Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.265
Filtrar
1.
Nat Plants ; 10(9): 1297-1303, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39242982

RESUMO

Thermogenesis in plants is the ability to raise their temperature above that of the surrounding air through metabolic processes, and is especially detected in reproductive organs. Warming benefits plants by facilitating the transmission of odours and compounds that attract insects. As a result, these plants increase their odds of being pollinated by the attracted insect. Modern thermogenesis has been reported in extant cycads and a small number of angiosperm lineages. Although thermogenesis is not directly preserved in the fossil record, it can be inferred by examining extant thermogenic plant lineages and comparing their features with those of the fossil record. We suggest that thermogenesis has probably occurred in seed plants for at least the past 200 million years, long before the origin of angiosperms. Thermogenesis in plants is an important factor that facilitated entomophilous pollination by enhancing the attraction of insects, complementary to other factors, thereby participating in the success of the two groups of organisms and providing many facets of past and recent reproductive biology for future exploration.


Assuntos
Insetos , Polinização , Termogênese , Animais , Insetos/fisiologia , Termogênese/fisiologia , Evolução Biológica , Magnoliopsida/fisiologia , Fósseis
2.
Nat Commun ; 15(1): 7876, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251605

RESUMO

Much of what we know about terrestrial life during the Carboniferous Period comes from Middle Pennsylvanian (~315-307 Mya) Coal Measures deposited in low-lying wetland environments1-5. We know relatively little about terrestrial ecosystems from the Early Pennsylvanian, which was a critical interval for the diversification of insects, arachnids, tetrapods, and seed plants6-10. Here we report a diverse Early Pennsylvanian trace and body fossil Lagerstätte (~320-318 Mya) from the Wamsutta Formation of eastern North America, distinct from coal-bearing deposits, preserved in clastic substrates within basin margin conglomerates. The exceptionally preserved trace fossils and body fossils document a range of vertebrates, invertebrates and plant taxa (n = 131), with 83 distinct foliage morphotypes. Plant-insect interactions include what may be the earliest evidence of insect oviposition. This site expands our knowledge of early terrestrial ecosystems and organismal interactions and provides ground truth for future phylogenetic reconstructions of key plant, arthropod, and vertebrate groups.


Assuntos
Ecossistema , Fósseis , Insetos , Animais , Insetos/fisiologia , Insetos/anatomia & histologia , Insetos/classificação , Plantas/classificação , Filogenia , Áreas Alagadas , América do Norte , Biodiversidade , Vertebrados/anatomia & histologia , Vertebrados/fisiologia
3.
Am Nat ; 204(4): 416-431, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39326060

RESUMO

AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO2 increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB). We find that higher temperatures were associated with increased herbivory in the past, especially among BB sites. In these BB sites, non-N2-fixing plants experienced a lower richness but higher frequency of herbivory damage than N2-fixing plants. Herbivory frequency but not richness was greater in BB sites compared with contemporaneous, nearby, but less arid sites from Hanna Basin. Compared with deep-time environments, herbivory frequency and richness are higher in modern sites, suggesting that current accelerated warming uniquely impacts plant-insect interactions. Overall, our work addresses multiple aspects of climate change using fossil data while also contextualizing the impact of modern anthropogenic change on Earth's most diverse interactions.


Assuntos
Mudança Climática , Fósseis , Herbivoria , Insetos , Temperatura , Animais , Insetos/fisiologia , Nitrogênio/metabolismo , Plantas , Biodiversidade
4.
Plant Physiol Biochem ; 215: 109056, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39186848

RESUMO

Urbanization impacts plant-herbivore interactions, which are crucial for ecosystem functions such as carbon sequestration and nutrient cycling. While some studies have reported reductions in insect herbivory in urban areas (relative to rural or natural forests), this trend is not consistent and the underlying causes for such variation remain unclear. We conducted a continental-scale study on insect herbivory along urbanization gradients for three European tree species: Quercus robur, Tilia cordata, and Fraxinus excelsior, and further investigated their biotic and abiotic correlates to get at mechanisms. To this end, we quantified insect leaf herbivory and foliar secondary metabolites (phenolics, terpenoids, alkaloids) for 176 trees across eight European cities. Additionally, we collected data on microclimate (air temperature) and soil characteristics (pH, carbon, nutrients) to test for abiotic correlates of urbanization effects directly or indirectly (through changes in plant secondary chemistry) linked to herbivory. Our results showed that urbanization was negatively associated with herbivory for Q. robur and F. excelsior, but not for T. cordata. In addition, urbanization was positively associated with secondary metabolite concentrations, but only for Q. robur. Urbanization was positively associated with air temperature for Q. robur and F. excelsior, and negatively with soil nutrients (magnesium) in the case of F. excelsior, but these abiotic variables were not associated with herbivory. Contrary to expectations, we found no evidence for indirect effects of abiotic factors via plant defences on herbivory for either Q. robur or F. excelsior. Additional biotic or abiotic drivers must therefore be accounted for to explain observed urbanization gradients in herbivory and their interspecific variation.


Assuntos
Herbivoria , Insetos , Folhas de Planta , Urbanização , Animais , Herbivoria/fisiologia , Folhas de Planta/metabolismo , Insetos/fisiologia , Fraxinus/metabolismo , Quercus/metabolismo , Quercus/fisiologia , Solo/química , Tilia/metabolismo , Terpenos/metabolismo , Metabolismo Secundário , Temperatura , Alcaloides/metabolismo , Fenóis/metabolismo
5.
Curr Opin Insect Sci ; 65: 101250, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142628

RESUMO

In nature, most parasitoids attack more than one host species, and nearly all hosts are attacked by several species of parasitoids. This opens many potential opportunities for interactions of invasive species with native parasitoid-host association networks in invaded communities. Despite this, few studies have examined the direct and indirect impacts of biological invasion on parasitoid-host associations. This review examines what is known of these relationships from the most recent literature and suggests future research priorities. We conclude that parasitoid-host association networks in invaded communities are complex, dynamic, and subject to trophic intrusions from invasive plants, herbivores, plant pathogens, parasitoids, and hyperparasitoids. Future studies should take a holistic systems approach to understanding the impact of biological invasion and its consequences in shaping community structure through altering existing native, coevolved parasitoid-host association networks.


Assuntos
Interações Hospedeiro-Parasita , Insetos , Espécies Introduzidas , Animais , Insetos/parasitologia , Insetos/fisiologia , Plantas/parasitologia , Herbivoria
6.
Curr Opin Insect Sci ; 65: 101251, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147324

RESUMO

Fipronil, a pesticide widely used to control agricultural and household insect pests, blocks insect GABAA and glutamate (GluCl) ionotropic receptors, resulting in uncontrolled hyperexcitation and paralysis that eventually leads to death. The use of fipronil is controversial because unintentional exposure to this compound may contribute to the ongoing global decline of insect pollinator populations. Although the sublethal effects of fipronil have been linked to aberrant behavior and impaired olfactory learning in insects, the precise mechanisms involved in these responses remain unclear. In this article, we highlight recent studies that have investigated the interaction among different pathways involved in the ability of fipronil to modulate insect behavior, with particular emphasis on the role of GABAergic neurotransmission in fine-tuning the integration of sensorial responses and insect behavior. Recent findings suggest that fipronil can also cause functional alterations that affect synaptic organization and the availability of metal ions in the brain.


Assuntos
Comportamento Animal , Insetos , Inseticidas , Pirazóis , Animais , Pirazóis/toxicidade , Insetos/efeitos dos fármacos , Insetos/fisiologia , Inseticidas/toxicidade , Comportamento Animal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
7.
Curr Opin Insect Sci ; 65: 101253, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153528

RESUMO

The composition and dynamics of ecological communities are complex because of the presence of large numbers of organisms, belonging to many different species, each with their own evolutionary history, and their numerous interactions. The construction and analysis of trophic webs summarize interactions across trophic levels and link community structure to properties such as ecosystem services. We focus on agroecological communities, which may be simpler than natural communities but nonetheless present considerable challenges to describe and understand. We review the characteristics and study of communities comprised of plants, phytophagous insects, and insect parasitoids with particular regard to the maintenance of sustainable agroecological communities and ecosystem services, especially biological pest control. We are constrained to largely overlook other members of these communities, such as hyperparasitoids, predators, parasites, and microbes. We draw chiefly on recent literature while acknowledging the importance of many advances made during the immediately preceding decades. Trophic web construction and analysis can greatly improve the understanding of the role and impact of herbivores and natural enemies in agroecological communities and the various species interactions, such as apparent competition, which assists biocontrol strategies. The study of trophic webs also helps in predicting community ecology consequences of externally driven changes to agroecosystems.


Assuntos
Agricultura , Cadeia Alimentar , Interações Hospedeiro-Parasita , Insetos , Animais , Insetos/fisiologia , Plantas/parasitologia , Controle Biológico de Vetores , Herbivoria
8.
Curr Opin Insect Sci ; 65: 101255, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182720

RESUMO

Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations - nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO2, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.


Assuntos
Dióxido de Carbono , Herbivoria , Insetos , Animais , Insetos/fisiologia , Densidade Demográfica , Plantas , Biodiversidade , Cadeia Alimentar , Mudança Climática
9.
Sci Rep ; 14(1): 18523, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122794

RESUMO

Pollinating insects are decreasing worldwide due to various environmental stresses (so-called pollinator crisis), raising concerns that plant productivity could be undermined in natural and agricultural ecosystems. To date, however, few studies have reported a concurrent decline in both pollinators and plants, and little is known about when a "plant crisis" occurs. Here, we propose that anthropogenic environmental stresses on pollinating insects (e.g. climate change, habitat loss, and pesticide usage) can negatively affect herbivorous insects (e.g., pollinator larvae and crop pests) as well, and effects of pollinator declines may be masked by positive effects of herbivore declines. To test the idea, we theoretically investigated plant population dynamics mediated by two insect groups: one representing a pollinator that is mutualistic at the adult stage but antagonistic at the larval stage, and the other representing a non-structured pest herbivore. Our model revealed that environmental stresses (increasing insect mortality) can have counterintuitive effects on plants. Nonetheless, plant abundance generally decreases with decreasing pollinator abundance, especially when plant populations grow slowly without pollinators, when pollinators are effective mutualists, or when pollinators are susceptible to environmental stresses. These findings offer a theoretical basis for assessing the pollinator crisis for biodiversity conservation and agricultural management.


Assuntos
Herbivoria , Insetos , Larva , Polinização , Animais , Polinização/fisiologia , Larva/fisiologia , Insetos/fisiologia , Plantas , Ecossistema , Dinâmica Populacional , Mudança Climática
10.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123968

RESUMO

Incorporating insect meals into poultry diets has emerged as a sustainable alternative to conventional feed sources, offering nutritional, welfare benefits, and environmental advantages. This study aims to monitor and compare volatile compounds emitted from raw poultry carcasses and subsequently from cooked chicken pieces from animals fed with different diets, including the utilization of insect-based feed ingredients. Alongside the use of traditional analytical techniques, like solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS), to explore the changes in VOC emissions, we investigate the potential of S3+ technology. This small device, which uses an array of six metal oxide semiconductor gas sensors (MOXs), can differentiate poultry products based on their volatile profiles. By testing MOX sensors in this context, we can develop a portable, cheap, rapid, non-invasive, and non-destructive method for assessing food quality and safety. Indeed, understanding changes in volatile compounds is crucial to assessing control measures in poultry production along the entire supply chain, from the field to the fork. Linear discriminant analysis (LDA) was applied using MOX sensor readings as predictor variables and different gas classes as target variables, successfully discriminating the various samples based on their total volatile profiles. By optimizing feed composition and monitoring volatile compounds, poultry producers can enhance both the sustainability and safety of poultry production systems, contributing to a more efficient and environmentally friendly poultry industry.


Assuntos
Galinhas , Cromatografia Gasosa-Espectrometria de Massas , Larva , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Larva/fisiologia , Insetos/fisiologia , Microextração em Fase Sólida/métodos , Carne/análise , Nanoestruturas/química , Ração Animal/análise , Análise Discriminante
11.
Commun Biol ; 7(1): 981, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134630

RESUMO

Neuropteran larvae are fierce predators that use venom to attack and feed on arthropod prey. Neuropterans have adapted to diverse and sometimes extreme habitats, suggesting their venom may have evolved accordingly, but the ecology and evolution of venom deployment in different families is poorly understood. We applied spatial transcriptomics, proteomics, morphological analysis, and bioassays to investigate the venom systems in the antlion Euroleon nostras and the lacewing Chrysoperla carnea, which occupy distinct niches. Although the venom system morphology was similar in both species, we observed remarkable differences at the molecular level. E. nostras produces particularly complex venom secreted from three different glands, indicating functional compartmentalization. Furthermore, E. nostras venom and digestive tissues were devoid of bacteria, strongly suggesting that all venom proteins are of insect origin rather than the products of bacterial symbionts. We identified several toxins exclusive to E. nostras venom, including phospholipase A2 and several undescribed proteins with no homologs in the C. carnea genome. The compositional differences have significant ecological implications because only antlion venom conferred insecticidal activity, indicating its use for the immobilization of large prey. Our results indicate that molecular venom evolution plays a role in the adaptation of antlions to their unique ecological niche.


Assuntos
Venenos de Artrópodes , Comportamento Predatório , Animais , Venenos de Artrópodes/metabolismo , Venenos de Artrópodes/genética , Ecossistema , Insetos/fisiologia , Larva/fisiologia , Proteômica , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Transcriptoma
12.
PLoS Comput Biol ; 20(8): e1011913, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146374

RESUMO

The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used. In Drosophila, ring neurons have well characterised non-linear receptive fields. In this work we produce synthetic versions of these visual receptive fields using a combination of excitatory inputs and mutual inhibition between ring neurons. We use these receptive fields to bring visual information into a spiking neural network model of the insect central complex based on the recently published Drosophila connectome. Previous modelling work has focused on how this circuit functions as a ring attractor using the same type of simple visual cues commonly used experimentally. While we initially test the model on these simple stimuli, we then go on to apply the model to complex natural scenes containing multiple conflicting cues. We show that this simple visual filtering provided by the ring neurons is sufficient to form a mapping between heading and visual features and maintain the heading estimate in the absence of angular velocity input. The network is successful at tracking heading even when presented with videos of natural scenes containing conflicting information from environmental changes and translation of the camera.


Assuntos
Modelos Neurológicos , Animais , Rede Nervosa/fisiologia , Neurônios/fisiologia , Biologia Computacional , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Drosophila/fisiologia , Sinais (Psicologia) , Orientação/fisiologia , Orientação Espacial/fisiologia , Insetos/fisiologia
13.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39189128

RESUMO

Pennycress (Thlaspi arvense L.) is an annual plant in temperate regions that often grows as a weed. Pennycress is being domesticated as a new winter cover crop and oilseed crop for incorporation in the Midwest United States corn-soybean rotation, where it could offer economic and environmental benefits. While pennycress is gaining attention as a promising new crop, there remains a significant gap in understanding its interaction with insect communities and agroecosystems. This review compiles available information on insect herbivores (potential pests) and beneficial insects associated with pennycress growing in the wild (natural areas) or as a weed in agricultural areas. The limited knowledge on the response of pennycress to stressors (defoliation, stem injury and stand loss) similar to injury that could be caused by insects is also compiled here. By shedding light on the insects associated with pennycress and how pennycress might respond to injury from insect pests, this review sets the stage for further research and development of integrated pest management programs for insect pests of this new crop.


Assuntos
Produtos Agrícolas , Herbivoria , Insetos , Thlaspi , Animais , Insetos/fisiologia
14.
Ann N Y Acad Sci ; 1538(1): 98-106, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091080

RESUMO

Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mN m - 1 ${\rm m}^{-1}$ . The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.


Assuntos
Insetos , Tensão Superficial , Animais , Insetos/fisiologia , Adesividade , Capilares/fisiologia , Fenômenos Biomecânicos
15.
Curr Biol ; 34(16): R781-R784, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163840

RESUMO

Plant-insect interactions can be complex and elusive. A new study shows that sap-feeding herbivores reduce tree emissions of specific volatile organic compounds that attract natural enemies. Sap-feeding insects thereby provide enemy-free space for chewing herbivores living on the same tree.


Assuntos
Herbivoria , Insetos , Árvores , Compostos Orgânicos Voláteis , Animais , Herbivoria/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Insetos/fisiologia
16.
Ecology ; 105(9): e4392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39113178

RESUMO

Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.


Assuntos
Insetos , Solanum , Animais , Insetos/fisiologia , Solanum/genética , Solanum/fisiologia , Solanum/classificação , Herbivoria , Fenótipo , Biodiversidade
17.
Braz J Biol ; 84: e284320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166691

RESUMO

Piercing sucking pests attacking sweet pepper plants cause significant losses to its yield. Considering the undesirable effects of synthetic pesticides, field studies were conducted to evaluate the impact of new pesticides against piercing sucking insect pests of sweet pepper, as well as, their effects on some predators and pepper yield along two seasons of 2021-2022. The obtained results indicated that all tested pesticides effectively suppressed the sucking insect populations (aphids, white fly, thrips) 1,7,14 and 21 days after treatment along two sprays during two seasons. Imidacloprid proved to be the superior one over all other treatments where it recorded mean reduction% (98.91 and 97.27%) & (94.8 and 95.19%), (86.23 and 76.64%) & (80.92 and 88.55%) and (77.68 and 78.44%) & (90.70 and 68.57%) in white fly, aphids and thrips, respectively at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. As for side effects of tested insecticides on natural enemies, Dimethoate induced the highest decrease (60.85 and 69.33%) & (54.02 and 63.41%), (65.52 and 64.74%) & (59.23 and 58.38%) and (64.24 and 59.48%) & (61.66 and 60.8%) on Chrysoperla carnea, Paederus alfierii and Coccinella spp at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. On contrary, Spintoram induced the lowest effects on Chrysoperla carnea, Paederus alfierii and Coccinella spp, recording decrease percent (25.41 and 19.84%) & (15.02 and 12.50%), (11.94 and 11.24%) (16.99 and 18.02%) and (18.73 and15.07%) & (18.35 and18.38%) at1st and 2nd sprays at 2021 and 2022 seasons, respectively. With respect to the effect of tested insecticides on pepper yield, all tested insecticides increased the yield of green pepper fruits compared with control. Imidacloprid achieved the highest fruit yields along two seasons 6.43 and 6.52 (ton / fed.4200 m2) with increase percent 34.53 and 36.04% in yield over control at 2021 and 2022 seasons, respectively.


Assuntos
Afídeos , Capsicum , Inseticidas , Neonicotinoides , Nitrocompostos , Estações do Ano , Animais , Inseticidas/farmacologia , Capsicum/efeitos dos fármacos , Capsicum/parasitologia , Nitrocompostos/farmacologia , Afídeos/efeitos dos fármacos , Afídeos/fisiologia , Neonicotinoides/farmacologia , Imidazóis/farmacologia , Tisanópteros/efeitos dos fármacos , Tisanópteros/fisiologia , Insetos/efeitos dos fármacos , Insetos/fisiologia , Fatores de Tempo
18.
PLoS One ; 19(8): e0308263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39167624

RESUMO

Electrical transmission rights-of-way are ubiquitous and critical infrastructure across the landscape. Active vegetation management of these rights-of-way, a necessity to deliver electricity more safely, maintains these landscape features as stages of early successional habitat, a rarity in many regions, making these areas viable movement corridors for many taxa. The goals of this study were to (i) evaluate the effects of different electrical transmission landscape management practices on flowering plant and flower-visiting insect diversity parameters and (ii) generate conservation management inferences for these landscapes. In this study we tested the impact of three vegetation management levels across 18 electrical transmission sites. We evaluated the effects of treatment on bloom abundance and species richness as well as flower-visiting insect abundance and family richness. We identified 76541 flowers/inflorescences across 456 transects, including 188 species in 56 plant families. Additionally, we obtained data on 11361 flower-visitoring insects representing 33 families from 2376 pan trap sets. High vegetation management favored the reduction of coarse woody debris in the sites and harbored the highest level of abundance and richness of both floral resources and flower-visiting insects. We discuss that we can align social and ecological values of rights-of-way, ensuring their sustainability by applying regular and targeted integrated vegetation management. Thus, we can use rights-of-way landscapes not only as an effective management strategy for the delivery of essential human services, but also to provide conservation benefits for wild pollinators.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Flores , Insetos , Animais , Insetos/fisiologia , Conservação dos Recursos Naturais/métodos , Polinização , Ecossistema
19.
Trends Parasitol ; 40(9): 780-787, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39152078

RESUMO

Socially living animals can counteract disease through cooperative defences, leading to social immunity that collectively exceeds the sum of individual defences. In superorganismal colonies of social insects with permanent caste separation between reproductive queen(s) and nonreproducing workers, workers are obligate altruists and thus engage in unconditional social immunity, including highly specialised and self-sacrificial hygiene behaviours. Contrastingly, cooperation is facultative in cooperatively breeding families, where all members are reproductively totipotent but offspring transiently forgo reproduction to help their parents rear more siblings. Here, helpers should either express condition-dependent social immunity or disperse to pursue independent reproduction. We advocate inclusive fitness theory as a framework to predict when and how indirect fitness gains may outweigh direct fitness costs, thus favouring conditional social immunity.


Assuntos
Comportamento Social , Animais , Insetos/imunologia , Insetos/fisiologia , Reprodução/imunologia , Reprodução/fisiologia , Comportamento Animal/fisiologia
20.
PeerJ ; 12: e17647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948210

RESUMO

Background: Anthropogenic activities significantly impact natural ecosystems, leading to alterations in plant and pollinator diversity and abundance. These changes often result in shifts within interacting communities, potentially reshaping the structure of plant-pollinator interaction networks. Given the escalating human footprint on habitats, evaluating the response of these networks to anthropization is critical for devising effective conservation and management strategies. Methods: We conducted a comprehensive review of the plant-pollinator network literature to assess the impact of anthropization on network structure. We assessed network metrics such as nestedness measure based on overlap and decreasing fills (NODF), network specialization (H2'), connectance (C), and modularity (Q) to understand structural changes. Employing a meta-analytical approach, we examined how anthropization activities, such as deforestation, urbanization, habitat fragmentation, agriculture, intentional fires and livestock farming, affect both plant and pollinator richness. Results: We generated a dataset for various metrics of network structure and 36 effect sizes for the meta-analysis, from 38 articles published between 2010 and 2023. Studies assessing the impact of agriculture and fragmentation were well-represented, comprising 68.4% of all studies, with networks involving interacting insects being the most studied taxa. Agriculture and fragmentation reduce nestedness and increase specialization in plant-pollinator networks, while modularity and connectance are mostly not affected. Although our meta-analysis suggests that anthropization decreases richness for both plants and pollinators, there was substantial heterogeneity in this regard among the evaluated studies. The meta-regression analyses helped us determine that the habitat fragment size where the studies were conducted was the primary variable contributing to such heterogeneity. Conclusions: The analysis of human impacts on plant-pollinator networks showed varied effects worldwide. Responses differed among network metrics, signaling nuanced impacts on structure. Activities like agriculture and fragmentation significantly changed ecosystems, reducing species richness in both pollinators and plants, highlighting network vulnerability. Regional differences stressed the need for tailored conservation. Despite insights, more research is crucial for a complete understanding of these ecological relationships.


Assuntos
Efeitos Antropogênicos , Ecossistema , Polinização , Animais , Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Insetos/fisiologia , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...