in SGIV infection was investigated. SGIV infection not only increased the expression levels of key enzymes in fatty acid synthesis in vivo/vitro, including acetyl-Coenzyme A carboxylase alpha (ACC1), fatty acid synthase (FASN), medium-chain acyl-CoA dehydrogenase (MCAD), adipose triglyceride lipase (ATGL), lipoprotein lipase (LPL) and sterol regulatory element-binding protein-1 (SREBP1), but it also induced the formation of lipid droplets (LDs), suggesting that SGIV altered de novo fatty acid synthesis in host cells. Using the inhibitor and specific siRNA of ACC1 and FASN, we found that fatty acid synthesis was essential for SGIV replication, evidenced by their inhibitory effects on CPE progression, viral gene transcription, protein expression and virus production. Moreover, the inhibitor of fatty acid ß-oxidation could also reduce SGIV replication. Inhibition of fatty acid synthesis but not ß-oxidation markedly blocked virus entry during the life cycle of SGIV infection. In addition, we also found that inhibition of ACC1 and FASN increased the IFN immune and inflammatory response during SGIV infection. Together, our data demonstrated that SGIV infection in vitro regulated host lipid metabolism and, in that process, cellular fatty acid synthesis might exert crucial roles during SGIV infection via regulating virus entry and host immune response.


Assuntos
Infecções por Vírus de DNA/virologia , Ácidos Graxos/metabolismo , Doenças dos Peixes/virologia , Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Ranavirus/fisiologia , Acetiltransferases/metabolismo , Acil-CoA Desidrogenase/metabolismo , Animais , Ácido Graxo Sintases/metabolismo , Regulação Enzimológica da Expressão Gênica , Imunidade , Lipase/metabolismo , Lipase Lipoproteica/metabolismo , Perciformes , Ranavirus/enzimologia , Baço/virologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Internalização do Vírus , Replicação Viral
18.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215802

RESUMO

Iridoviruses are an important pathogen of ectothermic vertebrates and are considered a significant threat to aquacultural fish production. Recently, one of the most economically important marine species in China, the large yellow croaker (Larimichthys crocea), has been increasingly reported to be the victim of iridovirus disease. In this study, we isolated and identified a novel iridovirus, LYCIV-ZS-2020, from cage-cultured large yellow croaker farms in Zhoushan island, China. Genome sequencing and subsequent phylogenetic analyses showed that LYCIV-ZS-2020 belongs to the genus Megalocytivirus and is closely related to the Pompano iridoviruses isolated in the Dominican Republic. LYCIV-ZS-2020 enriched from selected tissues of naturally infected large yellow croaker was used in an artificial infection trial and the results proved its pathogenicity in large yellow croaker. This is the first systematic research on the genetic and pathogenic characterization of iridovirus in large yellow croakers, which expanded our knowledge of the iridovirus.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridovirus/genética , Iridovirus/isolamento & purificação , Perciformes/crescimento & desenvolvimento , Animais , Aquicultura , China , Infecções por Vírus de DNA/virologia , Genoma Viral , Iridovirus/classificação , Iridovirus/patogenicidade , Perciformes/virologia , Filogenia , Virulência
19.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723784

RESUMO

It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , Metagenoma , Placenta/virologia , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Feminino , Genoma Viral , Humanos , Recém-Nascido , Masculino , Gravidez , Complicações na Gravidez/virologia , Nascimento Prematuro , Nascimento a Termo
20.
Front Immunol ; 12: 698808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795661

RESUMO

Introduction: We analysed blood DNAemia of TTV and four herpesviruses (CMV, EBV, HHV6, and HSV-1) in the REAnimation Low Immune Status Marker (REALISM) cohort of critically ill patients who had presented with either sepsis, burns, severe trauma, or major surgery. The aim was to identify common features related to virus and injury-associated pathologies and specific features linking one or several viruses to a particular pathological context. Methods: Overall and individual viral DNAemia were measured over a month using quantitative PCR assays from the 377 patients in the REALISM cohort. These patients were characterised by clinical outcomes [severity scores, mortality, Intensive Care Unit (ICU)-acquired infection (IAI)] and 48 parameters defining their host response after injury (cell populations, immune functional assays, and biomarkers). Association between viraemic event and clinical outcomes or immune markers was assessed using χ2-test or exact Fisher's test for qualitative variables and Wilcoxon test for continuous variables. Results: The cumulative incidence of viral DNAemia increased from below 4% at ICU admission to 35% for each herpesvirus during the first month. EBV, HSV1, HHV6, and CMV were detected in 18%, 12%, 10%, and 9% of patients, respectively. The incidence of high TTV viraemia (>10,000 copies/ml) increased from 11% to 15% during the same period. Herpesvirus viraemia was associated with severity at admission; CMV and HHV6 viraemia correlated with mortality during the first week and over the month. The presence of individual herpesvirus during the first month was significantly associated (p < 0.001) with the occurrence of IAI, whilst herpesvirus DNAemia coupled with high TTV viraemia during the very first week was associated with IAI. Herpesvirus viraemia was associated with a lasting exacerbated host immune response, with concurrent profound immune suppression and hyper inflammation, and delayed return to immune homeostasis. The percentage of patients presenting with herpesvirus DNAemia was significantly higher in sepsis than in all other groups. Primary infection in the hospital and high IL10 levels might favour EBV and CMV reactivation. Conclusion: In this cohort of ICU patients, phenotypic differences were observed between TTV and herpesviruses DNAemia. The higher prevalence of herpesvirus DNAemia in sepsis hints at further studies that may enable a better in vivo understanding of host determinants of herpesvirus viral reactivation. Furthermore, our data suggest that EBV and TTV may be useful as additional markers to predict clinical deterioration in ICU patients.


Assuntos
Infecções por Vírus de DNA/epidemiologia , Infecções por Herpesviridae/epidemiologia , Herpesviridae/isolamento & purificação , Choque Séptico/etiologia , Torque teno virus/isolamento & purificação , Viremia/epidemiologia , Adulto , Idoso , Estado Terminal , Infecções por Vírus de DNA/complicações , Infecções por Vírus de DNA/virologia , Feminino , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/virologia , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Choque Séptico/epidemiologia , Viremia/complicações , Viremia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA