Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.721
Filtrar
1.
Bioorg Chem ; 152: 107734, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167871

RESUMO

Because of the high similarity in structure and sequence, it is challenging to distinguish the S1 pocket among serine proteases, primarily due to the only variability at residue 190 (A190 and S190). Peptide or protein-based inhibitors typically target the negatively charged S1 pocket using lysine or arginine as the P1 residue, yet neither discriminates between the two S1 pocket variants. This study introduces two arginine analogues, L-4-guanidinophenylalanine (12) and L-3-(N-amidino-4-piperidyl)alanine (16), as novel P1 residues in peptide inhibitors. 16 notably enhances affinities across all tested proteases, whereas 12 specifically improved affinities towards proteases possessing S190 in the S1 pocket. By crystallography and molecular dynamics simulations, we discovered a novel mechanism involving a water exchange channel at the bottom of the S1 pocket, modulated by the variation of residue 190. Additionally, the specificity of 12 towards the S190-presenting S1 pocket is dependent on this water channel. This study not only introduces novel P1 residues to engineer inhibitory potency and specificity of peptide inhibitors targeting serine proteases, but also unveils a water-mediated molecular mechanism of targeting serine proteases.


Assuntos
Arginina , Simulação de Dinâmica Molecular , Serina Proteases , Inibidores de Serina Proteinase , Água , Água/química , Serina Proteases/metabolismo , Serina Proteases/química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/síntese química , Arginina/química , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Relação Dose-Resposta a Droga , Cristalografia por Raios X
2.
Molecules ; 29(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202970

RESUMO

BACKGROUND: Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS: In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS: The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS: We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.


Assuntos
Melanoma Maligno Cutâneo , Melanoma , Inibidores de Serina Proteinase , Neoplasias Cutâneas , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Humanos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Inibidores de Serina Proteinase/uso terapêutico , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Biotecnologia/métodos
3.
PLoS One ; 19(7): e0303706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042609

RESUMO

Serine proteases (SPs) are distributed among all living cells accounting for almost one-third of all proteases. Dysregulation of SPs during inflammation and/or infection can result in devastating consequences, such as skin and lung inflammation, neuroinflammation, arthritis, as well as metastasis of cancerous cells. Such activities are tightly regulated by various inhibitors known as serine protease inhibitors (SERPIN). The thermodynamic investigations previously revealed that L-ascorbic acid binds to trypsin more firmly than pepsin and the binding force of L-ascorbic acid is driven by hydrogen bonds and van der Waals forces. However, the physiochemical effects of such interaction on trypsin and/or pepsin have not yet been reported. Ascorbic acid, also known as vitamin C, is one of the essential nutrients and most common food supplements, fortificants, and preservatives. The aim of this study was to explore the inhibitory effects of ascorbic acid on serine proteases at various concentrations on the in-vitro digestion and/or hydrolysis of intercellular matrix of cell monolayer and human serum albumin (HSA). The inhibitory effects of ascorbic on trypsin are investigated by qualitative and quantitative analysis using SDS-PAGE imaging and NIH densitometric software. Upon the addition of ascorbic acid in both indicator systems, the detachment and/or dissociation of cell monolayer and the digestion of HSA were inhibited in the presence of EDTA-Trypsin. The inhibitory effect of ascorbic acid on the digestion of intercellular matrix and/or hydrolysis of HSA showed a dose-dependent trend until it reached the maximum extent of inhibition. At an equal concentration (2.5mg/mL) ascorbic acid and EDTA-Trypsin exhibited the most potent inhibitory effect on the in vitro digestion of protein either in the form of intercellular matrix in cell monolayer and/or HSA respectively. Overall, our results based on two indicator systems strongly indicate that ascorbic acid may function as a serine protease inhibitor (SERPIN) beyond other important functions.


Assuntos
Ácido Ascórbico , Inibidores de Serina Proteinase , Humanos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Tripsina/metabolismo , Tripsina/química , Linhagem Celular Tumoral , Células A549
4.
Sci Rep ; 14(1): 16197, 2024 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003338

RESUMO

Type-II transmembrane serine proteases are effective pharmacological targets for host defence against viral entry and in certain cancer cell progressions. These serine proteases cleave viral spike proteins to expose the fusion peptide for cell entry, which is essential to the life cycle of the virus. TMPRSS2 inhibitors can also fight against respiratory viruses that employ them for cell entry. Our study combining virtual screening, all-atom molecular dynamics, and well-tempered metadynamics simulation identifies vicenin-2, neohesperidin, naringin, and rhoifolin as promising TMPRSS2 antagonists. The binding energies obtained are - 16.3, - 15.4, - 13.6, and - 13.8 kcal/mol for vicenin-2, neohesperidin, naringin, and rhoifolin respectively. The RMSD, RMSF, PCA, DCCM, and binding free energy profiles also correlate with the stable binding of these ligands at the active site of TMPRSS2. The study reveals that these molecules could be promising lead molecules for combating future outbreaks of coronavirus and other respiratory viruses.


Assuntos
Simulação de Dinâmica Molecular , Serina Endopeptidases , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Humanos , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Ligação Proteica , Termodinâmica , SARS-CoV-2/efeitos dos fármacos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
5.
Protein Sci ; 33(8): e5110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39073183

RESUMO

Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.


Assuntos
Serina Endopeptidases , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Humanos , Desenho de Fármacos , Aminoácidos/química , Aminoácidos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Animais , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/antagonistas & inibidores
6.
Int J Biol Macromol ; 275(Pt 1): 133571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960243

RESUMO

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors. The current study seeks to contribute to the identification of efficacious POP inhibitors through the design, synthesis, and comprehensive evaluation (both in vitro and in silico) of thiazolyl thiourea derivatives (5a-r). In vitro experimentation exhibited that the compounds displayed significant higher potency as POP inhibitors. Compound 5e demonstrated an IC50 value of 16.47 ± 0.54 µM, representing a remarkable potency. A meticulous examination of the structure-activity relationship indicated that halogen and methoxy substituents were the most efficacious. In silico investigations delved into induced fit docking, pharmacokinetics, and molecular dynamics simulations to elucidate the intricate interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, our pharmacokinetic assessments confirmed that the majority of the synthesized compounds possess attributes conducive to potential drug development.


Assuntos
Simulação de Acoplamento Molecular , Prolil Oligopeptidases , Serina Endopeptidases , Tioureia , Tioureia/química , Tioureia/farmacologia , Tioureia/síntese química , Tioureia/análogos & derivados , Relação Estrutura-Atividade , Humanos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/síntese química , Modelos Moleculares , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Domínio Catalítico , Técnicas de Química Sintética
7.
Bioorg Med Chem Lett ; 109: 129814, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815872

RESUMO

High temperature requirement A serine peptidase 1 (HTRA1) is a serine protease involved in an array of signaling pathways. It is also responsible for the regulation of protein aggregates via refolding, translocation, and degradation. It has subsequently been found that runaway proteolytic HTRA1 activity plays a role in a variety of diseases, including Age-Related Macular Degeneration (AMD), osteoarthritis, and Rheumatoid Arthritis. Selective inhibition of serine protease HTRA1 therefore offers a promising new strategy for the treatment of these diseases. Herein we disclose structure-activity-relationship (SAR) studies which identify key interactions responsible for binding affinity of small molecule inhibitors to HTRA1. The study results in highly potent molecules with IC50's less than 15 nM and excellent selectivity following a screen of 35 proteases.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Endopeptidases , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Relação Estrutura-Atividade , Humanos , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química
8.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791221

RESUMO

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Assuntos
Anticorpos Monoclonais , Bothrops , Peptídeos , Serina Proteases , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Serina Proteases/química , Serina Proteases/metabolismo , Antivenenos/química , Antivenenos/imunologia , Antivenenos/farmacologia , Regiões Determinantes de Complementaridade/química , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/química , Sequência de Aminoácidos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
10.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674153

RESUMO

Anti-inflammatory drugs have become the second-largest class of common drugs after anti-infective drugs in animal clinical care worldwide and are often combined with other drugs to treat fever and viral diseases caused by various factors. In our previous study, a novel serine protease inhibitor-encoding gene (MDSPI16) with improved anti-inflammatory activity was selected from a constructed suppressive subducted hybridization library of housefly larvae. This protein could easily induce an immune response in animals and had a short half-life, which limited its wide application in the clinic. Thus, in this study, mPEG-succinimidyl propionate (mPEG-SPA, Mw = 5 kDa) was used to molecularly modify the MDSPI16 protein, and the modified product mPEG-SPA-MDSPI16, which strongly inhibited elastase production, was purified. It had good stability and safety, low immunogenicity, and a long half-life, and the IC50 for elastase was 86 nM. mPEG-SPA-MDSPI16 effectively inhibited the expression of neutrophil elastase and decreased ROS levels. Moreover, mPEG-SPA-MDSPI16 exerted anti-inflammatory effects by inhibiting activation of the NF-κB signaling pathway and the MAPK signaling pathway in neutrophils. It also exerted therapeutic effects on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. In summary, mPEG-SPA-MDSPI16 is a novel anti-inflammatory protein modified with PEG that has the advantages of safety, nontoxicity, improved stability, and strong anti-inflammatory activity in vivo and in vitro and is expected to become an effective anti-inflammatory drug.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Inibidores de Serina Proteinase , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Camundongos , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , NF-kappa B/metabolismo , Masculino , Elastase de Leucócito/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Modelos Animais de Doenças
11.
Fish Shellfish Immunol ; 148: 109525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537926

RESUMO

Serine protease inhibitors Kazal type (SPINKs) function in physiological and immunological processes across multicellular organisms. In the present study, we identified a SPINK gene, designated as CqSPINK, in the red claw crayfish Cherax quadricarinatus, which is the ortholog of human SPINK5. The deduced CqSPINK contains two Kazal domains consisting of 45 amino acid residues with a typical signature motif C-X3-C-X5-PVCG-X5-Y-X3-C-X6-C-X12-14-C. Each Kazal domain contains six conserved cysteine residues forming three pairs of disulfide bonds, segmenting the structure into three rings. Phylogenetic analysis revealed CqSPINK as a homolog of human SPINK5. CqSPINK expression was detected exclusively in hepatopancreas and epithelium, with rapid up-regulation in hepatopancreas upon Vibrio parahaemolyticus E1 challenge. Recombinant CqSPINK protein (rCqSPINK) was heterologously expressed in Escherichia coli and purified for further study. Proteinase inhibition assays demonstrated that rCqSPINK could potently inhibit proteinase K and subtilisin A, weakly inhibit α-chymotrypsin and elastase, but extremely weak inhibit trypsin. Furthermore, CqSPINK inhibited bacterial secretory proteinase activity from Bacillus subtilis, E. coli, and Staphylococcus aureus, and inhibited B. subtilis growth. These findings suggest CqSPINK's involvement in antibacterial immunity through direct inhibition of bacterial proteases, contributing to resistance against pathogen invasion.


Assuntos
Astacoidea , Inibidores de Serina Proteinase , Humanos , Animais , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/química , Filogenia , Escherichia coli , Proteínas Recombinantes/genética , Bactérias/metabolismo
12.
J Med Chem ; 67(6): 4833-4854, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477709

RESUMO

Protease inhibitor drug discovery is challenged by the lack of cellular and oral permeability, selectivity, metabolic stability, and rapid clearance of peptides. Here, we describe the rational design, synthesis, and evaluation of peptidomimetic side-chain-cyclized macrocycles which we converted into covalent serine protease inhibitors with the addition of an electrophilic ketone warhead. We have identified potent and selective inhibitors of TMPRSS2, matriptase, hepsin, and HGFA and demonstrated their improved protease selectivity, metabolic stability, and pharmacokinetic (PK) properties. We obtained an X-ray crystal structure of phenyl ether-cyclized tripeptide VD4162 (8b) bound to matriptase, revealing an unexpected binding conformation. Cyclic biphenyl ether VD5123 (11) displayed the best PK properties in mice with a half-life of 4.5 h and compound exposure beyond 24 h. These new cyclic tripeptide scaffolds can be used as easily modifiable templates providing a new strategy to overcoming the obstacles presented by linear acyclic peptides in protease inhibitor drug discovery.


Assuntos
Serina Proteases , Inibidores de Serina Proteinase , Animais , Camundongos , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Inibidores de Serina Proteinase/química , Conformação Molecular , Peptídeos
13.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338655

RESUMO

Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.


Assuntos
Peptidomiméticos , Inibidores de Serina Proteinase , Ativador de Plasminogênio Tipo Uroquinase , Ligantes , Peptídeo Hidrolases , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Tripsina , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Serina Endopeptidases , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
14.
EMBO Mol Med ; 15(6): e17144, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158379

RESUMO

In the practice of medicine, many fundamental biological pathways that require tight on/off control, such as inflammation and circulatory homeostasis, are regulated by serine proteinases, but we rarely consider the unique protease inhibitors that, in turn, regulate these proteases. The serpins are a family of proteins with a shared tertiary structure, whose members largely act as serine protease inhibitors, found in all forms of life, ranging from viruses, bacteria, and archaea to plants and animals. These proteins represent up to 2-10% of proteins in the human blood and are the third most common protein family.


Assuntos
Serpinas , Animais , Humanos , Serpinas/genética , Serpinas/química , Serpinas/metabolismo , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Serina Proteases/metabolismo , Inflamação
15.
Biomol NMR Assign ; 17(1): 129-134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160842

RESUMO

The S. aureus extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Inibidores de Serina Proteinase , Humanos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Neutrófilos/metabolismo , Elastase de Leucócito/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Ressonância Magnética Nuclear Biomolecular
16.
ChemMedChem ; 18(6): e202200632, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36710259

RESUMO

Two series of macrocyclic plasmin inhibitors with a C-terminal benzylamine group were synthesized. The substitution of the N-terminal phenylsulfonyl group of a previously described inhibitor provided two analogues with sub-nanomolar inhibition constants. Both compounds possess a high selectivity against all other tested trypsin-like serine proteases. Furthermore, a new approach was used to selectively introduce asymmetric linker segments. Two of these compounds inhibit plasmin with Ki values close to 2 nM. For the first time, four crystal structures of these macrocyclic inhibitors could be determined in complex with a Ser195Ala microplasmin mutant. The macrocyclic core segment of the inhibitors binds to the open active site of plasmin without any steric hindrance. This binding mode is incompatible with other trypsin-like serine proteases containing a sterically demanding 99-hairpin loop. The crystal structures obtained experimentally explain the excellent selectivity of this inhibitor type as previously hypothesized.


Assuntos
Antifibrinolíticos , Fibrinolisina , Fibrinolisina/química , Fibrinolisina/metabolismo , Antifibrinolíticos/química , Antifibrinolíticos/farmacologia , Tripsina/química , Ligação Proteica , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química
17.
Protein Sci ; 32(2): e4570, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36660780

RESUMO

The Kunitz-Soybean Trypsin Inhibitor (Kunitz-STI) family is a large family of proteins with most of its members being protease inhibitors. The versatility of the inhibitory profile and the structural plasticity of these proteins, make this family a promising scaffold for designing new multifunctional proteins. Historically, Kunitz-STI inhibitors have been classified as canonical serine protease inhibitors, but new inhibitors with novel inhibition mechanisms have been described in recent years. Different inhibition mechanisms could be the result of different evolutionary pathways. In the present work, we performed a structural analysis of all the crystallographic structures available for Kunitz-STI inhibitors to characterize serine protease-binding loop structural features and locations. Our study suggests a relationship between the conformation of serine protease-binding loops and the inhibition mechanism, their location in the ß-trefoil fold, and the plant source of the inhibitors. The classical canonical inhibitors of this family are restricted to plants from the Fabales order and bind their targets via the ß4-ß5 loop, whereas serine protease-binding loops in inhibitors from other plants lie mainly in the ß5-ß6 and ß9-ß10 loops. In addition, we found that the ß5-ß6 loop is used to inhibit two different families of serine proteases through a steric blockade inhibition mechanism. This work will help to change the general perception that all Kunitz-STI inhibitors are canonical inhibitors and proteins with protease-binding loops adopting noncanonical conformations are exceptions. Additionally, our results will help in the identification of protease-binding loops in uncharacterized or newly discovered inhibitors, and in the design of multifunctional proteins.


Assuntos
Serina Proteases , Inibidor da Tripsina de Soja de Kunitz , Inibidor da Tripsina de Soja de Kunitz/química , Serina , Sequência de Aminoácidos , Serina Endopeptidases , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química
18.
Biochimie ; 204: 1-7, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36037882

RESUMO

Serine proteases are an important group of enzymes present in several organisms such as viruses, bacteria and eukaryotes involved in several physiological and pathological processes such as cancer, neurodegeneration, tissue inflammation and infections. Kunitz-type serine protease inhibitors have been studied as therapeutical targets with positive results in many of these diseases. rBmTI-A (recombinant B. microplus Trypsin Inhibitor A) is a Kunitz-BPTI type inhibitor based on the native protein BmTI-A. BmTI-A was extracted from tick larvae and presented inhibitory activity against trypsin, human plasma kallikrein (HuPK), human neutrophil elastase (HNE) and human plasmin. rBmTI-A presented the same inhibitory activities of the BmTI-A and its thermostability has already been demonstrated. In emphysema induced by porcine pancreatic elastase (PPE) and by cigarette smoke animal models, the treatment using rBmTI-A showed a protective effect against the development of pulmonary emphysema and prevented the increase of inflammatory cells. In chronic allergic animal model, rBmTI-A treatment resulted in attenuated bronchial hyperresponsiveness, inflammation, remodeling. These are important physiological results in emphysema and lung inflammatory animal models with rBmTI-A treatment confirming its therapeutical potential.


Assuntos
Enfisema , Enfisema Pulmonar , Serpinas , Humanos , Animais , Suínos , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Inibidores de Serina Proteinase/química , Inflamação
19.
Fish Shellfish Immunol ; 131: 1234-1244, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36417957

RESUMO

Serine protease inhibitors (SPIs) are the main regulators of serine protease activities. In this study, we present a genome-wide identification of SPI genes in T. granosa(TgSPI genes)and their expression characteristics in respond to Vibrio stress. A total of 102 TgSPI genes belonging to eight families, including Serpin, TIL (trypsin inhibitor like cysteine rich domain), Kunitz, Kazal, I84, Pacifastin, WAP (whey acidic protein) and A2M (Alpha-2-macroglobulin) were identified, while no genes belonging to Bowman-Birk, amfpi and Antistasin families were identified. The Kazal family has the most TgSPI genes with 38, and 11 TgSPI genes belong to the mollusc-specific I84 family. The TgSPI genes were found to be randomly distributed on 17 chromosomes with 12 tandem duplicate gene pairs. Expression profiles showed that most TgSPI genes were mainly expressed in immune-related tissues such as hepatopancreas, gill and mantle. In the hepatopancreas, most of TgSPI genes were sensitive to Vibrio stress, 28 and 29 TgSPI genes were up-regulated and down-regulated, respectively. Some up-regulated genes with signal peptides, such as the TgSPIs of I84 family, may act as a mechanism to directly prevent Vibrio from invasion. Six Kazal-type TgSPIs (TgSPI29, 45, 49, 50, 51 and 52) were intracellular proteins and their expression was down-regulated in hemocytes after Vibrio stress. This may have boosted protease activity in hemocytes to the point that more hemoglobin derived peptides were produced and secreted into the hemolymph to exert their anti-Vibrio effects. These findings may provide valuable information for further clarifying the roles of SPIs in the immune defense and will benefit future exploration of the immune function of SPIs in molluscs.


Assuntos
Arcidae , Serpinas , Vibrio , Animais , Inibidores de Serina Proteinase/química , Serpinas/genética , Sequência de Aminoácidos , Arcidae/genética , Arcidae/metabolismo , Imunidade , Vibrio/metabolismo
20.
Front Immunol ; 13: 958581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081512

RESUMO

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Previously, we identified the human milk glycoprotein lactoferrin as a natural inhibitor of plasminogen conversion to plasmin, a serine protease homologous to TMPRSS2. Here, we tested whether lactoferrin and lactoferricin, a biologically active natural peptide produced by pepsin-mediated digestion of lactoferrin, together with synthetic peptides derived from lactoferrin, were able to block TMPRSS2 and SARS-CoV-2 infection. Particularly, we revealed that both lactoferricin and the N-terminal synthetic peptide pLF1 significantly inhibited: i) proteolytic activity of TMPRSS2 and plasmin, ii) proteolytic processing of the SARS-CoV-2 spike protein, and iii) SARS-CoV-2 infection of SARS-CoV-2-permissive cells. Thus, natural and synthetic peptides derived from lactoferrin represent feasible candidates for supporting prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Lactoferrina , SARS-CoV-2 , Serina Endopeptidases , Inibidores de Serina Proteinase , Fibrinolisina , Humanos , Lactoferrina/farmacologia , Pandemias , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...