Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.671
Filtrar
1.
Adv Exp Med Biol ; 1458: 349-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39102208

RESUMO

After the COVID-19 pandemic, innovative methods have emerged for the management of food safety, child nutrition has become more important than ever, and increasing attention has been paid to the consequences of COVID-19. For instance, since SARS-CoV-2 is an animal-based zoonotic virus, there is a changing trend in consumer preferences from conventional meat products to cultured meat and vegan supplementation. Due to the effects mentioned, this chapter provides strategic guidance on novel foods, food safety innovations, and novel health and safety procedures in public places such as restaurants or bars. There are also long-term health impacts on children in the aftermath of COVID-19. Since the risk of myopia is one of the important long-term effects to be considered, trending nutritional immunology approaches are presented to reduce emerging problems in child eye health. The enhancement of immune system remains problematic for many children considering that they cannot use the COVID-19 vaccine. Therefore, this chapter also emphasizes the importance of breastfeeding on the side effects of viral infections and new supplements, such as probiotic drops, to improve children's and babies' immune health. Additionally, efforts should be undertaken to improve nanoencapsulation techniques to prepare for future epidemics and pandemics. Nanomaterial-supported nutraceuticals, nanoencapsulation of functional ingredients or their nanoparticles, and nano-combination of phytochemicals, fatty acids, or probiotics should be investigated to improve the immunity of children. In this sense, detailed further research in this area needs to be adapted to innovative technologies for the treatment of infants and children against future zoonotic viruses.


Assuntos
COVID-19 , Saúde da Criança , Suplementos Nutricionais , Inocuidade dos Alimentos , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Criança , Inocuidade dos Alimentos/métodos , SARS-CoV-2/imunologia
2.
Adv Food Nutr Res ; 111: 139-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103212

RESUMO

Current analytical methods utilized for food safety inspection requires improvement in terms of their cost-efficiency, speed of detection, and ease of use. Sensor array technology has emerged as a food safety assessment method that applies multiple cross-reactive sensors to identify specific targets via pattern recognition. When the sensor arrays are fabricated with nanomaterials, the binding affinity of analytes to the sensors and the response of sensor arrays can be remarkably enhanced, thereby making the detection process more rapid, sensitive, and accurate. Data analysis is vital in converting the signals from sensor arrays into meaningful information regarding the analytes. As the sensor arrays can generate complex, high-dimensional data in response to analytes, they require the use of machine learning algorithms to reduce the dimensionality of the data to gain more reliable outcomes. Moreover, the advances in handheld smart devices have made it easier to read and analyze the sensor array signals, with the advantages of convenience, portability, and efficiency. While facing some challenges, the integration of artificial intelligence with nanosensor arrays holds promise for enhancing food safety monitoring.


Assuntos
Inteligência Artificial , Inocuidade dos Alimentos , Humanos , Técnicas Biossensoriais/métodos , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Aprendizado de Máquina , Nanoestruturas , Nanotecnologia/métodos
3.
Adv Food Nutr Res ; 111: 1-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103211

RESUMO

Food packaging plays an important role in protecting the safety and quality of food products and enables communication with consumers. With the improved consumers' awareness of safety and quality of food products, the changes in consumers' lifestyle, and the growing demand for transparency of food products along the supply chain, food packaging technologies have evolved from only providing the four fundamental functions (i.e., protection and preservation, containment, communication and marketing, and convenience) to possessing additional functions including active modification of the inside microenvironment (i.e., active packaging) and monitoring the safety and quality of products in real-time (i.e., intelligent packaging). A variety of active and intelligent packaging systems have been developed to better protect and monitor the quality and safety of food products during the past several decades. Recently, advanced versions of smart packaging technologies, such as smart active packaging and smart intelligent packaging technologies have also been developed to enhance the effectiveness of conventional smart packaging systems. Additionally, smart packaging systems that harvest the advantages of both active packaging and intelligent packaging have also been developed. In this chapter, a brief overview of smart packaging technologies was provided. Specific technologies being covered include conventional smart packaging technologies and advanced smart packaging technologies, such as smart active packaging, smart intelligent packaging and dual-function smart packaging.


Assuntos
Embalagem de Alimentos , Embalagem de Alimentos/métodos , Humanos , Inocuidade dos Alimentos
4.
Adv Food Nutr Res ; 111: 305-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103216

RESUMO

The evolution of food safety practices is crucial in addressing the challenges posed by a growing global population and increasingly complex food supply chains. Traditional methods are often labor-intensive, time-consuming, and susceptible to human error. This chapter explores the transformative potential of integrating microfluidics into smart food safety protocols. Microfluidics, involving the manipulation of small fluid volumes within microscale channels, offers a sophisticated platform for developing miniaturized devices capable of complex tasks. Combined with sensors, actuators, big data analytics, artificial intelligence, and the Internet of Things, smart microfluidic systems enable real-time data acquisition, analysis, and decision-making. These systems enhance control, automation, and adaptability, making them ideal for detecting contaminants, pathogens, and chemical residues in food products. The chapter covers the fundamentals of microfluidics, its integration with smart technologies, and its applications in food safety, addressing the challenges and future directions in this field.


Assuntos
Inocuidade dos Alimentos , Microfluídica , Microfluídica/métodos , Humanos , Contaminação de Alimentos/análise , Inteligência Artificial
5.
Adv Food Nutr Res ; 111: 179-213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103213

RESUMO

In the past decade, there have been various advancements to colorimetric sensors to improve their potential applications in food and agriculture. One application of growing interest is sensing foodborne pathogens. There are unique considerations for sensing in the food industry, including food sample destruction, specificity amidst a complex food matrix, and high sensitivity requirements. Incorporating novel technology, such as nanotechnology, microfluidics, and smartphone app development, into colorimetric sensing methodology can enhance sensor performance. Nonetheless, there remain challenges to integrating sensors with existing food safety infrastructure. Recently, increasingly advanced machine learning techniques have been employed to facilitate nondestructive, multiplex detection for feasible assimilation of sensors into the food industry. With its ability to analyze and make predictions from highly complex data, machine learning holds potential for advanced yet practical colorimetric sensing of foodborne pathogens. This article summarizes recent developments and hurdles of machine learning-enabled colorimetric foodborne pathogen sensing. These advancements underscore the potential of interdisciplinary, cutting-edge technology in providing safer and more efficient food systems.


Assuntos
Colorimetria , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos , Aprendizado de Máquina , Colorimetria/métodos , Doenças Transmitidas por Alimentos/microbiologia , Microbiologia de Alimentos/métodos , Humanos , Inocuidade dos Alimentos/métodos , Técnicas Biossensoriais/métodos
6.
Adv Food Nutr Res ; 111: 215-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103214

RESUMO

In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.


Assuntos
Embalagem de Alimentos , Inocuidade dos Alimentos , Embalagem de Alimentos/métodos , Humanos , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Técnicas Biossensoriais/métodos
7.
Adv Food Nutr Res ; 111: 71-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103218

RESUMO

Meeting food safety requirements without jeopardizing quality attributes or sustainability involves adopting a holistic perspective of food products, their manufacturing processes and their storage and distribution practices. The virtualization of the food supply chain offers opportunities to evaluate, simulate, and predict challenges and mishaps potentially contributing to present and future food safety risks. Food systems virtualization poses several requirements: (1) a comprehensive framework composed of instrumental, digital, and computational methods to evaluate internal and external factors that impact food safety; (2) nondestructive and real-time sensing methods, such as spectroscopic-based techniques, to facilitate mapping and tracking food safety and quality indicators; (3) a dynamic platform supported by the Internet of Things (IoT) interconnectivity to integrate information, perform online data analysis and exchange information on product history, outbreaks, exposure to risky situations, etc.; and (4) comprehensive and complementary mathematical modeling techniques (including but not limited to chemical reactions and microbial inactivation and growth kinetics) based on extensive data sets to make realistic simulations and predictions possible. Despite current limitations in data integration and technical skills for virtualization to reach its full potential, its increasing adoption as an interactive and dynamic tool for food systems evaluation can improve resource utilization and rational design of products, processes and logistics for enhanced food safety. Virtualization offers affordable and reliable options to assist stakeholders in decision-making and personnel training. This chapter focuses on definitions and requirements for developing and applying virtual food systems, including digital twins, and their role and future trends in enhancing food safety.


Assuntos
Inocuidade dos Alimentos , Abastecimento de Alimentos , Humanos
8.
Adv Food Nutr Res ; 111: 261-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103215

RESUMO

Numerous nanomaterials endowed with outstanding light harvesting and photothermal conversion abilities have been extensively applied in various fields, such as photothermal diagnosis and therapy, trace substance detection, and optical imaging. Although photothermal detection methods have been established utilizing the photothermal effect of nanomaterials in recent years, there is a scarcity of reviews regarding their application in food safety detection. Herein, the recent advancements in the photothermal conversion mechanism, photothermal conversion efficiency calculation, and preparation method of photothermal nanomaterials were reviewed. In particular, the application of photothermal nanomaterials in various food hazard analyses and the newly established photothermal detection methods were comprehensively discussed. Moreover, the development and promising future trends of photothermal nanomaterial-based detection methods were discussed, which provide a reference for researchers to propose more effective, sensitive, and accurate detection methods.


Assuntos
Inocuidade dos Alimentos , Nanoestruturas , Contaminação de Alimentos/análise , Humanos , Análise de Alimentos
9.
Adv Food Nutr Res ; 111: 93-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103219

RESUMO

Foodborne illness remains a pressing global issue due to the complexities of modern food supply chains and the vast array of potential contaminants that can arise at every stage of food processing from farm to fork. Traditional food safety control systems are increasingly challenged to identify these intricate hazards. The U.S. Food and Drug Administration's (FDA) New Era of Smarter Food Safety represents a revolutionary shift in food safety methodology by leveraging cutting-edge digital technologies. Digital food safety control systems employ modern solutions to monitor food quality by efficiently detecting in real time a wide range of contaminants across diverse food matrices within a short timeframe. These systems also utilize digital tools for data analysis, providing highly predictive assessments of food safety risks. In addition, digital food safety systems can deliver a secure and reliable food supply chain with comprehensive traceability, safeguarding public health through innovative technological approaches. By utilizing new digital food safety methods, food safety authorities and businesses can establish an efficient regulatory framework that genuinely ensures food safety. These cutting-edge approaches, when applied throughout the food chain, enable the delivery of safe, contaminant-free food products to consumers.


Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Humanos , Contaminação de Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/prevenção & controle , Estados Unidos , Tecnologia Digital , United States Food and Drug Administration , Manipulação de Alimentos/métodos
10.
Adv Food Nutr Res ; 111: 35-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103217

RESUMO

Integration of machine learning (ML) technologies into the realm of smart food safety represents a rapidly evolving field with significant potential to transform the management and assurance of food quality and safety. This chapter will discuss the capabilities of ML across different segments of the food supply chain, encompassing pre-harvest agricultural activities to post-harvest processes and delivery to the consumers. Three specific examples of applying cutting-edge ML to advance food science are detailed in this chapter, including its use to improve beer flavor, using natural language processing to predict food safety incidents, and leveraging social media to detect foodborne disease outbreaks. Despite advances in both theory and practice, application of ML to smart food safety still suffers from issues such as data availability, model reliability, and transparency. Solving these problems can help realize the full potential of ML in food safety. Development of ML in smart food safety is also driven by social and industry impacts. The improvement and implementation of legal policies brings both opportunities and challenges. The future of smart food safety lies in the strategic implementation of ML technologies, navigating social and industry impacts, and adapting to regulatory changes in the AI era.


Assuntos
Inocuidade dos Alimentos , Aprendizado de Máquina , Humanos , Doenças Transmitidas por Alimentos/prevenção & controle
11.
Vet Med Sci ; 10(5): e1585, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39158975

RESUMO

Food safety encompasses the supply and assurance of safe, high-quality food for consumers. It is a crucial aspect of food security, gaining greater global attention due to the increasing number of widespread foodborne incidents. International trade is expanding as countries increasingly rely on each other to secure a sufficient and diverse food supply. Beyond this, concerns about food safety have become more prevalent due to various factors. Therefore, this review aims to investigate the effects of food safety-associated risks on the international trade of food and related products. A total of 37 published studies retrieved using different search engines were included in this review. This review revealed that because of rapid population growth and rising food demand in developing nations, agricultural intensification is growing. It has been found that foodborne illnesses and associated discrepancies can impede the international trade of food commodities. Trade bans due to the fear of foodborne illnesses are growing. The consequences of foodborne diseases are multifaceted and include financial losses from trade restrictions, medical costs for prevention or control, resource depletion and a decline in food production. The overall effects are increased international trade tensions and livelihood vulnerability to poverty, notably for small-scale livestock producers. Potential food contaminants include microbes, pesticides, pharmaceutical residues, heavy metals and fraudulent such as improper food processing, mislabelling, poor packaging, adulteration and substitution. Hence, countries are encouraged to harmonize the rights and duties set by the World Trade Organization under sanitary and phytosanitarys to maximize their advantages in global markets. Based on this evidence, we recommend that each country develop and integrate regulations that would ensure the safety of both domestic and international food production systems. Furthermore, the global community should either revise the current functioning food regulatory and monitoring body or establish a more genuine collaborative network.


Assuntos
Comércio , Inocuidade dos Alimentos , Internacionalidade , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Abastecimento de Alimentos , Animais
12.
Food Res Int ; 193: 114767, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160035

RESUMO

In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.


Assuntos
Técnicas Biossensoriais , Microbiologia de Alimentos , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Humanos , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas , Contaminação de Alimentos/análise
13.
J Agric Food Chem ; 72(32): 18089-18099, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102436

RESUMO

Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.


Assuntos
Bacteriocinas , Enterococcus , Fermentação , Alimentos Fermentados , Listeria monocytogenes , Probióticos , Enterococcus/metabolismo , Enterococcus/genética , Probióticos/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Bacteriocinas/metabolismo , Bacteriocinas/genética , Microbiologia de Alimentos , Inocuidade dos Alimentos
14.
Compr Rev Food Sci Food Saf ; 23(5): e13421, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136976

RESUMO

Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.


Assuntos
Celulose , Análise de Alimentos , Inocuidade dos Alimentos , Papel , Inocuidade dos Alimentos/métodos , Celulose/química , Celulose/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Espectrometria de Massas/métodos
15.
Compr Rev Food Sci Food Saf ; 23(5): e13404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136999

RESUMO

These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.


Assuntos
Criação de Abelhas , Inocuidade dos Alimentos , Mel , Abelhas/efeitos dos fármacos , Mel/análise , Animais , Contaminação de Alimentos/análise , Própole/efeitos adversos , Própole/química , Ceras/efeitos adversos , Ceras/química , Ácidos Graxos
16.
Compr Rev Food Sci Food Saf ; 23(5): e13409, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137003

RESUMO

With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.


Assuntos
Culinária , Contaminação de Alimentos , Temperatura Alta , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Culinária/métodos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Acrilamida/química , Acrilamida/análise , Inocuidade dos Alimentos , Manipulação de Alimentos/métodos
17.
Compr Rev Food Sci Food Saf ; 23(5): e13403, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137005

RESUMO

Foodborne illnesses result in a high disease burden worldwide, making food safety control of food business operations (FBOs) an urgent issue. With public agencies and FBOs facing challenges in monitoring the complex food supply chain with limited resources, scientific and objective insights into those factors that are related to food safety at FBOs are needed. These factors can be used as input for risk-based inspection. We conducted a systematic review to identify and analyze risk factors affecting the FBOs' food safety risk. We used a set of predefined search strings in Scopus and Web of Science to search for scientific manuscripts published in the English language between January 1 2003 and February 1 2023. The review identified 53 relevant studies and 43 risk factors. The presence of certified personnel turned out to be the most cited factor. Nearly half of the extracted factors had only been investigated in one study. Additional challenges were identified for developing a universal ready-to-use list of factors for the building of a risk-based inspection method, such as the limitation in the applicability of identified factors in different types of FBOs, and the variability in conclusions between publications for certain factors (e.g., FBO location and inspection history), stressing the need for additional research. Future studies should also prioritize standardizing definitions and measurements, particularly regarding compliance factors. In general, the current list of factors brought forward in our review lays the groundwork for building a transparent, objective, and risk-based method for food safety inspections of FBOs.


Assuntos
Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos , Inocuidade dos Alimentos/métodos , Fatores de Risco , Humanos , Doenças Transmitidas por Alimentos/prevenção & controle , Inspeção de Alimentos/métodos , Inspeção de Alimentos/normas , Medição de Risco/métodos , Contaminação de Alimentos/prevenção & controle
18.
Food Res Int ; 192: 114788, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147463

RESUMO

Ensuring food safety, particularly for vulnerable groups, like infants and young children, requires identifying and prioritizing potential hazards in food chains. We previously developed a web-based decision support system (DSS) to identify specific microbiological hazards (MHs) in infant and toddler foods through a structured five-step process. This study takes the framework further by introducing systematic risk ranking (RR) steps to rank MH risks with seven criteria: process survival, recontamination, growth opportunity, meal preparation, hazard-food association evidence, food consumption habits of infants and toddlers in the EU, and MH severity. Each criterion is given a semi-quantitative or quantitative score or risk value, contributing to the final MH risk calculation via three aggregation methods: semi-quantitative risk scoring, semi-quantitative risk value, and outranking multi-criteria decision analysis (MCDA). To validate the criteria and ranking approaches, we conducted a case study to rank MH risks in infant formula, compared the results of the three risk ranking methods, and additionally evaluated the ranking results against expert opinions to ensure their accuracy. The results showed strong agreement among the three methods, consistently ranking Salmonella non-Typhi and Cronobacter spp. and Shiga-toxin-producing Escherichia coli as the top MH risks in infant formulae, with minor deviations. When MHs were ranked after an initial hazard identification step, all three methods produced nearly identical MH rankings, reinforcing the reliability of the ranking steps and the selected criteria. Notably, the risk value and MCDA methods provided more informative MH rankings compared to the risk scoring method. The risk value and risk scoring methods were implemented into an online tool, called the MIcrobiological hazards risk RAnking decision support system (Mira-DSS), available at https://foodmicrobiologywur.shinyapps.io/MIcrobial_hazards_RAnking/. In conclusion, our framework enables the ranking of MH risks, facilitating intervention comparisons and resource allocations to mitigate MH risks in infant foods, with potential applicability to broader food categories.


Assuntos
Microbiologia de Alimentos , Inocuidade dos Alimentos , Alimentos Infantis , Fórmulas Infantis , Humanos , Lactente , Medição de Risco , Alimentos Infantis/microbiologia , Contaminação de Alimentos , Técnicas de Apoio para a Decisão , Cronobacter/classificação , Cronobacter/isolamento & purificação
19.
Food Res Int ; 192: 114775, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147465

RESUMO

Food safety has garnered global attention, necessitating advanced methods for the quick and accurate detection of contaminants. Sensors, notable for their ease of use, high sensitivity, and fast analysis, are prominent. Two-dimensional (2D) nanomaterials have been employed to improve sensor performance. Particularly, black phosphorus (BP) stands out with its multifunctional capabilities, attributed to unique layered structure, ultra-high charge mobility, easy surface functionalization, enhanced optical absorption, and tunable direct bandgap. These characteristics suggest that BP could significantly enhance sensor selectivity, sensitivity, and response speed for contaminant detection. Despite numerous studies on BP-based sensors in food safety, few reviews have been comprehensively summarized. Moreover, challenges in BP's preparation and stability restrict its wider use. This paper reviews recent research on BP's role in food safety, covering preparation, passivation, and applications. Through analysis of challenges and prospects, this review aims to provide insightful guidance for upcoming research in this area.


Assuntos
Contaminação de Alimentos , Inocuidade dos Alimentos , Fósforo , Fósforo/análise , Contaminação de Alimentos/análise , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Análise de Alimentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...