Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.518
Filtrar
1.
Fish Shellfish Immunol ; 149: 109582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657880

RESUMO

Ammonia in aquatic environments is toxic to fish, directly impacting their growth performance and development. Activation of autophagy can facilitate intracellular component renewal and enhance an organism's adaptability to adverse environments. Therefore, this study investigates the impact of autophagy on the yellow catfish under acute ammonia stress. In this study, the yellow catfish intraperitoneally injected with 0.9 % sodium chloride were placed with 0 (CON group) and 125 (HA group) mg/L T-AN (Total ammonia nitrogen) dechlorinated water. The yellow catfish intraperitoneally injected with 30 mg/kg fish CQ (Chloroquine, HA + CQ group) and 1.5 mg/kg fish RAPA (rapamycin, HA + RAPA group) were placed in dechlorinated water containing 125 mg/L T-AN. The results showed that activation of autophagy by injecting with RAPA can alleviate oxidative stress (catalase, superoxide dismutase, total antioxidant capacity significantly increased, H2O2 content significantly decreased), and inflammatory response (pro-inflammatory factors TNF-α, MyD88, IL 1-ß gene expression decreased significantly), apoptosis (baxa, Bcl2, Tgf-ß, Smad2, Caspase3, Caspase 9 gene expression decreased significantly) induced by ammonia stress. In addition, activation of autophagy in yellow catfish can enhance ammonia detoxification by promoting the urea cycle and synthesis of glutamine (the mRNA level of CPS Ⅰ, ARG, OTC, ASS, ASL, and GS increased in the HA + RAPA group). The data above demonstrates that activating autophagy can alleviate oxidative stress, inflammatory responses, and cell apoptosis induced by ammonia stress. Therefore, enhancing autophagy is proposed as a potential strategy to mitigate the detrimental impacts of ammonia stress on yellow catfish.


Assuntos
Amônia , Apoptose , Autofagia , Peixes-Gato , Inflamação , Estresse Oxidativo , Animais , Peixes-Gato/imunologia , Amônia/toxicidade , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inflamação/veterinária , Inflamação/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Doenças dos Peixes/imunologia , Doenças dos Peixes/induzido quimicamente , Estresse Fisiológico/efeitos dos fármacos
2.
Fish Shellfish Immunol ; 149: 109575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663463

RESUMO

Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 µg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-ß1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1ß. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.


Assuntos
Apoptose , Carpas , Ácidos Cumáricos , Doenças dos Peixes , Inflamação , Ivermectina , Estresse Oxidativo , Animais , Carpas/imunologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/imunologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/veterinária , Apoptose/efeitos dos fármacos , Nefropatias/veterinária , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/imunologia , Rim/efeitos dos fármacos , Rim/patologia , Distribuição Aleatória , Ração Animal/análise
3.
Fish Shellfish Immunol ; 149: 109578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670413

RESUMO

MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Linguados , Regulação da Expressão Gênica , Imunidade Inata , MicroRNAs , Vibrioses , Vibrio , Animais , MicroRNAs/genética , MicroRNAs/imunologia , Linguados/imunologia , Linguados/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Vibrio/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Inflamação/imunologia , Inflamação/veterinária , Inflamação/genética , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo
4.
Open Vet J ; 14(1): 25-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633174

RESUMO

Background: Affection with Corynebacterium pseudotuberculosis (C. pseudotuberculosis) and development of cellulitis and/or abscess formation with cutaneous lymphangitis in cattle is rare to some extent, so literature about the biochemical changes that would accompany this infection is rare. Aim: In this context, the present study was designed to screen the effect of the infection with C. pseudotuberculosis cutaneous lymphangitis on the release of some immune molecules, organ functions, and redox state in Baladi cows. Methods: Fourteen Baladi cows from a small dairy farm in El-Behira, Egypt, were selected to complete this study. After bacteriological culture confirmation, seven of them were found suffering from cutaneous lesions due to infection with C. pseudotuberculosis (Diseased group), while the others were healthy (Healthy group). Serum samples were obtained to evaluate the presumptive changes in some clinicopathological parameters. Results: Serum analysis revealed a significant decrease in the levels of interferon-gamma and interleukin-17 as well as a significant decrement in the concentration of beta-defensin (ß-defensin) and lipocalin-2. While serum level of interleukin-10 recorded a significant increase in these animals when compared to healthy control animals. Concurrently, the affected animals recorded a significant elevation in serum levels of hepato-cardiac enzymes, urea, and creatinine in addition to disturbance in the serum redox state. Conclusion: In conclusion, infection with C. pseudotuberculosis cattle may disturb the defensive immune state, body organ function, and redox state of the animals.


Assuntos
Doenças dos Bovinos , Infecções por Corynebacterium , Linfangite , beta-Defensinas , Feminino , Bovinos , Animais , Linfangite/veterinária , Citocinas , Inflamação/veterinária , Doenças dos Bovinos/microbiologia , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/patologia , Infecções por Corynebacterium/veterinária
5.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633182

RESUMO

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Assuntos
Lesão Pulmonar Aguda , Aloe , Quitosana , Nanopartículas , Doenças dos Roedores , Ratos , Animais , Quitosana/química , Quitosana/farmacologia , NF-kappa B/farmacologia , Staphylococcus aureus , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Nanopartículas/química , Transdução de Sinais , Antibacterianos/farmacologia , Lesão Pulmonar Aguda/veterinária , Inflamação/veterinária , RNA Mensageiro/farmacologia
6.
Poult Sci ; 103(5): 103638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579575

RESUMO

Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 µL of water or APS (250 µg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1ß, and IL-6) and IFN-ß by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.


Assuntos
Galinhas , DNA Mitocondrial , Inflamação , Polissacarídeos , Doenças das Aves Domésticas , Animais , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , DNA Mitocondrial/metabolismo , Inflamação/veterinária , Inflamação/induzido quimicamente , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/induzido quimicamente , Feminino , Estresse Fisiológico/efeitos dos fármacos , Astrágalo/química , Distribuição Aleatória , Cardiopatias/veterinária , Cardiopatias/prevenção & controle , Cardiopatias/induzido quimicamente , Cardiopatias/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Open Vet J ; 14(3): 830-839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38682150

RESUMO

Background: Heat stress (HS) is a main abiotic stress factor for the health and welfare of animals. Recently, the use of nano-emulsion essential oils exhibited a promising approach to mitigate the detrimental impacts of abiotic and biotic stresses, ultimately contributing to the global aim of sustainable livestock production. Aim: The current study was piloted to assess the impact of eugenol nano-emulsion (EUGN) supplementation on growth performance, serum metabolites, redox homeostasis, immune response, and pro-inflammatory reactions in growing rabbits exposed to HS. Methods: A total of 100 male weaning rabbits aged 35 days were divided into 4 treatments. Rabbits were fed the diet with EUGN at different concentrations: 0 (control group; EUGN0), 50 (EUGN50), 100 (EUGN100), and 150 (EUGN150) mg/kg diet for 8 weeks under summer conditions. Results: Dietary EUGN levels significantly improved (p < 0.05) the body weight, body weight gain, carcass weights, and improved feed conversion ratio of rabbits. EUGN supplementation significantly increased Hb, platelets, and red blood cells , while the mean corpuscular hemoglobin and eosinophils were significantly decreased compared to the control one. Compared with EUGN0 stressed rabbits, all EUGN-experimental groups had a reduction in levels of total glycerides (p < 0.01), uric acid, total bilirubin, direct bilirubin, and gamma-glutamyl transpeptidase (p < 0.01). Total antioxidant capacity and glutathione peroxidase were significantly improved by EUGN treatment when compared to the control one (p < 0.01), while the EUGN100 exhibited the greatest levels of catalase. Lipid peroxidation (malondialdehyde) was significantly decreased in EUGN-treated groups. All pro-inflammatory cytokines serum interleukin 4, Interleukin 1ß, and tumor necrosis factor alpha were considerably decreased after dietary EUGN supplementation (p < 0.05). The serum concentrations of immunoglobulins (IgG and IgM) were significantly improved in rabbits of the EUGN150 group. Conclusion: This study shows that EUGN can be used as a novel feed additive to enhance the growth performance, immune variables, and antioxidants, and reduce the inflammatory response of growing rabbits exposed to thermal stress.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Eugenol , Homeostase , Animais , Coelhos , Eugenol/administração & dosagem , Eugenol/farmacologia , Masculino , Suplementos Nutricionais/análise , Ração Animal/análise , Homeostase/efeitos dos fármacos , Dieta/veterinária , Oxirredução/efeitos dos fármacos , Emulsões , Inflamação/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos
8.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563227

RESUMO

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipogênese/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/veterinária , Proliferação de Células
9.
Open Vet J ; 14(2): 730-737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549571

RESUMO

Background: Controlling apoptosis induced by oxidative stress in pancreatic ß-cells provides promising strategies for preventing and treating diabetes. Clinacanthus nutans leaves possess bioactive constituents with potential antioxidant and anti-diabetic properties. Aim: This study aimed to investigate the molecular mechanisms by which C. nutans extract protects pancreatic ß-cells from apoptotic damage in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced in male Wistar rats by intraperitoneal injection of 45 mg/kg STZ, followed by 28 days of treatment with C. nutans leaf extract and Glibenclamide as the standard drug. At the end of the study, blood samples were collected to measure glucose levels, oxidative stress markers, and inflammation. Pancreatic tissue was stained immunohistochemically to detect c-Jun N-terminal kinase (JNK) and Caspase-3 expression. Results: The administration of C. nutans leaf extract to diabetic rats significantly reduced fasting blood glucose, malondialdehyde, and tumor necrosis factor-α levels, while concurrently enhancing the activity of superoxide dismutase. The immunohistochemical studies revealed a decrease in the expression of JNK and caspase-3 in the pancreatic islets of diabetic rats. Conclusion: Clinacanthus nutans exhibits the potential to protect pancreatic ß-cells from apoptosis by suppressing oxidative stress and inflammation.


Assuntos
Diabetes Mellitus Experimental , Doenças dos Roedores , Ratos , Masculino , Animais , Estreptozocina/uso terapêutico , Caspase 3/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/veterinária , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
Open Vet J ; 14(2): 664-673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549578

RESUMO

Background: Inflammation caused by Opisthorchis viverrini infection increases the risk of cholangitis, cholecystitis, and leads to bile duct cancer (cholangiocarcinoma or CCA). However, only certain infected individuals are susceptible to CCA, suggesting the involvement of host factors in cancer development. In addition, there are reports indicating differences in the locations of CCA. Aim: This study aims to investigate cellular inflammatory responses in the common bile duct (CB), intrahepatic bile duct (IHB), and gallbladder (GB) in susceptible and non-susceptible hosts following O. viverrini infection. Methods: Thirty Syrian golden hamsters (a susceptible host) and 30 BALB/c mice (a non-susceptible host) infected with O. viverrini were studied at six time points (five animals per group). Histopathological evaluations were conducted on samples from the IHB, CB, and GB. Inflammatory cell infiltration was quantitatively assessed and compared between groups and time points. Statistical analysis was performed using one-way ANOVA, with a significance level of p < 0.05. Results: Inflammation was significantly more pronounced in the IHB compared to the other two biliary locations. In comparison between susceptible and non-susceptible hosts, the intensity of inflammation was higher in the OV+H group than in the OV+M group (p < 0.05). Conclusion: This study highlights the association between host response to inflammation, tissue location, and host susceptibility, with the IHB showing particular susceptibility to inflammation and pathological changes. These findings contribute to our understanding of the increased risk of CCA in susceptible hosts.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Opistorquíase , Opisthorchis , Doenças dos Roedores , Cricetinae , Camundongos , Animais , Opistorquíase/complicações , Opistorquíase/patologia , Opistorquíase/veterinária , Opisthorchis/fisiologia , Ductos Biliares Intra-Hepáticos/patologia , Mesocricetus , Colangiocarcinoma/patologia , Colangiocarcinoma/veterinária , Inflamação/veterinária , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/veterinária
11.
Fish Shellfish Immunol ; 149: 109474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513914

RESUMO

Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.


Assuntos
Carpas , Hemoglobinas , Hepatócitos , Animais , Carpas/imunologia , Carpas/genética , Inflamação/veterinária , Inflamação/imunologia , Morte Celular , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos
12.
Fish Shellfish Immunol ; 149: 109522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548190

RESUMO

Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.


Assuntos
Berberina , Doenças dos Peixes , Estresse Oxidativo , Replicação Viral , Berberina/farmacologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Replicação Viral/efeitos dos fármacos , Inflamação/imunologia , Inflamação/veterinária , Antivirais/farmacologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Ranavirus/fisiologia , Linhagem Celular
13.
Res Vet Sci ; 171: 105231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513460

RESUMO

Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-ß. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-ß modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.


Assuntos
Escherichia coli , Doenças dos Suínos , Animais , Suínos , Escherichia coli/metabolismo , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Propionatos , Leucócitos Mononucleares/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis , Acetatos , Fator de Crescimento Transformador beta , Inflamação/veterinária , Mucosa Intestinal/metabolismo
14.
Fish Shellfish Immunol ; 148: 109511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499215

RESUMO

Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.


Assuntos
Carpas , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Animais , NF-kappa B/metabolismo , Suplementos Nutricionais , Imunidade Inata , Carpas/metabolismo , Dieta/veterinária , Inflamação/veterinária , Ração Animal/análise , Proteínas de Peixes/genética
15.
Poult Sci ; 103(5): 103586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442474

RESUMO

Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.


Assuntos
Galinhas , Ácido Clorogênico , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Lipopolissacarídeos , NF-kappa B , Doenças das Aves Domésticas , Animais , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , NF-kappa B/metabolismo , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Suplementos Nutricionais/análise , Dieta/veterinária , Inflamação/veterinária , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Distribuição Aleatória , Ração Animal/análise , Intestinos/efeitos dos fármacos , Intestinos/patologia , Enteropatias/veterinária , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Enteropatias/prevenção & controle , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem
16.
Vet J ; 304: 106103, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522779

RESUMO

The objectives of this study were to assess: 1) differences in the metabolic status, systemic inflammation, daily milk yield, and daily rumination time between Holstein dairy cows with different vaginal discharge scores (VDS) in the first 7±3 DIM, and 2) effects of intrauterine dextrose infusion on metabolic status, systemic inflammation, daily milk yield and daily rumination time in dairy cows with VDS4 and VDS5. Cows (n=641) from a farm located in central Pennsylvania were screened at 7±3 DIM (study d 0) to assess vaginal discharge scores. Vaginal discharge was scored using a five-point scale (i.e., 1- clear fluid, 2- <50% white purulent fluid, 3- >50% white purulent fluid, 4- red-brownish fluid without fetid smell, and 5- fetid red-brownish watery fluid). Cows with VDS4 and VDS5 were blocked by parity and randomly assigned to one of two treatment groups: 1) CONV (VDS4 n=15; VDS5 n= 23): two injections of ceftiofur (per label; 6.6 mg/Kg) 72 h apart; and 2) DEX (VDS4 n=15; VDS5 n=22): three intrauterine infusions of a 50% dextrose solution (1 L/cow) every 24 h. Cows that presented a VDS 1, 2, and 3 were categorized as normal vaginal discharge animals (NOMVDS; n=35) and were randomly selected and matched by parity to CONV and DEX cows. Daily milk yield and rumination time for the first 150 DIM were collected from on-farm computer records. Blood samples were collected to assess haptoglobin (HP) and ß-hydroxybutyrate (BHB) concentrations at study d 0, d 7, and d 14 relative to enrollment. Subclinical ketosis was defined as having a BHB concentration >1.2 mmol/dL at any of the sampling points. The data were analyzed using the MIXED and GLIMMIX procedures of SAS as a randomized complete block design. When comparing cows with different VDS (i.e., NOMVDS, VDS4, VDS5) separately, cows with VDS5 had the highest concentration of HP at enrollment compared to cows with VDS4 and NOMVDS; however, cows with VDS4 had higher concentrations of HP compared to cows with NOMVDS. Cows with VDS4 or VDS5 had a higher incidence of subclinical ketosis compared to cows with NOMVDS (p=0.005; VDS4= 62.08±9.16%; VDS5=74.44±6.74%; NOMVDS=34.36±8.53%). Similarly, daily milk yield (p<.0001; VDS4=30.17±1.32 kg/d; VDS5=27.40±1.27 kg/d; NOMVDS=35.14±1.35 kg/d) and daily rumination time (p=0.001; VDS4=490.77±19.44 min; VDS5=465±16.67 min; NOMVDS=558.29±18.80 min) was lower for cows with VDS4 and VDS5 compared to cows with NOMVDS at 7±3 days in milk. When analyzing HP concentration between treatment groups in cows with VDS4 (p=0.70), VDS5 (p=0.25), or VDS4 and VDS5 combined (p=0.31), there was no difference in HP concentration by study d 14 between treatment groups. Interestingly, when only cows with VDS4 were considered for treatment, both treatments, DEX and CONV, increased the daily milk yield to the levels of NOMVDS cows by 14 days in milk. On the other hand, when only cows with VDS5 were considered for treatment, cows treated with DEX produced, on average, 4.48 kg/d less milk in the first 150 days in milk compared to cows treated with CONV or cows that had NOMVDS. Similarly, when cows with either VDS4 or VDS5 were considered for treatment, DEX treatment also impaired milk yield. These results suggest that cows with either VDS 4 or 5 have an altered inflammatory status, and decreased milk yield and rumination compared to cows with NOMVDS. Furthermore, DEX treatment may have similar effects on daily milk yield and metabolic status compared to CONV in cows with VDS4, while DEX is not recommended for cows with VDS5.


Assuntos
Doenças dos Bovinos , Endometrite , Cetose , Descarga Vaginal , Gravidez , Feminino , Animais , Bovinos , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Endometrite/tratamento farmacológico , Endometrite/veterinária , Leite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/veterinária , Descarga Vaginal/tratamento farmacológico , Descarga Vaginal/veterinária , Descarga Vaginal/metabolismo , Glucose , Cetose/veterinária , Lactação , Doenças dos Bovinos/tratamento farmacológico , Período Pós-Parto
17.
Vet Med Sci ; 10(3): e1412, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38504633

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES: The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS: We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS: The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS: This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.


Assuntos
Atractylodes , Lipopolissacarídeos , Animais , Lipopolissacarídeos/toxicidade , Galinhas , Polissacarídeos/farmacologia , Apoptose , Proliferação de Células , Inflamação/veterinária
18.
Vet Med Sci ; 10(3): e1409, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516822

RESUMO

BACKGROUND: After submaximal exercise, blood values of eventing horses show physiological reactions. OBJECTIVES: This prospective longitudinal study investigated blood parameters in 20 elite eventing horses before and after two-four-star cross-country rides. METHODS: Using a mixed model adjusting for plasma volume shift, we assessed exercise-dependent parameters and compared blood values with reference ranges for healthy horses at rest. RESULTS: Following exercise, cortisol, triiodothyronine (T3) and thyroxine (T4) showed short-term increases, and superoxide-dismutase showed a small short-term increase. Hepatic values showed short-term (haemoglobin [HGB], globulins) or sustained increases (bilirubin, glutamate dehydrogenase, alanine aminotransferase). Digestion-related parameters showed small short-term increases (α-amylase, triglycerides) or decreases (cholesterol, DGGR-lipase), apparent through plasma shift adjustment. Zinc decreased in the short term, and iron showed a delayed decrease. White blood cell count increased persistently after training, whereas serum amyloid A remained unchanged. CONCLUSIONS: Exercised eventing horses had consistently elevated HGB and cortisol levels 10 and 30 min after submaximal exercise, exceeding the reference ranges for healthy horses at rest. Exercise activates the hypothalamic-pituitary-adrenocortical and hypothalamic-pituitary-thyroid axes. Antioxidant activity was observed. Increased energy requirements led to the mobilization of energy reserves, and a sustained increase in liver enzymes indicated hepatocellular injury. Mild haemolysis suggested increased muscle metabolism, whereas signs of inflammation were subtle. Further research is needed to identify which horses deviate from mean values.


Assuntos
Doenças dos Cavalos , Volume Plasmático , Animais , Cavalos , Hidrocortisona , Inflamação/veterinária , Estudos Longitudinais , Estresse Oxidativo , Estudos Prospectivos
19.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500105

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Cão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças dos Roedores , Ratos , Animais , Cães , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/veterinária , Microglia , Macrófagos , Inflamação/veterinária , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Mesenquimais/métodos
20.
Vet Microbiol ; 291: 110032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430715

RESUMO

In recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B. subtilis-597 for 14 days before being intranasally inoculated with a swine influenza A H1N2 strain (1 C.2 lineage). Throughout the study, we collected fecal samples, blood samples, and nasal swabs to examine viral shedding and immune gene expression. After seven days of infection, the pigs were euthanized, and lung and ileum tissues were collected for gene expression analysis and pathological examination. Our findings indicate that the administration of B. subtilis-597 exhibit potential in reducing lung lesions, possibly attributable to a general suppression of the immune system as indicated by reduced C-reactive protein (CRP) levels in serum, decreased expression of interferon-stimulated genes (ISGs), and localized reduction of the inflammatory marker serum amyloid A (SAA) in ileum tissue. Notably, the immune-modulatory effects of B. subtilis-597 appeared to be unrelated to the gastrointestinal microbiota, as the composition remained unaltered by both the influenza infection and the administration of B. subtilis-597.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Probióticos , Doenças dos Suínos , Suínos , Animais , Humanos , Bacillus subtilis , Probióticos/farmacologia , Infecções por Orthomyxoviridae/veterinária , Inflamação/veterinária , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA