Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.525
Filtrar
1.
J Cell Mol Med ; 28(12): e18487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031722

RESUMO

Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F-box with 7 tandem WD) is one of the important components of the Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin-proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin-induced POI mouse model. We further showed that mice with oocyte-specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte-GCs communication, manifested as down-regulation of connexin 37, may contribute to follicular development failure in the Fbxw7-mutant mice. Furthermore, single-cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.


Assuntos
Proteína 7 com Repetições F-Box-WD , Oócitos , Folículo Ovariano , Insuficiência Ovariana Primária , Animais , Feminino , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Oócitos/metabolismo , Camundongos , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/patologia , Modelos Animais de Doenças , Deleção de Genes , Camundongos Knockout , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Cisplatino/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38780290

RESUMO

ABSTRACT: Uterine adenomyosis is an estrogen-dependent chronic inflammatory condition and may cause painful symptoms, abnormal uterine bleeding, and/or subfertility/infertility. It is characterized by the presence of endometrial glands and stroma within the myometrium causing enlargement of the uterus as a result of reactive hyperplastic and/or hypertrophic change of the surrounding myometrium. Similar to endometriosis, adenomyosis has a negative impact on female fertility. Abnormal uterotubal sperm transport, tissue inflammation, and the toxic effect of chemical mediators have been proposed as contributing factors. Inflammation-induced damage of the mucosal cilia in the fallopian tube has been reported. Besides other proposed mechanisms, our most recent study with transmission electron microscopy analysis indicated that microvilli damage and an axonemal alteration in the apical endometria occur in response to endometrial inflammation. This may be involved in the negative fertility outcome in women with adenomyosis. We present a critical analysis of the literature data concerning the mechanistic basis of infertility in women with adenomyosis and its impact on fertility outcome.


Assuntos
Adenomiose , Endométrio , Infertilidade Feminina , Humanos , Feminino , Adenomiose/patologia , Adenomiose/metabolismo , Infertilidade Feminina/patologia , Infertilidade Feminina/etiologia , Endométrio/patologia , Cílios/patologia , Cílios/ultraestrutura , Cílios/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734318

RESUMO

BACKGROUND: Early embryonic arrest and fragmentation (EEAF) is a common cause of female infertility, but the genetic causes remain to be largely unknown. CIP2A encodes the cellular inhibitor of PP2A, playing a crucial role in mitosis and mouse oocyte meiosis. METHODS: Exome sequencing and Sanger sequencing were performed to identify candidate causative genes in patients with EEAF. The pathogenicity of the CIP2A variant was assessed and confirmed in cultured cell lines and human oocytes through Western blotting, semi-quantitative RT-PCR, TUNEL staining, and fluorescence localization analysis. FINDINGS: We identified CIP2A (c.1510C > T, p.L504F) as a novel disease-causing gene in human EEAF from a consanguineous family. L504 is highly conserved throughout evolution. The CIP2A variant (c.1510C > T, p.L504F) reduced the expression level of the mutant CIP2A protein, leading to the abnormal aggregation of mutant CIP2A protein and cell apoptosis. Abnormal aggregation of CIP2A protein and chromosomal dispersion occurred in the patient's oocytes and early embryos. We further replicated the patient phenotype by knockdown CIP2A in human oocytes. Additionally, CIP2A deficiency resulted in decreased levels of phosphorylated ERK1/2. INTERPRETATION: We first found that the CIP2A loss-of-function variant associate with female infertility characterized by EEAF. Our findings suggest the uniqueness and importance of CIP2A gene in human oocyte and early embryo development. FUNDING: This work was supported by National Key Research and Development Program of China (2023YFC2706302), the National Natural Science Foundation of China (81000079, 81170165, and 81870959), the HUST Academic Frontier Youth Team (2016QYTD02), and the Key Research of Huazhong University of Science and Technology, Tongji Hospital (2022A20).


Assuntos
Autoantígenos , Infertilidade Feminina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Oócitos , Humanos , Feminino , Autoantígenos/genética , Autoantígenos/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Infertilidade Feminina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Apoptose/genética , Mutação com Perda de Função , Adulto , Sequenciamento do Exoma , Animais , Linhagem , Camundongos
4.
Reprod Biomed Online ; 49(1): 103943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733678

RESUMO

How endometriosis causes infertility, with the exception of tubal dysfunction caused by adhesions, is unclear. The inflammatory milieu in the pelvis and impaired receptivity of the eutopic endometrium are considered to be possible factors. Anatomical staging systems fail to predict the fertility status of endometriosis patients. Data from assisted reproductive technology cycles consistently suggest that oocytes from patients with endometriosis have a normal potential to develop into euploid blastocysts. Moreover, oocyte or embryo recipients with endometriosis seem to have similar or slightly lower pregnancy and live birth rates compared with recipients without endometriosis, suggesting that eutopic endometrium is not or is only minimally affected, which may be caused by undiagnosed adenomyosis. In-vivo observations from women with endometriomas provide evidence against a detrimental effect of endometriomas on oocytes. Combined with the absence of an obvious improvement in fertility following the surgical destruction or excision of peritoneal endometriosis or from temporary medical suppression of the disease and the associated inflammation, the available evidence makes endometriosis-associated infertility questionable in the absence of tubal dysfunction caused by adhesions. It is likely that no anatomical staging will correlate with fertility beyond assessing tubal function. In patients with endometriosis assisted reproductive technology is as effective as for other indications.


Assuntos
Endometriose , Infertilidade Feminina , Técnicas de Reprodução Assistida , Humanos , Feminino , Endometriose/patologia , Endometriose/complicações , Infertilidade Feminina/patologia , Infertilidade Feminina/etiologia , Gravidez
5.
Genes (Basel) ; 15(5)2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38790245

RESUMO

Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants.


Assuntos
Ovário , Receptor IGF Tipo 1 , Receptor de Insulina , Animais , Feminino , Camundongos , Gravidez , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Camundongos Knockout , Ovário/metabolismo , Ovário/patologia , Ovulação/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética
6.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
7.
J Vis Exp ; (206)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647276

RESUMO

Endometrioma (OMA), a subtype of endometriosis characterized by the formation of endometriotic cysts in the ovaries, affects 17-44% of individuals diagnosed with endometriosis. Women with OMA often experience compromised fertility, yet the exact mechanisms underlying OMA-associated infertility remain unclear. Notably, existing animal models simulate superficial peritoneal endometriosis (SUP) and deep infiltrating endometriosis (DIE), leaving a notable gap in research focused on OMA. In response to the gap of knowledge, this paper introduces a pioneering OMA-simulating mouse model and provides a comprehensive description of the techniques and procedures employed in the model. With a high success rate of 83% and ovarian lesion specificity, this model holds significant promise for advancing our understanding of OMA, particularly in the context of infertility. It offers a valuable platform for conducting targeted research into OMA-associated fertility challenges, potentially paving the way for improved diagnostic and therapeutic strategies in the field of reproductive medicine.


Assuntos
Modelos Animais de Doenças , Endometriose , Endometriose/patologia , Animais , Feminino , Camundongos , Infertilidade Feminina/etiologia , Infertilidade Feminina/patologia
8.
J Assist Reprod Genet ; 41(5): 1233-1243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536595

RESUMO

AIM: Abnormalities in oocyte maturation, fertilization, and early embryonic development are major causes of primary infertility in women who are undergoing IVF/ICSI attempts. Although many genetic factors responsible for these abnormal phenotypes have been identified, there are more additional pathogenic genes and variants yet to be discovered. Previous studies confirmed that bi-allelic PATL2 deficiency is an important factor for female infertility. In this study, 935 infertile patients with IVF/ICSI failure were selected for whole-exome sequencing, and 18 probands carrying PATL2 variants with a recessive inheritance pattern were identified. METHODS: We estimated that the prevalence contributed by PATL2 was 1.93% (18/935) in our study cohort. RESULTS: 15 novel variants were found in those families, including c.1093C > T, c.1609dupA, c.1204C > T, c.643dupG, c.877-2A > G, c.1228C > G, c.925G > A, c.958G > A, c.4A > G, c.1258T > C, c.1337G > A, c.1264dupA, c.88G > T, c.1065-2A > G, and c.1271T > C. The amino acids altered by the corresponding variants were highly conserved in mammals, and in silico analysis and 3D molecular modeling suggested that the PATL2 mutants impaired the physiologic function of the resulting proteins. Diverse clinical phenotypes, including oocyte maturation defect, fertilization failure, and early embryonic arrest might result from different variants of PATL2. CONCLUSIONS: These results expand the spectrum of PATL2 variants and provide an important reference for genetic counseling for female infertility, and they increase our understanding of the mechanisms of oocyte maturation arrest caused by PATL2 deficiency.


Assuntos
Sequenciamento do Exoma , Fertilização in vitro , Infertilidade Feminina , Mutação , Fenótipo , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Adulto , Mutação/genética , Oócitos/crescimento & desenvolvimento , Oócitos/patologia , Gravidez , Linhagem
9.
J Assist Reprod Genet ; 41(5): 1417-1431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456991

RESUMO

PURPOSE: Gene expression analysis of the endometrium has been shown to be a useful approach for identifying the molecular signatures and pathways involved in recurrent implantation failure (RIF). Nevertheless, individual studies have limitations in terms of study design, methodology and analysis to detect minor changes in expression levels or identify novel gene signatures associated with RIF. METHOD: To overcome this, we conducted an in silico meta-analysis of nine studies, the systematic collection and integration of gene expression data, utilizing rigorous selection criteria and statistical techniques to ensure the robustness of our findings. RESULTS: Our meta-analysis successfully unveiled a meta-signature of 49 genes closely associated with RIF. Of these genes, 38 were upregulated and 11 downregulated in RIF patients' endometrium and believed to participate in key processes like cell differentiation, communication, and adhesion. GADD45A, IGF2, and LIF, known for their roles in implantation, were identified, along with lesser-studied genes like OPRK1, PSIP1, SMCHD1, and SOD2 related to female infertility. Many of these genes are involved in MAPK and PI3K-Akt pathways, indicating their role in inflammation. We also investigated to look for key miRNAs regulating these 49 dysregulated mRNAs as potential diagnostic biomarkers. Along with this, we went to associate protein-protein interactions of 49 genes, and we could recognize one cluster consisting of 11 genes (consisted of 22 nodes and 11 edges) with the highest score (p = 0.001). Finally, we validated some of the genes by qRT-PCR in our samples. CONCLUSION: In summary, the meta-signature genes hold promise for improving RIF patient identification and facilitating the development of personalized treatment strategies, illuminating the multifaceted nature of this complex condition.


Assuntos
Implantação do Embrião , Endométrio , Transcriptoma , Humanos , Feminino , Endométrio/metabolismo , Endométrio/patologia , Implantação do Embrião/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , MicroRNAs/genética , Regulação da Expressão Gênica/genética , Gravidez
10.
J Assist Reprod Genet ; 41(4): 947-956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470551

RESUMO

PURPOSE: To investigate the relationship between blood lead levels (BLLs) and IVF clinical outcomes in infertile females and to further explore the possible involvement of granulosa cell (GC) endoplasmic reticulum (ER) stress in the process. METHODS: One hundred twenty-three infertile women undergoing IVF cycles were included in the current study. All participants were divided into three (low, medium, and high) groups determined by BLL tertiles. Gonadotropin releasing hormone (GnRH) agonist regimen for ovarian stimulation was used for all patients, with follicular fluids being collected on the day of oocyte retrieval. Lactate dehydrogenase (LDH) levels in follicular fluid and the endoplasmic reticulum stress-signaling pathway of granulosa cells (GCs) were examined. RESULTS: The oocyte maturation rate and high-quality embryo rate on cleaved stage decreased significantly as BLL increased. For lead levels from low to high, live birth rate (68.29%, 56.10%, 39.02%; P=0.028) showed negative correlations with BLLs. Also, follicular fluid Pb level and LDH level was significantly higher in the high lead group versus the low group. Binomial regression analysis revealed significant negative correlation between BLLs and live birth rate (adjusted OR, 0.38; 95% CI, 0.15-0.95, P=0.038). Further analysis of the endoplasmic reticulum stress (ER stress) signaling pathway of GCs found that expressions of GRP78, total JNK, phosphorylated JNK, and CHOP increased and BCL-2 decreased with increasing BLLs. CONCLUSIONS: BLLs are negatively associated with final clinical outcomes in IVF patients that may be related to increased ER stress response and GC apoptosis. Thus, reducing Pb exposure before IVF procedures may improve final success rates.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fertilização in vitro , Líquido Folicular , Células da Granulosa , Infertilidade Feminina , Chumbo , Indução da Ovulação , Humanos , Feminino , Células da Granulosa/metabolismo , Adulto , Infertilidade Feminina/terapia , Infertilidade Feminina/sangue , Infertilidade Feminina/patologia , Chumbo/sangue , Chumbo/toxicidade , Gravidez , Líquido Folicular/metabolismo , Indução da Ovulação/métodos , Taxa de Gravidez , Recuperação de Oócitos , Nascido Vivo/genética , Oócitos/crescimento & desenvolvimento , Coeficiente de Natalidade
11.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542336

RESUMO

Endometriosis is a common estrogen-dependent condition that impacts 8-10% of women in their reproductive age, resulting in notable pain, morbidity, and infertility. Despite extensive research endeavors, the precise cause of endometriosis remains elusive, and the mechanisms contributing to its associated infertility are still not well comprehended. Natural killer (NK) cells, vital innate immune cells crucial for successful pregnancy, have been investigated for their potential involvement in the pathogenesis of endometriosis. Prior research has mainly concentrated on the diminished cytotoxicity of NK cells in endometrial fragments that evade the uterus. Interestingly, accumulating evidence suggests that NK cells play multifaceted roles in regulating the biology of endometrial stromal cells (ESCs), promoting local immune tolerance, influencing endometrial receptivity, oocyte development, and embryo implantation, thereby contributing to infertility and miscarriage in patients with endometriosis. In this comprehensive review, our goal is to summarize the current literature and provide an overview of the implications of NK cells in endometriosis, especially concerning infertility and pregnancy loss, under the influence of estrogen.


Assuntos
Aborto Espontâneo , Endometriose , Infertilidade Feminina , Gravidez , Humanos , Feminino , Endometriose/patologia , Aborto Espontâneo/etiologia , Aborto Espontâneo/patologia , Células Matadoras Naturais , Endométrio/patologia , Infertilidade Feminina/etiologia , Infertilidade Feminina/patologia , Estrogênios
12.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473810

RESUMO

Endometrial polyps (EPs) are benign overgrowths of the endometrial tissue lining the uterus, often causing abnormal bleeding or infertility. This study analyzed gene expression differences between EPs and adjacent endometrial tissue to elucidate intrinsic abnormalities promoting pathological overgrowth. RNA sequencing of 12 pairs of EPs and the surrounding endometrial tissue from infertile women revealed 322 differentially expressed genes. Protein-protein interaction network analysis revealed significant alterations in specific signaling pathways, notably Wnt signaling and vascular smooth muscle regulation, suggesting these pathways play critical roles in the pathophysiology of EPs. Wnt-related genes DKK1 and DKKL1 were upregulated, while GPC3, GREM1, RSPO3, SFRP5, and WNT10B were downregulated. Relevant genes for vascular smooth muscle contraction were nearly all downregulated in EPs, including ACTA2, ACTG2, KCNMB1, KCNMB2, MYL9, PPP1R12B, and TAGLN. Overall, the results indicate fundamental gene expression changes promote EP formation through unrestrained growth signaling and vascular defects. The intrinsic signaling abnormalities likely contribute to clinical symptoms of abnormal uterine bleeding and infertility common in EP patients. This analysis provides molecular insights into abnormal endometrial overgrowth to guide improved diagnostic and therapeutic approaches for this troublesome women's health condition. Confirmation of expanded cohorts and further investigations into implicated regulatory relationships are warranted.


Assuntos
Infertilidade Feminina , Pólipos , Doenças Uterinas , Humanos , Feminino , Infertilidade Feminina/patologia , Doenças Uterinas/patologia , Endométrio/patologia , Pólipos/patologia , Glipicanas , Peptídeos e Proteínas de Sinalização Intercelular
13.
J Assist Reprod Genet ; 41(4): 1087-1096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321265

RESUMO

PURPOSE: Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS: FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS: A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION: FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.


Assuntos
Exossomos , Líquido Folicular , MicroRNAs , Reserva Ovariana , Humanos , Feminino , Líquido Folicular/metabolismo , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Reserva Ovariana/genética , Adulto , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Transdução de Sinais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica/genética , Perfilação da Expressão Gênica
14.
Clin Radiol ; 79(1): e89-e93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923624

RESUMO

AIM: To evaluate the efficiency of last image capture in interpreting a hysterosalpingogram (HSG) when compared to conventional spot views; to confirm its validity in showing pathology; to establish its use as the preferred method; and to decrease the radiation dose to the patient. MATERIALS AND METHODS: The study population consisted of women aged ≥18 years. A standard technique was performed including additional five last image capture after each spot view. Every patient had two stacks of images, one with the exposure film and one with the last image capture. The images were interpreted separately (high-dose versus low-dose) and blindly by two radiologists with different levels of training assessing for uterine abnormalities, fallopian tube abnormalities, peritoneal spillage, and incidental findings. Inter-reading variability was calculated using Kohen's kappa. RESULTS: Discrepancies between exposure film and last image capture were detected in only a minority of cases for all variables. Except for the presence of strictures, there was at least substantial agreement between the readers and almost perfect agreement regarding peritoneal spillage and fallopian tube patency, both on exposure film and last image capture. CONCLUSION: Reduction in radiation dose without compromising the diagnostic efficacy of HSG is mandatory. If the study is of sufficient quality and deemed negative on last image capture, conventional spot view can be avoided. If further detail is required, standard spot views can still be obtained. Using last image capture instead of spot films has the potential to reduce the overall radiation dose by up to 78%.


Assuntos
Histerossalpingografia , Infertilidade Feminina , Humanos , Feminino , Adolescente , Adulto , Histerossalpingografia/métodos , Redução da Medicação , Infertilidade Feminina/diagnóstico por imagem , Infertilidade Feminina/patologia , Imageamento por Ressonância Magnética/métodos , Tubas Uterinas/diagnóstico por imagem , Tubas Uterinas/patologia
15.
Yi Chuan ; 45(6): 514-525, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340965

RESUMO

Oocyte maturation arrest (OMA) refers to a rare clinical phenomenon of oocyte maturation disorder caused by abnormal meiosis, which is also one of the primary causes of female infertility. The clinical manifestations of these patients are often characterized with failure to obtain mature oocytes after repeated ovulation stimulation and/or induced in vitro maturation. To date, mutations in PATL2, TUBB8 and TRIP13 have been demonstrated to be associated with OMA, but studies on the genetic-based factors and mechanisms of OMA are still incomplete. In this study, peripheral blood from 35 primary infertile women characterized with recurrent OMA during assisted reproductive technology (ART) were subjected to whole-exome sequencing (WES). By using Sanger sequencing and co-segregated analysis, we identified four pathogenic variants in TRIP13. Proband 1 had a homozygous missense mutation of c.859A>G appeared on the 9th exon, which resulted in substitution of Ile287 to valine (p.Ile287Val); proband 2 had a homozygous missense mutation of c.77A>G on the 1st exon, which resulted in substitution of His26 to arginine (p.His26Arg); and proband 3 had compound heterozygous mutations of c.409G>A and c.1150A>G on the 4th and 12th exon, which resulted in the substitutions of Asp137 to asparagine (p.Asp137Asn) and Ser384 to glycine (p.Ser384Gly) in the encoded protein respectively. Three of these mutations have not been reported previously. Further, transfection of plasmids harboring the respective mutated TRIP13 in HeLa cells resulted in changes in TRIP13 expression and abnormal cell proliferation as demonstrated by western blotting and cell proliferation assay respectively. This study further summarizes the TRIP13 mutations reported previously and expands the mutation spectrum of TRIP13 pathogenic variants, thereby providing a valuable reference for further research on the pathogenic mechanism of OMA associated with TRIP13 mutations.


Assuntos
Infertilidade Feminina , Humanos , Feminino , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Células HeLa , Oócitos/metabolismo , Mutação , Mutação de Sentido Incorreto , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
Front Cell Infect Microbiol ; 13: 1125640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284497

RESUMO

Background: The previous researches show that infertile patients have a higher incidence of endometritis and endometrial polyps, and the occurrence of these two diseases is related to changes in the microbiota of the genital tract. We aim to determine the composition and changing characteristics of the microbiota in the genital tract (especially the endometrium) of infertile patients with chronic endometritis or endometrial polyps, and find the correlation between it and the occurrence of diseases. Methods: This is a prospective study. We collected genital tract biopsy samples from 134 asymptomatic infertile patients receiving assisted reproductive therapy before embryo transfer. Through pathological examination and 16S ribosomal RNA(16S rRNA) sequencing, we determined the distribution of chronic endometritis and endometrial polyps in these patients, as well as their distribution of reproductive tract microorganisms. Results: Compared with the normal control group, the microbial group of reproductive tract in patients with chronic endometritis and endometrial polyps is changed, and there are significant species differences and relative abundance differences in the vagina, cervix and uterine cavity. Lactobacillus, the dominant flora of female genital tract, showed a change in abundance in patients with endometrial diseases. Endometrial microbiota composed of Staphylococcus, Gardnerella, Atopobium, Streptococcus, Peptostreptococcus, Chlamydia, Fusobacterium, Acinetobacter, etc. are related to chronic endometritis and endometrial polyps. Conclusion: The results showed that, compared with the normal control group, the endometrial microbiota of infertile patients with chronic endometritis or endometrial polyps did have significant changes in the relative abundance distribution of species, suggesting that changes in local microecology may be an important factor in the occurrence of disease, or even adverse pregnancy outcomes. The further study of endometrial microecology may provide a new opportunity to further improve the diagnosis and treatment strategy of chronic endometritis.


Assuntos
Endometrite , Infertilidade Feminina , Microbiota , Gravidez , Humanos , Feminino , Endometrite/microbiologia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Infertilidade Feminina/microbiologia , Infertilidade Feminina/patologia , Endométrio/microbiologia
17.
Clin Genet ; 104(4): 461-465, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211617

RESUMO

Normal oocyte maturation is an important requirement for the success of human reproduction, and defects in this process will lead to female infertility and repeated IVF/ICSI failures. In order to identify genetic factors that are responsible for oocyte maturation defect, we used whole exome sequencing in the affected individual with oocyte maturation defect from a consanguineous family and identified a homozygous variant c.853_861del (p.285_287del) in ZFP36L2. ZFP36L2 is a RNA-binding protein, which regulates maternal mRNA decay and oocyte maturation. In vitro studies showed that the variant caused decreased protein levels of ZFP36L2 in oocytes due to mRNA instability and might lead to the loss of its function to degrade maternal mRNAs. Previous study showed that the pathogenic variants in ZFP36L2 were associated with early embryonic arrest. In contrast, we identified a novel ZFP36L2 variant in the affected individual with oocyte maturation defect, which further broadened the mutational and phenotypic spectrum of ZFP36L2, suggesting that ZFP36L2 might be a genetic diagnostic marker for the affected individuals with oocyte maturation defect.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Oócitos/metabolismo , Oogênese/genética , Mutação , Homozigoto , Fatores de Transcrição/genética
18.
J Assist Reprod Genet ; 40(7): 1631-1638, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37145373

RESUMO

PURPOSE: The aim of this study was to compare women with recurrent implantation failure (RIF) and control group in terms of the associations between p16-positive senescent cells and certain types of immune cells in human endometrium during the mid-luteal phase METHODS: Immunohistochemical staining was performed in 116 endometrial biopsies taken from 57 women presenting RIF, and control group of 59 women who became pregnant after the first intracytoplasmic sperm injection. Endometrial tissue sections were stained immunohistochemically for p16 (Senescent cells), CD4 (T-helpers), CD8 (T-killers), CD14 (Monocytes), CD68 (Macrophages), CD56 (Natural killers), and CD79α (B-cells). The percentage of positively stained cells for each marker was calculated by HALO image analysis software. The quantity and the relationship between senescent cells and immune cells were assessed and compared between the two groups. RESULTS: The correlation coefficient was highest between senescent cells and CD4+ cells and was lowest between senescent cells and CD14+ cells in RIF women, similarly to the control group. However, most of the observed correlations among senescent and immune cells weaken notably or disappear in the RIF group. When comparing senescent cell-to-immune cell quantitative ratios, only p16+/CD4+ cell ratio was significantly higher in RIF women as compared with patients from the control group. CONCLUSION: Our study indicates that the quantity of senescent cells in human endometrium during the mid-luteal phase has the strongest association with the amount of T helpers. Moreover, the specificity of this association might have an important impact on the occurrence of RIF.


Assuntos
Implantação do Embrião , Infertilidade Feminina , Masculino , Gravidez , Feminino , Humanos , Sêmen , Endométrio/patologia , Infertilidade Feminina/patologia , Senescência Celular
19.
EMBO Mol Med ; 15(6): e17177, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37052235

RESUMO

Oocyte maturation arrest is one of the important causes of female infertility, but the genetic factors remain largely unknown. PABPC1L, a predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos prior to zygotic genome activation, plays a key role in translational activation of maternal mRNAs. Here, we identified compound heterozygous and homozygous variants in PABPC1L that are responsible for female infertility mainly characterized by oocyte maturation arrest in five individuals. In vitro studies demonstrated that these variants resulted in truncated proteins, reduced protein abundance, altered cytoplasmic localization, and reduced mRNA translational activation by affecting the binding of PABPC1L to mRNA. In vivo, three strains of Pabpc1l knock-in (KI) female mice were infertile. RNA-sequencing analysis showed abnormal activation of the Mos-MAPK pathway in the zygotes of KI mice. Finally, we activated this pathway in mouse zygotes by injecting human MOS mRNA, and this mimicked the phenotype of KI mice. Our findings reveal the important roles of PABPC1L in human oocyte maturation and add a genetic potential candidate gene to be screened for causes of infertility.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Camundongos , Animais , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Oócitos , Homozigoto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Front Endocrinol (Lausanne) ; 14: 1132621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923223

RESUMO

Background: Ovarian reserve is an important factor determining female reproductive potential. The number and quality of oocytes in patients with diminished ovarian reserve (DOR) are reduced, and even if in vitro fertilization-embryo transfer (IVF-ET) is used to assist their pregnancy, the clinical pregnancy rate and live birth rate are still low. Infertility caused by reduced ovarian reserve is still one of the most difficult clinical problems in the field of reproduction. Follicular fluid is the microenvironment for oocyte survival, and the metabolic characteristics of follicular fluid can be obtained by metabolomics technology. By analyzing the metabolic status of follicular fluid, we hope to find the metabolic factors that affect the quality of oocytes and find new diagnostic markers to provide clues for early detection and intervention of patients with DOR. Methods: In this research, 26 infertile women with DOR and 28 volunteers with normal ovarian reserve receiving IVF/ET were recruited, and their follicular fluid samples were collected for a nontargeted metabonomic study. The orthogonal partial least squares discriminant analysis model was used to understand the separation trend of the two groups, KEGG was used to analyze the possible metabolic pathways involved in differential metabolites, and the random forest algorithm was used to establish the diagnostic model. Results: 12 upregulated and 32 downregulated differential metabolites were detected by metabolic analysis, mainly including amino acids, indoles, nucleosides, organic acids, steroids, phospholipids, fatty acyls, and organic oxygen compounds. Through KEGG analysis, these metabolites were mainly involved in aminoacyl-tRNA biosynthesis, tryptophan metabolism, pantothenate and CoA biosynthesis, and purine metabolism. The AUC value of the diagnostic model based on the top 10 metabolites was 0.9936. Conclusion: The follicular fluid of patients with DOR shows unique metabolic characteristics. These data can provide us with rich biochemical information and a research basis for exploring the pathogenesis of DOR and predicting ovarian reserve function.


Assuntos
Infertilidade Feminina , Doenças Ovarianas , Reserva Ovariana , Gravidez , Humanos , Feminino , Líquido Folicular , Fertilização in vitro , Infertilidade Feminina/patologia , Taxa de Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...