Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.075
Filtrar
1.
J Cell Mol Med ; 28(15): e18579, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086142

RESUMO

The serine protease inhibitor clade E member 1 (SERPINE1) is a key modulator of the plasminogen/plasminase system and has been demonstrated to promote tumor progression and metastasis in various tumours. However, although much literature has explored the cancer-promoting mechanism of SERPINE1, the pan-cancer analyses of its predictive value and immune response remain unexplored. The differential expression, and survival analysis of SERPINE1 expression in multiple cancers were analysed using The Cancer Genome Atlas and Genotype-Tissue Expression database. Kaplan-Meier (K-M) plotter and survival data analysis were used to analyze the prognostic value of SERPINE1 expression, including overall survival (OS), disease-specific survival, disease-free interval and progression-free interval and investigated the relationship of SERPINE1 expression with microsatellite instability. We further analysed the correlation between the expression of SERPINE1 and immune infiltration. The Kyoto Encyclopaedia of Genes and Genomes pathway was used for enrichment analysis, and the Gene Set Enrichment Analysis (GSEA) database was used to perform pathway analysis. Finally, in vitro experiments demonstrated that knockdown or overexpression of SERPINE1 could alter the proliferation and migration of gastric cancer (GC) cells. The results indicated that SERPINE1 expression levels different significantly between cancer and normal tissues, meanwhile, it was highly expressed in various cancers. By analysing online data, it has been observed that the gene SERPINE1 exhibits heightened expression levels across a variety of human cancers, significantly impacting patient survival rates. Notably, the presence of SERPINE1 was strongly associated with decrease OS and disease-free survival in individuals diagnosed with GC. Furthermore, an observed link indicates that higher levels of SERPINE expression are associated with increased infiltration of immune cells in GC. Finally, in vitro experiments showed that knockdown or overexpression of SERPINE1 inhibited the growth, and migration, of GC cells. SERPINE1expression potentially represents a novel prognostic biomarker due to its significant association with immune cell infiltration in GC. This study shows that SERPINE1 is an oncogene that participates in regulating the immune infiltration and affecting the prognosis of patients in multiple cancers, especially in GC. These findings underscore the importance of further investigating the role of SERPINE1 in cancer progression and offer a promising direction for the development of new therapeutic strategies.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inibidor 1 de Ativador de Plasminogênio , Neoplasias Gástricas , Humanos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Prognóstico , Proliferação de Células/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular/genética , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites
2.
Bull Exp Biol Med ; 177(2): 177-180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39090468

RESUMO

The level of cytokine expression was measured in human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells exposed to 500 ng/ml alkylating mutagen mitomycin C (MMC) and 5 µM atorvastatin. It was found that treatment of MMC-exposed HCAEC with atorvastatin decreased secretion of macrophage migration inhibitory factor (MIF), IL-8, and IL8 gene expression, but increased the expression of SERPINE1 gene encoding the PAI-1 protein. In atorvastatin-treated HITAEC, the concentration of MIF protein and the expression of the IL8 and SERPINE1 genes were reduced. We can conclude that atorvastatin prevents proinflammatory activation of endothelial cells cultured under conditions of genotoxic load. However, the molecular mechanisms of this effect require further research.


Assuntos
Atorvastatina , Vasos Coronários , Células Endoteliais , Interleucina-8 , Mitomicina , Inibidor 1 de Ativador de Plasminogênio , Humanos , Atorvastatina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Mitomicina/farmacologia , Interleucina-8/metabolismo , Interleucina-8/genética , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/citologia , Anti-Inflamatórios/farmacologia , Células Cultivadas , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo
3.
Front Immunol ; 15: 1419133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165353

RESUMO

Introduction: Gastric cancer (GC) remains a major global health threat ranking as the fifth most prevalent cancer. Hypoxia, a characteristic feature of solid tumors, significantly contributes to the malignant progression of GC. Mitochondria are the major target of hypoxic injury that promotes mitochondrial dysfunction during the development of cancers including GC. However, the gene signature and prognostic model based on hypoxia- and mitochondrial dysfunction-related genes (HMDRGs) in the prediction of GC prognosis have not yet been established. Methods: The gene expression profile datasets of stomach cancer patients were retrieved from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Prognostic genes were selected using Least Absolute Shrinkage and Selection Operator Cox (LASSO-Cox) regression analysis to construct a prognostic model. Immune infiltration was evaluated through ESTIMATE, CIBERSORT, and ssGSEA analyses. Tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) were utilized to explore implications for immunotherapy. Furthermore, in vitro experiments were conducted to validate the functional roles of HMDRGs in GC cell malignancy. Results: In this study, five HMDRGs (ZFP36, SERPINE1, DUSP1, CAV1, and AKAP12) were identified for developing a prognostic model in GC. This model stratifies GC patients into high- and low-risk groups based on median risk scores. A nomogram predicting overall survival (OS) was constructed and showed consistent results with observed OS. Immune infiltration analysis indicated that individuals in the high-risk group tend to exhibit increased immune cell infiltration. Additionally, analysis of cancer immunotherapy responses revealed that high-risk group patients exhibit poorer responses to cancer immunotherapy compared to the low-risk group. Immunohistochemistry (IHC) staining indicated that the expression levels of HMDRGs were remarkably correlated with GC, of which, SERPINE1 displayed the most pronounced up-regulation, while ZFP36 exhibited the most notable down-regulation in GC patients. Furthermore, in vitro investigation validated that SERPINE1 and ZFP36 contribute to the malignant processes of GC cells correlated with mitochondrial dysfunction. Conclusions: This study presents a novel and efficient approach to evaluate GC prognosis and immunotherapy efficacy, and also provides insights into understanding the pathogenesis of GC.


Assuntos
Biomarcadores Tumorais , Mitocôndrias , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade , Prognóstico , Mitocôndrias/metabolismo , Mitocôndrias/genética , Biomarcadores Tumorais/genética , Análise de Célula Única , Masculino , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Feminino , Transcriptoma , Perfilação da Expressão Gênica , Inibidor 1 de Ativador de Plasminogênio/genética , Pessoa de Meia-Idade , Análise de Sequência de RNA , Linhagem Celular Tumoral
4.
Sci Rep ; 14(1): 15324, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961143

RESUMO

Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.


Assuntos
Biologia Computacional , Cardiomiopatias Diabéticas , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Cardiomiopatias Diabéticas/genética , Biologia Computacional/métodos , Animais , Camundongos , Mapas de Interação de Proteínas/genética , Humanos , Inibidor 1 de Ativador de Plasminogênio/genética , Perfilação da Expressão Gênica , Receptor IGF Tipo 1/genética , Ontologia Genética , Regulação da Expressão Gênica
5.
Front Immunol ; 15: 1410948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975344

RESUMO

Background: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting more than 10% of the global adult population. It is classified into Th1, Th2, and Th17 endotypes and eosinophilic and non-eosinophilic types. Th2-based inflammation and eosinophilic CRS (ECRS) are associated with tissue remodeling and fibrinolytic system impairment. Objective: To elucidate the role of eosinophils in inducing fibrin deposition in CRS nasal polyp tissues and explore potential regulatory mechanisms. Methods: We analyzed the expression of genes related to the serpin family and fibrinolytic system using Gene Expression Omnibus and Next-generation sequencing data. Differentially expression genes (DEGs) analysis was used to compare control and nasal polyp tissues, followed by KEGG and Gene ontology (GO) analysis. We measured the expression and correlation of plasminogen activator-1 (PAI-1), tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA), and urokinase plasminogen activator surface receptor (u-PAR) in CRS tissues, and evaluated the effect of eosinophils on the fibrinolytic system using a cytokine array and co-culture. Results: Nasal polyp tissues showed upregulated PAI-1, u-PA, and u-PAR expression and downregulated t-PA expression. Fibrinolytic system-related genes positively correlated with Th2 cytokines, except for t-PA. Eosinophil-derived Chitinase-3-like protein 1 (CHI3L1) increased PAI-1 expression and decreased t-PA levels in fibroblasts and epithelial cells. The inhibition of CHI3L1 suppresses these alterations. Conclusion: CHI3L1 contributes to fibrin deposition by impairing the fibrinolytic system during nasal polyp formation. The regulation of CHI3L1 expression may inhibit fibrin deposition and edema in ECRS, presenting a potential treatment for this condition.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Eosinófilos , Fibrinólise , Pólipos Nasais , Inibidor 1 de Ativador de Plasminogênio , Rinite , Sinusite , Humanos , Pólipos Nasais/metabolismo , Pólipos Nasais/imunologia , Sinusite/metabolismo , Sinusite/imunologia , Rinite/metabolismo , Rinite/imunologia , Doença Crônica , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Eosinófilos/imunologia , Eosinófilos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/genética , Citocinas/metabolismo , Rinossinusite
6.
Anticancer Res ; 44(8): 3269-3276, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060075

RESUMO

BACKGROUND/AIM: How tumors regulate the genes of the coagulome is crucial for cancer-associated thrombosis and the occurrence of venous thromboembolic complications in patients with cancer. We have previously reported potent yet complex effects of glucocorticoids (GC) on the expression of three genes that play a key role in the regulation of thrombin/plasmin activation (F3, PLAU, and SERPINE1). This study aimed to extend the investigation of GC effects to the whole tumor coagulome and assess the resulting impact on the ability of cancer cells to activate thrombin and plasmin. MATERIALS AND METHODS: Cancer RNA expression data were retrieved from various sources. Additionally, oral squamous cell carcinoma (OSCC) cells exposed to GC in vitro were analyzed using QPCR, enzymatic assays measuring thrombin and urokinase-type Plasminogen Activator (uPA) activity, and D-dimer concentrations. RESULTS: Our findings highlight the potent and specific stimulatory effect of GC on SERPINE1 expression across different types of cancer. Consistently, GC were found to inhibit uPA proteolytic activity and reduce the concentrations of D-dimers in OSCC in vitro. CONCLUSION: Fibrinolysis inhibition is a key consequence of cancer cell exposure to GC, possibly leading to the stabilization of the fibrin clot in cancer.


Assuntos
Fibrinólise , Glucocorticoides , Inibidor 1 de Ativador de Plasminogênio , Humanos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Fibrinólise/efeitos dos fármacos , Glucocorticoides/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Trombina/metabolismo , Trombina/farmacologia , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Ativação Transcricional/efeitos dos fármacos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Coagulação Sanguínea/efeitos dos fármacos
7.
Int J Biol Macromol ; 275(Pt 2): 133592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960265

RESUMO

Antisense long non-coding RNAs (lncRNAs) played a crucial role in the precise regulation of essential biological processes and were abundantly present in animals. Many of these antisense lncRNAs have been identified as key roles in adipose tissue accumulation in livestock, underscoring their vital role in the regulation of animal physiology. Nonetheless, the functional roles of these antisense lncRNAs in regulating adipogenesis and the specific molecular mechanisms these processes were still unclear, which was a significant gap in current scientific research. In this study, we identified and characterized SERPINE1AS2, a novel natural antisense lncRNA, was highly expressed in the fat tissues of adult cattle and calves. Its expression gradually increased during the differentiation of intramuscular adipocytes. Through functional studies, we observed that knockdown of SERPINE1AS2 inhibited the proliferation and adipogenesis of intramuscular adipocytes, while overexpression of SERPINE1AS2 produced the opposite effect. RNA sequencing (RNA-seq) analysis following SERPINE1AS2 knockdown revealed that differential expression genes (DEGs) were significantly enriched in key signaling pathways, notably the MAPK, Wnt, and mTOR signaling pathways. Furthermore, SERPINE1AS2 interacted with Plasminogen Activator Inhibitor-1 (PAI1), forming RNA dimers through complementary base pairing and consequently influencing PAI1 expression. Interestingly, studies on PAI1 suggested that reduced expression facilitated adipogenesis and the downregulation of PAI1 alleviated the inhibitory effect of reduced SERPINE1AS2 on adipogenesis. In summary, this study suggested that SERPINE1AS2 played a crucial role in the adipogenesis of bovine intramuscular adipocytes by modulating the expression of PAI1. SERPINE1AS2 also regulated adipogenesis by engaging in the MAPK, Wnt, and mTOR signaling pathways. Our results suggested that SERPINE1AS2 had a complex regulatory mechanism on adipogenesis in intramuscular adipocytes.


Assuntos
Adipócitos , Adipogenia , Inibidor 1 de Ativador de Plasminogênio , RNA Longo não Codificante , Adipogenia/genética , Animais , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Bovinos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Regulação da Expressão Gênica , Diferenciação Celular/genética , Proliferação de Células/genética , Transdução de Sinais , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia
8.
Aging (Albany NY) ; 16(14): 11185-11207, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39074262

RESUMO

BACKGROUND: Recent advances in immunotherapy have elicited a considerable amount of attention as viable therapeutic options for several cancer types, the present study aimed to explore the immunotherapy-related genes (IRGs) and develop a prognostic risk signature in gastric carcinoma (GC) based on these genes. METHODS: IRGs were identified by comparing immunotherapy responders and non-responders in GC. Then, GC patients were divided into distinct subtypes by unsupervised clustering method based on IRGs, and the differences in immune characteristics and prognostic stratification between these subtypes were analyzed. An immunotherapy-related risk score (IRRS) signature was developed and validated for risk classification and prognosis prediction based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Besides, the predictive ability of the IRRS in immunotherapy response was also determined. RESULTS: A total of 63 IRGs were identified, and 371 GC patients were stratified into two molecular subgroups with significantly different prognosis and immune characteristics. Then, an IRRS signature comprised of three IRGs (CENP8, NRP1, and SERPINE1) was constructed to predict the prognosis of GC patients in TCGA cohort. Importantly, external validation in multiple GEO cohorts further confirmed the universal applicability of the IRRS in distinct populations. Furthermore, we found that the IRRS was significantly correlated with patient's responsiveness to immunotherapy, GC patients with low IRRS are more likely to benefit from existing immunotherapy. CONCLUSIONS: The risk score could serve as a robust prognostic biomarker, provide therapeutic benefits for immunotherapy and may be helpful for clinical decision making in GC patients.


Assuntos
Imunoterapia , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Biomarcadores Tumorais/genética , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Inibidor 1 de Ativador de Plasminogênio/genética , Pessoa de Meia-Idade , Perfilação da Expressão Gênica
9.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L319-L326, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860847

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PAs). Central to the remodeling process is a switch of pulmonary vascular cells to a proliferative, apoptosis-resistant phenotype. Plasminogen activator inhibitors-1 and -2 (PAI-1 and PAI-2) are the primary physiological inhibitors of urokinase-type and tissue-type plasminogen activators (uPA and tPA), but their roles in PAH are unsettled. Here, we report that: 1) PAI-1, but not PAI-2, is deficient in remodeled small PAs and in early-passage PA smooth muscle and endothelial cells (PASMCs and PAECs) from subjects with PAH compared with controls; 2) PAI-1-/- mice spontaneously develop pulmonary vascular remodeling associated with upregulation of mTORC1 signaling, pulmonary hypertension (PH), and right ventricle (RV) hypertrophy; and 3) pharmacological inhibition of uPA in human PAH PASMCs suppresses proproliferative mTORC1 and SMAD3 signaling, restores PAI-1 levels, reduces proliferation, and induces apoptosis in vitro, and prevents the development of SU5416/hypoxia-induced PH and RV hypertrophy in vivo in mice. These data strongly suggest that downregulation of PAI-1 in small PAs promotes vascular remodeling and PH due to unopposed activation of uPA and consequent upregulation of mTOR and transforming growth factor-ß (TGF-ß) signaling in PASMCs, and call for further studies to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate and/or reverse pulmonary vascular remodeling and PH.NEW & NOTEWORTHY This study identifies a novel role for the deficiency of plasminogen activator inhibitor (PAI)-1 and resultant unrestricted uPA activity in PASMC remodeling and PH in vitro and in vivo, provides novel mechanistic link from PAI-1 loss through uPA-induced Akt/mTOR and TGFß-Smad3 upregulation to pulmonary vascular remodeling in PH, and suggests that inhibition of uPA to rebalance the uPA-PAI-1 tandem might provide a novel approach to complement current therapies used to mitigate this pulmonary vascular disease.


Assuntos
Hipertensão Pulmonar , Músculo Liso Vascular , Inibidor 1 de Ativador de Plasminogênio , Remodelação Vascular , Animais , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proliferação de Células , Camundongos Knockout , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Apoptose , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/genética
10.
Geroscience ; 46(5): 5003-5014, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38937415

RESUMO

Diabetes mellitus type 2 (T2D) is associated with accelerated biological aging and the increased risk of onset of other age-related diseases. Epigenetic changes in DNA methylation levels have been found to serve as reliable biomarkers for biological aging. This study explores the relationship between various epigenetic biomarkers of aging and diabetes risk using longitudinal data. Data from the Swedish Adoption/Twin Study of Aging (SATSA) was collected from 1984 to 2014 and included 536 individuals with at least one epigenetic measurement. The following epigenetic biomarkers of aging were employed: DNAm PAI-1, DNAmTL, DunedinPACE, PCHorvath1, PCHorvath2, PCHannum, PCPhenoAge, and PCGrimAge. Firstly, longitudinal analysis of biomarker trajectories was done. Secondly, linear correlations between the biomarkers and time to diabetes were studied within individuals developing diabetes. Thirdly, Cox proportional hazards (PH) models were used to assess the associations between these biomarkers and time of diabetes diagnosis, with adjustments for chronological age, sex, education, smoking, blood glucose, and BMI. The longitudinal trajectories of the biomarkers revealed differences between individuals with and without diabetes. Smoothened average curves for DunedinPACE and DNAm PAI-1 were higher for individuals with diabetes around the age 60-70, compared to controls. Likewise, DunedinPACE and DNAm PAI-1 were higher closer to diabetes onset. However, no significant associations were found between the epigenetic biomarkers of aging and risk of diabetes in Cox PH models. Our findings suggest the potential value of developing epigenetic biomarkers specifically tailored to T2D, should we wish to model and explore the potential for predicting the disease.


Assuntos
Envelhecimento , Metilação de DNA , Diabetes Mellitus Tipo 2 , Epigênese Genética , Humanos , Suécia/epidemiologia , Feminino , Masculino , Estudos Longitudinais , Epigênese Genética/genética , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Idoso , Envelhecimento/genética , Metilação de DNA/genética , Biomarcadores/sangue , Modelos de Riscos Proporcionais , Inibidor 1 de Ativador de Plasminogênio/genética
11.
Front Endocrinol (Lausanne) ; 15: 1372518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800486

RESUMO

Background: Aging has always been considered as a risk factor for neurodegenerative diseases, but there are individual differences and its mechanism is not yet clear. Epigenetics may unveil the relationship between aging and neurodegenerative diseases. Methods: Our study employed a bidirectional two-sample Mendelian randomization (MR) design to assess the potential causal association between epigenetic aging and neurodegenerative diseases. We utilized publicly available summary datasets from several genome-wide association studies (GWAS). Our investigation focused on multiple measures of epigenetic age as potential exposures and outcomes, while the occurrence of neurodegenerative diseases served as potential exposures and outcomes. Sensitivity analyses confirmed the accuracy of the results. Results: The results show a significant decrease in risk of Parkinson's disease with GrimAge (OR = 0.8862, 95% CI 0.7914-0.9924, p = 0.03638). Additionally, we identified that HannumAge was linked to an increased risk of Multiple Sclerosis (OR = 1.0707, 95% CI 1.0056-1.1401, p = 0.03295). Furthermore, we also found that estimated plasminogen activator inhibitor-1(PAI-1) levels demonstrated an increased risk for Alzheimer's disease (OR = 1.0001, 95% CI 1.0000-1.0002, p = 0.04425). Beyond that, we did not observe any causal associations between epigenetic age and neurodegenerative diseases risk. Conclusion: The findings firstly provide evidence for causal association of epigenetic aging and neurodegenerative diseases. Exploring neurodegenerative diseases from an epigenetic perspective may contribute to diagnosis, prognosis, and treatment of neurodegenerative diseases.


Assuntos
Envelhecimento , Epigênese Genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Neurodegenerativas , Humanos , Envelhecimento/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/epidemiologia , Predisposição Genética para Doença , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Inibidor 1 de Ativador de Plasminogênio/genética , Fatores de Risco , Doença de Parkinson/genética , Doença de Parkinson/epidemiologia
12.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791267

RESUMO

Cardiovascular diseases, among which includes coronary artery disease, represent one of the most important causes of mortality and morbidity worldwide. Research aimed at determining the risk factors involved recognizes a group of "traditional" risk factors, but also more recent studies identified over 100 "novel" ones which may have a role in the disease. Among the latter is the thrombophilia profile of a patient, a pathology well-established for its involvement in venous thromboembolism, but with less studied implications in arterial thrombosis. This paper reviews the literature, explaining the pathophysiology of the thrombophilia causes associated most with coronary thrombosis events. Results of several studies on the subject, including a meta-analysis with over 60,000 subjects, determined the significant involvement of factor V Leiden, prothrombin G20210A mutation, plasminogen activator inhibitor-1 and antiphospholipid syndrome in the development of coronary artery disease. The mechanisms involved are currently at different stages of research, with some already established and used as therapeutic targets.


Assuntos
Doença da Artéria Coronariana , Fator V , Trombofilia , Trombose , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/patologia , Trombofilia/genética , Trombofilia/etiologia , Trombose/genética , Trombose/etiologia , Trombose/patologia , Fator V/genética , Protrombina/genética , Protrombina/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fatores de Risco , Predisposição Genética para Doença , Mutação
13.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703204

RESUMO

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Assuntos
Apoptose , Catepsina K , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Trombose , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloretos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Trombose/metabolismo , Trombose/patologia , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
14.
J Physiol Pharmacol ; 75(2): 137-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38736261

RESUMO

In this study, we examined the changes in the fibrinolytic system in a rabbit model of two acute pulmonary thromboembolisms (PTE). Fourteen healthy adult New Zealand white rabbits were divided into three groups: the single PTE group (five rabbits), the double PTE group (five rabbits), and the control group (four rabbits). A rabbit model of acute pulmonary embolism was established, and immunohistochemistry and polymerase chain reaction (PCR) were performed on tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1) in plasma, and pulmonary embolism tissue. Plasma results: 1) t-PA levels: one hour following the initial modeling, the levels of t-PA in the modeling groups were significantly lower than those in the control group (P<0.05). In addition, the t-PA levels in the double PTE group were found to be lower after the modeling, as compared to the pre-modeling period (P<0.05). One hour after the second modeling, the double PTE group had lower t-PA levels compared to the control group (P<0.05). However, t-PA rebounded two hours after modeling in the double PTE group. One week after the second modeling, the double PTE group had higher t-PA levels compared to the other two groups (P<0.05). 2) PAI-1 results: one hour after the initial modeling, PAI-1 levels in the two modeling groups were lower compared to the pre-modeling period and control groups (P<0.05). Two hours following modeling, PAI-1 levels in both modeling groups were lower compared to the control group (P<0.05). PAI-1 levels were lower in the double PTE group one and two hours after the second modeling compared to the other two groups and pre-modeling period (P<0.05). 3) The immunohistochemistry results: the expression of PAI-1 decreased in the two modeling groups, while t-PA expression increased compared to the control group. 4) PCR results: t-PA mRNA expression did not differ among the three groups. The PAI-1 mRNA expression was lower in the two PTE groups compared to the control group. We conclude that in the early stages of PTE, the local fibrinolytic activity of the thrombus is increased, which is favorable for thrombolysis. However, as the thrombus persists, the activity of the fibrinolytic system is inhibited, contributing to the development of chronic thromboembolic pulmonary hypertension.


Assuntos
Modelos Animais de Doenças , Fibrinólise , Inibidor 1 de Ativador de Plasminogênio , Embolia Pulmonar , Ativador de Plasminogênio Tecidual , Animais , Coelhos , Embolia Pulmonar/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/genética , Masculino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Pulmão/metabolismo
15.
Gene ; 926: 148559, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38740352

RESUMO

The most prevalent glycoprotein on the influenza virus envelope is called hemagglutinin (HA), yet little is known about its involvement in the pathophysiology and etiology of severe influenza pneumonia. Here, after stimulating human bronchial epithelial cells (16-HBE) and mice with HA of H1N1 for 12 h, we investigated the proliferation, migration, inflammatory cytokines expression, and apoptosis in 16-HBE and the pathological damage in mouse lung tissue. The expression of inflammatory cytokines plasminogen activator inhibitor 1(PAI-1), urokinase-type (uPA) and tissue-type (tPA) plasminogen activators, and apoptosis were all enhanced by HA, which also prevented the proliferation and migration of bronchial epithelial cells. HA enhanced up-regulated PAI-1, uPA, and tPA protein expression within mouse lung tissue and caused lung injury. In conclusion, HA alone, but not the whole H1N1 virus, induces lung tissue injury by inhibiting cell proliferation and migration, while promoting the expression of inflammatory cytokines and apoptosis.


Assuntos
Apoptose , Proliferação de Células , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Animais , Humanos , Camundongos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Movimento Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Linhagem Celular , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Pneumonia/metabolismo , Pneumonia/virologia
16.
Domest Anim Endocrinol ; 88: 106856, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781776

RESUMO

The aim of the present study was to examine the influence of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) on ovarian cell functions. Rabbit ovarian granulosa cells were cultured with or without MCP-1 or PAI-1 (at 0, 0.1, 1, or 10 ng/ml). Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, and cell death detection assays and ELISA. The addition of either MCP-1 or PAI-1 increased cell viability and proliferation and decreased apoptosis. MCP-1 promoted, while PAI-1 suppressed, progesterone release. Both MCP-1 and PAI-1 reduced estradiol output. The present results suggest that MCP-1 or PAI-1 can be physiological promoters of rabbit ovarian cell viability and proliferation, inhibitors of apoptosis and regulators of ovarian steroidogenesis.


Assuntos
Apoptose , Quimiocina CCL2 , Células da Granulosa , Inibidor 1 de Ativador de Plasminogênio , Progesterona , Animais , Feminino , Coelhos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/fisiologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Apoptose/efeitos dos fármacos , Progesterona/farmacologia , Estradiol/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas
17.
Gene ; 923: 148563, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38754569

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a special type of cardiovascular disease, termed as a situation of abnormal myocardial structure and function that occurs in diabetic patients. However, the most fundamental mechanisms of DCM have not been fully explicated, and useful targets for the therapeutic strategies still need to be explored. METHODS: In the present study, we combined bioinformatics analysis and in vitro experiments throughout the process of DCM. Differentially Expressed Genes (DEGs) analysis was performed and the weighted gene co-expression network analysis (WGCNA) was constructed to determine the crucial genes that were tightly connected to DCM. Additionally, Functional enrichment analysis was conducted to define biological pathways. To identify the specific molecular mechanism, the human cardiomyocyte cell line (AC16) was stimulated by high glucose (HG, 50 mM D-glucose) and used to imitate DCM condition. Then, we tentatively examined the effect of high glucose on cardiomyocytes, the expression levels of crucial genes were further validated by in vitro experiments. RESULTS: Generally, NPPA, IGFBP5, SERPINE1, and C3 emerged as potential therapeutic targets. Functional enrichment analysis performed by bioinformatics indicated that the pathogenesis of DCM is mainly related to heart muscle contraction and calcium (Ca2+) release activation. In vitro, we discovered that high glucose treatment induced cardiomyocyte injury and exacerbated mitochondrial dysfunction remarkably. CONCLUSION: Our research defined four crucial genes, as well as determined that mitochondrial function impairment compromises calcium homeostasis ultimately resulting in contractile dysfunction is a central contributor to DCM progression. Hopefully, this study will offer more effective biomarkers for DCM diagnosis and treatment.


Assuntos
Cardiomiopatias Diabéticas , Glucose , Miócitos Cardíacos , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Linhagem Celular , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Biologia Computacional/métodos , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Mitocôndrias/metabolismo , Mitocôndrias/genética , Cálcio/metabolismo
18.
J Mol Neurosci ; 74(2): 57, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802573

RESUMO

Upon injury to the CNS, astrocytes undergo morphological and functional changes commonly referred to as astrocyte reactivity. Notably, these reactive processes include altered expression of factors that control immune processes and neuronal survival, as well as increased expression of the CXCL12 receptor, CXCR7/ACKR3. We now asked whether these events are related in that the astrocytic CXCL12 system modulates immune responses and/or neuronal survival. Short-term exposure of astrocytes cultured from the postnatal rat cortex to CXCL12 prominently increased the expression of serpine1/PAI1 on the mRNA level, but showed either no or only minor effects on the expression of additional reactive genes, selected from previous array studies. CXCL12-induced increases in PAI1 protein levels were only detectable in the additional presence of chemokines/cytokines, suggesting that translation of serpine1 mRNA depends on the cooperation of various factors. As expected, expression of most of the selected genes increased after acute or chronic activation of astrocytes with either LPS or a combination of IL-1ß and TNFα. CXCL12 partially attenuated expression of some of the LPS and IL-1ß/TNFα-induced genes under acute conditions, in particular those encoding CXCL9, CXCL10, CXCL11, and CCL5. Taken together, these findings argue for the involvement of the astrocyte CXCL12 system in the control of the immune response of the injured CNS, where it may control distinct steps.


Assuntos
Astrócitos , Quimiocina CXCL12 , Inibidor 1 de Ativador de Plasminogênio , Animais , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
19.
Front Immunol ; 15: 1365894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779680

RESUMO

Background: Increased levels of plasminogen activator inhibitor-1 (PAI-1) in tumors have been found to correlate with poor clinical outcomes in patients with cancer. Although abundant data support the involvement of PAI-1 in cancer progression, whether PAI-1 contributes to tumor immune surveillance remains unclear. The purposes of this study are to determine whether PAI-1 regulates the expression of immune checkpoint molecules to suppresses the immune response to cancer and demonstrate the potential of PAI-1 inhibition for cancer therapy. Methods: The effects of PAI-1 on the expression of the immune checkpoint molecule programmed cell death ligand 1 (PD-L1) were investigated in several human and murine tumor cell lines. In addition, we generated tumor-bearing mice and evaluated the effects of a PAI-1 inhibitor on tumor progression or on the tumor infiltration of cells involved in tumor immunity either alone or in combination with immune checkpoint inhibitors. Results: PAI-1 induces PD-L1 expression through the JAK/STAT signaling pathway in several types of tumor cells and surrounding cells. Blockade of PAI-1 impedes PD-L1 induction in tumor cells, significantly reducing the abundance of immunosuppressive cells at the tumor site and increasing cytotoxic T-cell infiltration, ultimately leading to tumor regression. The anti-tumor effect elicited by the PAI-1 inhibitor is abolished in immunodeficient mice, suggesting that PAI-1 blockade induces tumor regression by stimulating the immune system. Moreover, combining a PAI-1 inhibitor with an immune checkpoint inhibitor significantly increases tumor regression. Conclusions: PAI-1 protects tumors from immune surveillance by increasing PD-L1 expression; hence, therapeutic PAI-1 blockade may prove valuable in treating malignant tumors.


Assuntos
Antígeno B7-H1 , Inibidor 1 de Ativador de Plasminogênio , Evasão Tumoral , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Transdução de Sinais , Microambiente Tumoral/imunologia
20.
PLoS One ; 19(5): e0300644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758826

RESUMO

Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Crizotinibe , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Inibidor 1 de Ativador de Plasminogênio , Proteínas Proto-Oncogênicas c-met , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...