Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.577
Filtrar
1.
PLoS One ; 19(6): e0296321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848347

RESUMO

Parthenium hysterophorus L., an invasive alien species and notorious weed, offers various benefits to the medical and agrochemical industries. This study aimed to evaluate the antioxidant and insecticidal activities of P. hysterophorus flower extract and conduct chemical profiling to identify the phytoconstituents responsible for these biological effects. The antioxidant activity was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, while gas chromatography mass spectrometry (GCMS) analysis was employed for chemical configuration evaluation. Our findings demonstrate that the dichloromethane (DCM) extract of P. hysterophorus exhibits potent radical scavenging activity (95.03%). Additionally, phytochemical analysis revealed significant amounts of phenols and flavonoids in the distilled water and ethyl acetate extracts (103.30 GAEg-1 and 138.67 QEg-1, respectively). In terms of insecticidal activity, the flower extract displayed maximum mortality rates of 63.33% and 46.67% after 96 hours of exposure at concentrations of 1000 µgmL-1 and 800 µgmL-1, respectively, with similar trends observed at 72 hours. Furthermore, the P. hysterophorus extracts exhibited LC50 values of 1446 µgmL-1 at 72 hours and 750 µgmL-1 at 96 hours. Imidacloprid, the positive control, demonstrated higher mortality rates at 96 hours (97.67%) and 72 hours (91.82%). Moreover, the antioxidant activity of P. hysterophorus extracts exhibited a strong correlation with phenols, flavonoids, and extract yield. GCMS analysis identified 13 chemical compounds, accounting for 99.99% of the whole extract. Ethanol extraction yielded the highest percentage of extract (4.34%), followed by distilled water (3.22%), ethyl acetate (3.17%), and dichloromethane (2.39%). The flower extract of P. hysterophorus demonstrated significant antioxidant and insecticidal activities, accompanied by the presence of valuable chemical compounds responsible for these biological effects, making it a promising alternative to synthetic agents. These findings provide a novel and fundamental basis for further exploration in purifying the chemical compounds for their biological activities.


Assuntos
Antioxidantes , Asteraceae , Flores , Inseticidas , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Inseticidas/farmacologia , Inseticidas/química , Asteraceae/química , Animais , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides/análise , Flavonoides/química , Fenóis/análise , Fenóis/química , Parthenium hysterophorus
2.
J Agric Food Chem ; 72(20): 11369-11380, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727083

RESUMO

In keeping with our investigation, a simple and practical synthesis of novel heterocyclic compounds with a sulfamoyl moiety that can be employed as insecticidal agents was reported. The compound 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide 1 was coupled smoothly with triethylorthoformate or a variety of halo compounds, namely phenacyl chloride, chloroacetyl chloride, chloroacetaldehyde, chloroacetone, 1,3-dichloropropane, 1,2-dichloroethane, ethyl chloroformate, 2,3-dichloro-1,4-naphthoquinone, and chloroanil respectively, which afforded the 1,3,4-thiadiazole and 1,3,4-thiadiazine derivatives. The new products structure was determined using elemental and spectral analysis. Under laboratory conditions, the biological and toxicological effects of the synthetic compounds were also evaluated as insecticides against Spodoptera littoralis (Boisd.). Compounds 3 and 5 had LC50 values of 6.42 and 6.90 mg/L, respectively. The investigated compounds (from 2 to 11) had been undergoing molecular docking investigation for prediction of the optimal arrangement and strength of binding between the ligand (herein, the investigated compounds (from 2 to 11)) and a receptor (herein, the 2CH5) molecule. The binding affinity within docking score (S, kcal/mol) ranged between -8.23 (for compound 5), -8.12 (for compound 3) and -8.03 (for compound 9) to -6.01 (for compound 8). These compounds were shown to have a variety of binding interactions within the 2CH5 active site, as evidenced by protein-ligand docking configurations. This study gives evidence that those compounds have 2CH5-inhibitory capabilities and hence may be used for 2CH5-targeting development. Furthermore, the three top-ranked compounds (5, 3, and 9) and the standard buprofezin were subjected to density functional theory (DFT) analysis. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy difference (ΔE) of compounds 5, 3, and 9 was found to be comparable to that of buprofezin. These findings highlighted the potential and relevance of charge transfer at the molecular level.


Assuntos
Desenho de Fármacos , Inseticidas , Simulação de Acoplamento Molecular , Spodoptera , Tiadiazinas , Tiadiazóis , Animais , Inseticidas/química , Inseticidas/síntese química , Inseticidas/farmacologia , Spodoptera/efeitos dos fármacos , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiadiazóis/síntese química , Tiadiazinas/química , Tiadiazinas/farmacologia , Tiadiazinas/síntese química , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Proteínas de Insetos/química , Benzenossulfonamidas , Estrutura Molecular , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica II/química
3.
Pak J Pharm Sci ; 37(2): 297-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38767096

RESUMO

The field of bio-fabricated noble metallic nanoparticles (NPs) has gained significant attention in applied research due to their eco-friendly and biocompatible nature. This study focuses on employing a green synthesis method to produce silver and gold nanoparticles (bio-fabricated) using a Mangrove plant extract and assessing their insecticidal and growth-inhibitory effects for environmentally friendly pest control. The resulting NPs underwent comprehensive characterization through various spectroscopy techniques. The morphology of both silver and gold mediated nanoparticles of Avicennia marina leaf extract displayed a spherical shape, with average sizes measuring around 70-80 nm and 95-100 nm, respectively. Regarding cytotoxicity, the inhibitory effects of silver nanoparticles were less than that observed by the extract alone while gold nanoparticles showed stronger cell growth inhibitory effects on splenic cells. The hepatic toxicity of silver and gold nanoparticles showed significant toxic effects as compared to A. marina extract alone. Notably, as prepared silver nanoparticles exhibited substantial larvicidal toxicity as compared to gold nanoparticles, when tested against fourth instar Culex pipiens larvae. These biocompatible silver and gold nanoparticles prepared from A. marina leaf extract hold promise for future applications as larvicides to effectively control mosquito species.


Assuntos
Avicennia , Culex , Ouro , Inseticidas , Larva , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Prata , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Ouro/química , Ouro/toxicidade , Ouro/farmacologia , Prata/química , Prata/toxicidade , Prata/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Animais , Inseticidas/síntese química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Culex/efeitos dos fármacos , Culex/crescimento & desenvolvimento , Química Verde/métodos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula
4.
J Sep Sci ; 47(11): e2300730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819790

RESUMO

A fast and effective analytical method with biomass solid-phase microextraction sorbent combined with a high-performance liquid chromatography-ultraviolet detector was proposed for the determination of benzoylurea (BU) insecticides in tea products. The novel sorbent was prepared by activating and then carbonizing water hyacinth with a fast growth rate and low application value as raw material and showed a high specific surface area and multiple interactions with analytes, such as electrostatic action, hydrogen bonding, and π-π conjugation. After optimizing the three most important extraction parameters (pH [X1], sample loading rate [X2], and solution volume [X3]) by Box-Behnken design, the as-established analytical method showed good extraction performance: excellent recovery (80.13%-106.66%) and wide linear range (1-400 µg/L) with a determination coefficient of 0.9992-0.9999, a low limit of detection of 0.02-0.1 µg/L and the satisfactory practical application results in tea products. All these indicate that the water hyacinth-derived material has the potential as a solid-phase extraction sorbent for the detection and removal of BU insecticides from tea products, and at the same time, it can also achieve the effect of rational use of biological resources, maintaining ecological balance, turning waste into treasure, and achieving industrial production.


Assuntos
Biomassa , Eichhornia , Inseticidas , Chá , Inseticidas/análise , Inseticidas/química , Inseticidas/isolamento & purificação , Eichhornia/química , Chá/química , Adsorção , Cromatografia Líquida de Alta Pressão , Microextração em Fase Sólida , Compostos de Fenilureia/análise , Compostos de Fenilureia/química , Compostos de Fenilureia/isolamento & purificação
5.
Food Chem ; 453: 139660, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761738

RESUMO

A novel dispersive solid-phase microextraction method based on a metal-organic framework (MIL-100(Fe)) combined with a dispersive liquid-liquid microextraction technique was proposed for the extraction and enrichment of four insecticides in beverages. The qualitative and quantitative analysis of these insecticides was conducted using HPLC-MS/MS. To optimize the extraction process, several parameters were investigated, and the main variables were optimized using CCD-based RSM. The developed method displayed a wide linear range of 1.000-1000 ng/L and R2 values >0.993 for all four calibration curves. The method demonstrated high sensitivity, with LODs and LOQs of 0.3-0.6 ng/L and 0.8-1.0 ng/L, respectively. In addition, the greenness of the proposed method was assessed using the Complex GAPI tool, and the results showed that the proposed method exhibits benefits, such as minimal usage of organic solvents and negligible matrix influence, making it a suitable method for the detection of insecticide residues in beverages.


Assuntos
Bebidas , Contaminação de Alimentos , Inseticidas , Microextração em Fase Líquida , Resíduos de Praguicidas , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão , Inseticidas/análise , Inseticidas/isolamento & purificação , Inseticidas/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Resíduos de Praguicidas/química , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise , Bebidas/análise , Microextração em Fase Sólida/métodos , Estruturas Metalorgânicas/química , Espectrometria de Massa com Cromatografia Líquida
6.
Food Chem ; 453: 139697, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788652

RESUMO

Spiropidion developed by Syngenta shows high insecticidal and acaricidal activity against a wide range of sucking pests. In this study, according to the structure of spiropidion, two haptens were synthesized by introducing carboxyl groups from the ester group. After cell fusion, a monoclonal antibody (mAb 8B5) of spiropidion was obtained. The IC50 of the established heterologous indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was 7.36 ng/mL, and its working range was 1.75-34.92 ng/mL. The average recoveries were 76.05-124.78% in the Yangtze River and citrus samples. Moreover, the ic-ELISA results of 15 citrus samples agreed well with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Overall, the established ic-ELISA could be applied for the spiropidion residue monitor in food and agricultural samples.


Assuntos
Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática , Haptenos , Resíduos de Praguicidas , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Haptenos/química , Haptenos/imunologia , Animais , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise , Camundongos Endogâmicos BALB C , Camundongos , Citrus/química , Inseticidas/química , Inseticidas/análise
7.
J Agric Food Chem ; 72(19): 10958-10969, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703118

RESUMO

Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.


Assuntos
Ailanthus , Cumarínicos , Inseticidas , Extratos Vegetais , Folhas de Planta , Folhas de Planta/química , Animais , Cumarínicos/farmacologia , Cumarínicos/química , Ailanthus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Estrutura Molecular , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Bioensaio , Monoterpenos/farmacologia , Monoterpenos/química , Comportamento Alimentar/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
8.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731415

RESUMO

Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were evaluated using DL-limonene, carvone, and their two optical isomer components using contact, repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated. The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03, 28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides.


Assuntos
Inseticidas , Lamiaceae , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Lamiaceae/química , Animais , Inseticidas/química , Inseticidas/farmacologia , Limoneno/química , Limoneno/farmacologia , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Sinergismo Farmacológico , Fumigação
9.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743441

RESUMO

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Assuntos
Portadores de Fármacos , Hidrogéis , Inseticidas , Ivermectina , Resinas Vegetais , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Ivermectina/toxicidade , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Concentração de Íons de Hidrogênio , Inseticidas/química , Inseticidas/farmacologia , Resinas Vegetais/química , Portadores de Fármacos/química , Temperatura , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Mariposas/efeitos dos fármacos , Rosaceae/química , Zinco/química , Zinco/farmacologia , Resinas Acrílicas
10.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752333

RESUMO

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Assuntos
Biomassa , Ivermectina , Pinus , Animais , Pinus/parasitologia , Pinus/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/química , Ivermectina/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Nematoides/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Humanos
11.
Acta Trop ; 255: 107226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697451

RESUMO

Mosquito-borne disease pandemics, such as the Zika virus and chikungunya, have escalated cognizance of how critical it is to implement proficient mosquito vector control measures. The prevention of Culicidae is becoming more difficult these days because of the expeditious imminence of synthetic pesticide resistance and the universal expansion of tremendously invasive mosquito vectors. The present study highlights the insecticidal and larvicidal efficacy of the prospective novel actinobacterium derived from the marine Streptomyces sp. RD06 secondary metabolites against Culex quinquefasciatus mosquito. The pupicidal activity of Streptomyces sp. RD06 showed LC50=199.22 ± 11.54 and LC90= 591.84 ± 55.41 against the pupa. The purified bioactive metabolites 1, 2-Benzenedicarboxylic acid, diheptyl ester from Streptomyces sp. RD06 exhibited an LC50 value of 154.13 ± 10.50 and an LC90 value of 642.84 ± 74.61 tested against Cx. quinquefasciatus larvae. The Streptomyces sp. RD06 secondary metabolites exhibited 100 % non-hatchability at 62.5 ppm, and 82 % of hatchability was observed at 250 ppm. In addition, media optimization showed that the highest biomass production was attained at a temperature of 41.44 °C, pH 9.23, nitrogen source 11.43 mg/ml, and carbon source 150 mg/ml. Compared to control larvae, the histology and confocal microscopy results showed destruction to the anal gill, lumen content, and epithelial layer residues in the treated larvae. Utilizing an eco-friendly method, these alternative inventive insecticidal derivatives from Streptomyces sp. RD06 eradicates Culex quinquefasciatus. This study highlights the promising potential of these Streptomyces sp. RD06 secondary metabolites to develop affordable and efficacious mosquito larvicides to replace synthetic insecticides in the future.


Assuntos
Culex , Inseticidas , Larva , Mosquitos Vetores , Streptomyces , Animais , Streptomyces/química , Streptomyces/metabolismo , Culex/efeitos dos fármacos , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Mosquitos Vetores/efeitos dos fármacos , Metabolismo Secundário , Controle de Mosquitos/métodos , Filariose/prevenção & controle , Pupa/efeitos dos fármacos
12.
Food Chem ; 451: 139515, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703734

RESUMO

Imidacloprid (IMI) are widely used in modern tea industry for pest control, but IMI residues pose a great threat to human health. Herein, we propose a regeneration metal-semiconductor SERS substrate for IMI detection. We fabricated the SERS sensor through the in-situ growth of a nano-heterostructure incorporating a semiconductor (TiO2) and plasmonic metals (Au, Ag) on oxidized carbon cloth (OCC). Leveraging the high-density hot spots, the formed Ag/AuNPs-TiO2-OCC substrate exhibits higher enhancement factors (1.92 × 108) and uniformity (RSD = 7.68%). As for the detection of IMI on the substrate, the limit of detection was lowered to 4.1 × 10-6 µg/mL. With a hydrophobic structure, the Ag/AuNPs-TiO2-OCC possessed excellent self-cleaning performance addressing the limitation of single-use associated with traditional SERS substrates, as well as the degradation capability of the substrate under ultraviolet (UV) light. Accordingly, Ag/AuNPs-TiO2-OCC showcases outstanding SERS sensing and regenerating properties, making it poised for extensive application in the field of food safety assurance.


Assuntos
Carbono , Ouro , Nanopartículas Metálicas , Neonicotinoides , Nitrocompostos , Prata , Análise Espectral Raman , Titânio , Titânio/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Carbono/química , Neonicotinoides/química , Neonicotinoides/análise , Nitrocompostos/química , Contaminação de Alimentos/análise , Oxirredução , Inseticidas/química , Inseticidas/análise , Limite de Detecção , Têxteis/análise
13.
Environ Sci Pollut Res Int ; 31(24): 35455-35469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38730215

RESUMO

Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC50), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC50, respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC50, respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.


Assuntos
Besouros , Fumigação , Óleos Voláteis , Animais , Besouros/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Relação Quantitativa Estrutura-Atividade , Inseticidas/química , Inseticidas/farmacologia , Tribolium/efeitos dos fármacos
14.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747516

RESUMO

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Assuntos
Proteção de Cultivos , Inseticidas , Nanopartículas , Spodoptera , alfa-Amilases , Animais , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Nanopartículas/química , Proteção de Cultivos/métodos , Spodoptera/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Polímeros/química , Dióxido de Silício/química , Controle de Insetos , Praguicidas/química , Praguicidas/farmacologia , Indóis/química , Indóis/farmacologia
15.
J Agric Food Chem ; 72(21): 11949-11957, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757770

RESUMO

As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.


Assuntos
Aedes , Desenho de Fármacos , Moscas Domésticas , Inseticidas , Simulação de Acoplamento Molecular , Pirazóis , Animais , Inseticidas/química , Inseticidas/síntese química , Inseticidas/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Moscas Domésticas/efeitos dos fármacos , Moscas Domésticas/crescimento & desenvolvimento , Afídeos/efeitos dos fármacos , Afídeos/crescimento & desenvolvimento , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Estrutura Molecular , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Peixe-Zebra/embriologia
16.
J Agric Food Chem ; 72(21): 11980-11989, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758169

RESUMO

Compound-specific isotope analysis stands as a promising tool for unveiling the behavior of pesticides in agricultural environments. Using the commercial formulations of persistent fungicide procymidone (PRO) and less persistent insecticide diazinon (DIA), respectively, we analyzed the concentration and carbon isotope composition (δ13C) of the residual pesticides through soil incubation experiments in a greenhouse (for 150 days) and lab conditions (for 50-70 days). Our results showed that the magnitude of δ13C variation depends on pesticide specificity, in which PRO in the soil exhibited little variation in δ13C values over the entire incubation times, while DIA demonstrated an increased δ13C value, with the extent of δ13C variability affected by different spiking concentrations, plant presence, and light conditions. Moreover, the pesticides extracted from soils were isotopically overlapped with those from crop lettuce. Ultimately, the isotope composition of pesticides could infer the degradation and translocation processes and might contribute to identifying the source(s) of pesticide formulation in agricultural fields.


Assuntos
Isótopos de Carbono , Diazinon , Resíduos de Praguicidas , Poluentes do Solo , Solo , Diazinon/análise , Diazinon/química , Isótopos de Carbono/análise , Solo/química , Resíduos de Praguicidas/química , Resíduos de Praguicidas/análise , Poluentes do Solo/química , Poluentes do Solo/análise , Fungicidas Industriais/química , Fungicidas Industriais/análise , Inseticidas/química , Inseticidas/análise , Compostos Bicíclicos com Pontes
17.
J Agric Food Chem ; 72(21): 11968-11979, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38759145

RESUMO

With the aim of identifying novel neonicotinoid insecticides with low bee toxicity, a series of compounds bearing thiazolidine moiety, which has been shown to be low bee toxic, were rationally designed through substructure splicing strategy and evaluated insecticidal activities. The optimal compounds A24 and A29 exhibited LC50 values of 30.01 and 17.08 mg/L against Aphis craccivora, respectively. Electrophysiological studies performed on Xenopus oocytes indicated that compound A29 acted on insect nAChR, with EC50 value of 50.11 µM. Docking binding mode analysis demonstrated that A29 bound to Lymnaea stagnalis acetylcholine binding protein through H-bonds with the residues of D_Arg55, D_Leu102, and D_Val114. Quantum mechanics calculation showed that A29 had a higher highest occupied molecular orbit (HOMO) energy and lower vertical ionization potential (IP) value compared to the high bee toxic imidacloprid, showing potentially low bee toxicity. Bee toxicity predictive model also indicated that A29 was nontoxic to honeybees. Our present work identified an innovative insecticidal scaffold and might facilitate the further exploration of low bee toxic neonicotinoid insecticides.


Assuntos
Inseticidas , Neonicotinoides , Tiazolidinas , Animais , Inseticidas/química , Inseticidas/toxicidade , Abelhas/efeitos dos fármacos , Neonicotinoides/química , Neonicotinoides/toxicidade , Tiazolidinas/química , Tiazolidinas/toxicidade , Simulação de Acoplamento Molecular , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/toxicidade , Afídeos/efeitos dos fármacos , Afídeos/genética , Relação Estrutura-Atividade , Estrutura Molecular , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química
18.
J Agric Food Chem ; 72(21): 11958-11967, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38761134

RESUMO

Megalurothrips usitatus (Bagnall), the main pest on legume vegetables, is controlled by pyrethroids in the field. Field strains of M. usitatus resistant to pyrethroids were collected from three areas in Hainan Province (Haikou, Ledong, and Sanya City), and two mutations, T929I and K1774N, were detected in the voltage-gated sodium channel. In this study, the sodium channel in M. usitatus was first subcloned and successfully expressed in Xenopus oocytes. The single mutation (T929I or K1774N) and double mutation (T929I/K1774N) shifted the voltage dependence of activation in the hyperpolarization direction. The three mutants all reduced the amplitude of tail currents induced by type I (permethrin and bifenthrin) and type II (deltamethrin and λ-cyhalothrin) pyrethroids. Homology modeling analysis of these two mutations shows that they may change the local hydrophobicity and positive charge of the sodium channel. Our data can be used to reveal the causes of the resistance of M. usitatus to pyrethroids and provide guidance for the comprehensive control of M. usitatus in the future.


Assuntos
Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Mutação , Piretrinas , Canais de Sódio Disparados por Voltagem , Piretrinas/farmacologia , Animais , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Mariposas/genética , Mariposas/efeitos dos fármacos
19.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38773677

RESUMO

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Assuntos
Glutationa Transferase , Proteínas de Insetos , Inseticidas , Ivermectina , Mariposas , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/química , Animais , Inseticidas/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Mariposas/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Ivermectina/farmacologia , Ivermectina/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Cinética , Oryza/metabolismo , Oryza/parasitologia , Oryza/química , Glutationa/metabolismo , Glutationa/química
20.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703356

RESUMO

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Assuntos
Esterases , Proteínas de Insetos , Insetos , Inseticidas , Malation , Animais , Drosophila melanogaster , Esterases/metabolismo , Esterases/genética , Esterases/química , Inativação Metabólica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Insetos/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Malation/metabolismo , Malation/química , Malation/toxicidade , Malation/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA