Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.380
Filtrar
1.
Parasit Vectors ; 17(1): 385, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261872

RESUMO

BACKGROUND: Southeast Asia is well known as a hotspot of biodiversity. However, very little is known about cave-dwelling hematophagous insects that are medically important. Taxonomic knowledge and ecology of phlebotomine sand flies are very poorly studied in Laos, as well as in other countries in the region. Herein, we report species diversity data and some notes on the ecology of the detected species from these karstic limestone areas of Laos. METHODS: Phlebotomine sand flies were collected using Centers for Disease Control and Prevention (CDC) light traps from limestone cave locations in three districts of Vientiane Province, Laos. Both morphological and molecular techniques were used for sand fly identification. Species diversity and abundance were analyzed according to sites, locations, collection seasons, and trapping positions. RESULTS: A total of 6564 sand flies, of which 5038 were females and 1526 were males, were morphologically identified into 20 species belonging to five genera (Chinius, Idiophlebotomus, Phlebotomus, Sergentomyia, and Grassomyia). The most abundant species were Chinius eunicegalatiae, Phlebotomus stantoni, Sergentomyia hivernus, Se. siamensis, and Idiophlebotomus longiforceps. Cytochrome b analysis results supported the morphological identification and revealed that Se. siamensis was separated from other members of the Se. barraudi group. Two new species, Se. dvoraki n. sp. and Se. marolii n. sp., were described. Sand fly density was generally high except in a cave in Vangvieng, with species richness ranging from 14 to 18 across different caves. Outside caves had higher species richness (R = 20) and diversity (H = 2.50) than cave entrances (R = 18, H = 2.41) and interiors (R = 16, H = 2.13). Seasonal variations showed high sand fly density in Feung and Hinheup during both dry and rainy seasons, while Vangvieng had a notable decrease in density during the dry season (D = 6.29). CONCLUSIONS: This study revealed that the diversity of phlebotomine sand fly fauna in Laos, particularly in karstic limestone areas, is greater than previously known. However, the taxonomic status of many species in Laos, as well as Southeast Asia, still needs more in-depth study using both morphological characters and molecular methods. Many species could be found from inside, at the entrance, and outside of caves, indicating a wide range of host-seeking behavior or possible natural breeding in the karstic cave areas.


Assuntos
Biodiversidade , Cavernas , Psychodidae , Animais , Laos , Psychodidae/classificação , Psychodidae/anatomia & histologia , Psychodidae/fisiologia , Psychodidae/genética , Masculino , Feminino , Carbonato de Cálcio , Estações do Ano , Filogenia , Insetos Vetores/classificação , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia
2.
Mem Inst Oswaldo Cruz ; 119: e240055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230128

RESUMO

Sand flies play a crucial role as vectors of bacteria, viruses, and protists, with Leishmania being the most notable among them, transmitted to vertebrate hosts during blood feeding. Understanding the feeding behaviours of sand flies is imperative for gaining insights into their eco-epidemiological roles in the transmission of these infectious agents. This systematic review aimed to answer the question 'What are the blood-feeding sources identified in Brazilian sand flies?' to provide an analysis of their blood-feeding habits. The diverse range of at least 16 vertebrate orders identified as blood sources for 54 sand fly species across different geographic regions was summarised, and the factors potentially associated with the risk of bias in the included studies were analysed. The findings broaden the discussion concerning methods used to identify blood meal sources and shed light on the implications of sand fly feeding behaviours for the transmission dynamics of Leishmania.


Assuntos
Comportamento Alimentar , Insetos Vetores , Psychodidae , Animais , Comportamento Alimentar/fisiologia , Psychodidae/fisiologia , Brasil , Insetos Vetores/fisiologia , Vertebrados
3.
Mem Inst Oswaldo Cruz ; 119: e240002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230138

RESUMO

BACKGROUND: The city of El Pedregal grew out of a desert, following an agricultural irrigation project in southern Peru. OBJECTIVES: To describe infestation patterns by triatomines and bed bugs and their relationship to migration and urbanization. METHODS: We conducted door-to-door entomological surveys for triatomines and bed bugs. We assessed spatial clustering of infestations and compared the year of construction of infested to un-infested households. To gain a better understanding of the context surrounding triatomine infestations, we conducted in-depth interviews with residents to explore their migration histories, including previous experiences with infestation. FINDINGS: We inspected 5,164 households for Triatoma infestans (known locally as the Chirimacha); 21 (0.41%) were infested. These were extremely spatially clustered (Ripley's K p-value < 0.001 at various spatial scales). Infested houses were older than controls (Wilcoxon rank-sum: W = 33; p = 0.02). We conducted bed bug specific inspections in 34 households; 23 of these were infested. These were spatially dispersed across El Pedregal, and no difference was observed in construction age between bed bug infested houses and control houses (W = 6.5, p = 0.07). MAIN CONCLUSIONS: The establishment of agribusiness companies in a desert area demanded a permanent work force, leading to the emergence of a new city. Migrant farmers, seeking work opportunities or escaping from adverse climatic events, arrived with few resources, and constructed their houses with precarious materials. T. infestans, a Chagas disease vector, was introduced to the city and colonized houses, but its dispersal was constrained by presence of vacant houses. We discuss how changes in the socioeconomic and agricultural landscape can increase vulnerability to vector-borne illnesses.


Assuntos
Percevejos-de-Cama , Doença de Chagas , Insetos Vetores , Triatoma , Animais , Peru , Doença de Chagas/transmissão , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Humanos , Triatoma/parasitologia , Irrigação Agrícola , Habitação
4.
J Invertebr Pathol ; 206: 108183, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39182644

RESUMO

Relative little is known about fitness effects and life history trade-off of Trypanosoma cruzi in Triatoma infestans, the main vector of Chagas disease in Argentina. Previous studies revealed some costs related to development, excretion, and toxicology or their possible trade-offs, but none address effects on reproduction. To study the effect of T. cruzi infection on reproductive efficiency and survival of T. infestans we set up four treatments: both genders uninfected, both genders infected, female infected - males uninfected and female uninfected - males infected. The infection was induced during the third, fourth, and fifth nymphal instars. Reproductive efficiency and longevity variables were recorded. Our results showed that the infection by T. cruzi increased reproductive efficiency and reduced survival of T. infestans. Pairs where one or both individuals were infected presented a greater percentage copulation, of egg-laying females, the onset of copulation and oviposition occurred earlier, and age-specific fecundity was notably higher. Regarding fertility, infected females displayed higher rates irrespective of the infective status of the male counterpart. A reduction in longevity was observed in infected males and females. These findings highlighted that the infection significantly alters the trade-off reproductive efficiency-survival of T. infestans, with the impact differing according to the infection status of each gender, suggesting a complex interplay rather than a simple additive effect. This response corresponds to the reproductive compensation hypothesis.


Assuntos
Longevidade , Reprodução , Triatoma , Trypanosoma cruzi , Animais , Triatoma/parasitologia , Triatoma/fisiologia , Feminino , Masculino , Trypanosoma cruzi/fisiologia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Doença de Chagas , Interações Hospedeiro-Parasita , Fertilidade
5.
Acta Trop ; 259: 107368, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173727

RESUMO

Chagas disease is a key vector-borne disease. This illness is caused by Trypanosoma cruzi Chagas, which is transmitted by triatomine bugs. Largely, the control of this disease relies on reducing such contact. We optimized the performance of a box trap in laboratory conditions to capture four triatomine species: Triatoma pallidipennis (Stål), Triatoma infestans Klug, Triatoma phyllosoma (Burmeister), and Rhodnius prolixus Stål. We varied four components for a box trap: material, color, height, and bait attractants. All species were captured more in corrugated cardboard traps than in other trap material. Moreover, T. infestans and R. prolixus were also captured in plywood traps. T. pallidipennis preferred traps of 15 × 15 × 4 cm and 20 × 20 × 4 cm, while T. phyllosoma and T. infestans were more captured in traps of 10 × 10 × 4 cm, and 15 × 15 × 4 cm. Rhodnius prolixus was more captured to 10 × 10 × 4 cm traps. T. pallidipennis was trapped with traps of any color tested, T. phyllosoma and T. infestans were captured more in red and yellow traps, and R. prolixus was mostly captured in blue, violet, and yellow traps. Triatoma pallidipennis was captured at any height above the ground, while T. phyllosoma, T. infestans, and R. prolixus were mostly captured 50, 100, and 150 cm above the ground. Regarding the lure, T. pallidipennis was trapped with four aldehydes + lactic acid + ammonia; T. infestans and R. prolixus were trapped with a blend of four aldehydes + lactic acid, a blend of the four aldehydes + ammonia, and a blend of four aldehydes + lactic acid + ammonia. Triatoma phyllosoma was trapped with any lure tested. These results showed that the trap boxes offer an alternative method for controlling Chagas disease.


Assuntos
Rhodnius , Triatoma , Animais , Rhodnius/parasitologia , Doença de Chagas/transmissão , Doença de Chagas/prevenção & controle , Controle de Insetos/métodos , Controle de Insetos/instrumentação , Trypanosoma cruzi , Insetos Vetores/fisiologia
6.
Vet Med Sci ; 10(5): e1580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39171609

RESUMO

Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.


Assuntos
Culicidae , Comportamento Alimentar , Psychodidae , Animais , Comportamento Alimentar/fisiologia , Psychodidae/fisiologia , Culicidae/fisiologia , Mosquitos Vetores/fisiologia , Humanos , Insetos Vetores/fisiologia
7.
Acta Trop ; 258: 107367, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173726

RESUMO

Chagas disease, a neglected global health concern primarily transmitted through the bite and feces of kissing bugs, has garnered increasing attention due to recent outbreaks in northern Brazil, highlighting the role of oral transmission facilitated by the kissing bugs species Rhodnius robustus and Rhodnius pictipes. These vectors are associated with palm trees with large crowns, such as the maripa palm (Attalea maripa) and moriche palm (Mauritia flexuosa). In this study, we employ maximum entropy (MaxEnt) ecological niche models to analyze the spatial distribution of these vectors and palm species, predicting current and future climate suitability. Our models indicate broader potential habitats than documented occurrences, with high suitability in northern South America, southern Central America, central Africa, and southeast Asia. Projections suggest increased climate suitability by 2040, followed by a reduction by 2080. This study identifies present and future areas suitable for kissing bugs and palm tree species due to climate change, aiding in the design of prevention and management strategies.


Assuntos
Arecaceae , Doença de Chagas , Insetos Vetores , Rhodnius , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Animais , Rhodnius/parasitologia , Rhodnius/fisiologia , Arecaceae/parasitologia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Humanos , Ecossistema , Brasil/epidemiologia , Mudança Climática
8.
Vet Med Sci ; 10(5): e1555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180313

RESUMO

INTRODUCTION: Culicoides Latreille biting midges are vectors of high concern as they can transmit serious veterinary diseases such as bluetongue virus or epizootic haemorrhagic disease virus, among others. Little is known about these vectors in Galicia, so a comprehensive literature review and an intensive monitoring were carried out in the region. MATERIAL AND METHODS: The Autonomous Community of Galicia was sampled through three different vector surveillance projects between 2004 and 2023. A total of 239 sampling points were deployed alongside the Galician territory. In addition, a literature review of Culicoides in Galicia related content was made by consulting several digital repositories. RESULTS: A total of 33 species of Culicoides belonging to 8 subgenera were identified. Among them, 15 are considered or suspected to be potential vectors of several pathogens of medical and/or veterinary interest. In addition, 20 of them are reported for the first time in the region. Updated distribution maps of the Culicoides biting midges of Galicia were provided, including several notes regarding their ecology and relevance for both public health and animal welfare. CONCLUSIONS: The present work is one of the most complete works made at regional level in Spain to date. As Galicia's economy relies heavily on livestock farming, this work will provide a solid baseline in order to develop new research lines in the future regarding prevention to vector-borne diseases.


Assuntos
Ceratopogonidae , Insetos Vetores , Ceratopogonidae/fisiologia , Ceratopogonidae/virologia , Animais , Espanha , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Distribuição Animal , Biodiversidade
9.
Viruses ; 16(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39205195

RESUMO

Most mathematical models that assess the vectorial capacity of disease-transmitting insects typically focus on the influence of climatic factors to predict variations across different times and locations, or examine the impact of vector control interventions to forecast their potential effectiveness. We combine features of existing models to develop a novel model for vectorial capacity that considers both climate and vector control. This model considers how vector control tools affect vectors at each stage of their feeding cycle, and incorporates host availability and preference. Applying this model to arboviruses of veterinary importance in Europe, we show that African horse sickness virus (AHSV) has a higher peak predicted vectorial capacity than bluetongue virus (BTV), Schmallenberg virus (SBV), and epizootic haemorrhagic disease virus (EHDV). However, AHSV has a shorter average infectious period due to high mortality; therefore, the overall basic reproduction number of AHSV is similar to BTV. A comparable relationship exists between SBV and EHDV, with both viruses showing similar basic reproduction numbers. Focusing on AHSV transmission in the UK, insecticide-treated stable netting is shown to significantly reduce vectorial capacity of Culicoides, even at low coverage levels. However, untreated stable netting is likely to have limited impact. Overall, this model can be used to consider both climate and vector control interventions either currently utilised or for potential use in an outbreak, and could help guide policy makers seeking to mitigate the impact of climate change on disease control.


Assuntos
Infecções por Arbovirus , Arbovírus , Ceratopogonidae , Clima , Insetos Vetores , Animais , Infecções por Arbovirus/transmissão , Infecções por Arbovirus/prevenção & controle , Arbovírus/fisiologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Ceratopogonidae/virologia , Ceratopogonidae/fisiologia , Modelos Teóricos , Europa (Continente)/epidemiologia , Número Básico de Reprodução , Vírus Bluetongue/fisiologia
10.
PLoS Negl Trop Dis ; 18(8): e0012430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150980

RESUMO

Ecological theory predicts that species that can utilise a greater diversity of resources and, therefore, have wider niche breadths should also occupy larger geographic areas (the 'niche breadth-range size hypothesis'). Here, we tested this hypothesis for a blood-sucking group of insects of medical significance: the Triatominae (aka 'kissing bugs') (Hemiptera: Reduviidae). Given that niches can be viewed from different perspectives, we tested this hypothesis based on both dietary and climatic niches. We assembled the most complete dataset of triatomine feeding patterns to date by reviewing 143 studies from the literature up to 2021 and tested whether the niche breadth-range size hypothesis held for this group for both dietary and climatic components of the niche. Temperature and precipitation niche breadths were estimated from macro-environmental variables, while diet breadth was calculated based on literature data that used PCR and/or ELISA to identify different types of hosts as blood sources per triatomine species. Our results showed that temperature and precipitation niche breadths, but not dietary breadth, were positively correlated with range sizes, independent of evolutionary history among species. These findings support the predictions from the range size-niche breadth hypothesis concerning climate but not diet, in Triatominae. It also shows that support for the niche breadth-range size hypothesis is dependent upon the niche axis under consideration, which can explain the mixed support for this hypothesis in the ecological literature.


Assuntos
Doença de Chagas , Comportamento Alimentar , Insetos Vetores , Temperatura , Triatominae , Animais , Doença de Chagas/transmissão , Insetos Vetores/fisiologia , Triatominae/fisiologia , Triatominae/parasitologia , Ecossistema , Chuva , Dieta , Clima
11.
J Med Entomol ; 61(5): 1105-1114, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38995691

RESUMO

Triatomine bugs are vectors for the Trypanosoma cruzi Chagas parasites, the etiological agent for Chagas disease. This study evaluated 6 epidemiologically significant behaviors (development time, number of blood meals required for molting to the next instar, mortality rate, aggressiveness, feeding duration, and defecation delay) across 4 populations of Triatoma mexicana Herrich-Schaeffer (Heteroptera: Reduviidae), a major T. cruzi vector in Central Mexico. We collected triatomines from areas characterized by high (HP), medium (MP), medium-high (MHP), and low (LP) prevalence of human T. cruzi infection. The MHP population had the shortest development time, <290 days. Both the HP and MP populations required the most blood meals to molt to the next instar, with a median of 13. Mortality rates varied across all populations, ranging from 44% to 52%. All of the tested populations showed aggressive behavior during feeding. All populations shared similar feeding durations, with most exceeding 13 min and increasing with each instar. Quick defecation, during feeding, immediately after or less than 1 min after feeding, was observed in most nymphs (78%-90%) from the MP and MHP populations and adults (74%-92%) from HP, MP, and MHP populations. Though most parameters suggest a low potential for T. mexicana to transmit T. cruzi, unique feeding and defecation behaviors in 3 populations (excluding the LP group) could elevate their epidemiological importance. These population-specific differences may contribute to the varying prevalence rates of T. cruzi infection in areas where T. mexicana is found.


Assuntos
Triatoma , Animais , Triatoma/fisiologia , Triatoma/crescimento & desenvolvimento , Triatoma/parasitologia , México/epidemiologia , Características de História de Vida , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Feminino , Comportamento Alimentar , Masculino , Insetos Vetores/fisiologia , Defecação , Doença de Chagas/transmissão
12.
PLoS Negl Trop Dis ; 18(7): e0011518, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038064

RESUMO

BACKGROUND: Pintomyia longiflocosa is considered a vector of etiological agents of cutaneous leishmaniasis. The objective of this research was to establish the parameters of the life cycle of Pi. longiflocosa in semi-controlled conditions in a rural area of the Campoalegre municipality, Huila, Colombia. METHODOLOGY/PRINCIPAL FINDINGS: The life cycle of individuals of Pi. longiflocosa, obtained from two cohorts of collected, fed, and individualized females, was monitored during two different times of the year (between February and August 2020 and between July 2020 and January 2021, respectively). Determining parameters associated with the fertility and fecundity, time and attributes of development and survival, and its association with abiotic variables. The average duration of Cycle 1 (C1) and Cycle 2 (C2) was 134.9 and 148.78 days, respectively. The gonotrophic cycle of parental females presented significant differences (p-value <0.05) between C1 and C2 (8.47 and 11.42 days) as well as between fecundity and fertility parameters. The number of days it takes the development of the immature stages between the two cycles studied, also showed significant differences in the larvae II (15.21 and 22.23), larvae III (11.93 and 17.56), and pupae (24.48 and 22.9) stages. During C1, the survival rate was higher and consistent with the productivity of adult individuals (F1), compared to C2. Fecundity and fertility values were significantly higher in C2. Finally, a significant correlation between the number of individuals and temperature was evidenced in C1 while, for C2, there was a negative correlation with precipitation. CONCLUSIONS/SIGNIFICANCE: Significant differences were found in several biological and reproductive parameters between the two cycles monitored. The parameters of the life cycle of Pi. longiflocosa in its natural habitat would be influenced by environmental factors related to the annual seasonality in the sub-Andean rural area, conditioning the temporal distribution of this species and, consequently, the possible transmission of causative agents of cutaneous leishmaniasis.


Assuntos
Psychodidae , Estações do Ano , Animais , Colômbia , Feminino , Psychodidae/fisiologia , Psychodidae/crescimento & desenvolvimento , Fertilidade , Estágios do Ciclo de Vida , Insetos Vetores/fisiologia , Insetos Vetores/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Leishmaniose Cutânea/transmissão , Masculino
14.
Parasit Vectors ; 17(1): 287, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956689

RESUMO

BACKGROUND: The emergence of pyrethroid resistance has threatened the elimination of Triatoma infestans from the Gran Chaco ecoregion. We investigated the status and spatial distribution of house infestation with T. infestans and its main determinants in Castelli, a municipality of the Argentine Chaco with record levels of triatomine pyrethroid resistance, persistent infestation over 2005-2014, and limited or no control actions over 2015-2020. METHODS: We conducted a 2-year longitudinal survey to assess triatomine infestation by timed manual searches in a well-defined rural section of Castelli including 14 villages and 234 inhabited houses in 2018 (baseline) and 2020, collected housing and sociodemographic data by on-site inspection and a tailored questionnaire, and synthetized these data into three indices generated by multiple correspondence analysis. RESULTS: The overall prevalence of house infestation in 2018 (33.8%) and 2020 (31.6%) virtually matched the historical estimates for the period 2005-2014 (33.7%) under recurrent pyrethroid sprays. While mean peridomestic infestation remained the same (26.4-26.7%) between 2018 and 2020, domestic infestation slightly decreased from 12.2 to 8.3%. Key triatomine habitats were storerooms, domiciles, kitchens, and structures occupied by chickens. Local spatial analysis showed significant aggregation of infestation and bug abundance in five villages, four of which had very high pyrethroid resistance approximately over 2010-2013, suggesting persistent infestations over space-time. House bug abundance within the hotspots consistently exceeded the estimates recorded in other villages. Multiple regression analysis revealed that the presence and relative abundance of T. infestans in domiciles were strongly and negatively associated with indices for household preventive practices (pesticide use) and housing quality. Questionnaire-derived information showed extensive use of pyrethroids associated with livestock raising and concomitant spillover treatment of dogs and (peri) domestic premises. CONCLUSIONS: Triatoma infestans populations in an area with high pyrethroid resistance showed slow recovery and propagation rates despite limited or marginal control actions over a 5-year period. Consistent with these patterns, independent experiments confirmed the lower fitness of pyrethroid-resistant triatomines in Castelli compared with susceptible conspecifics. Targeting hotspots and pyrethroid-resistant foci with appropriate house modification measures and judicious application of alternative insecticides with adequate toxicity profiles are needed to suppress resistant triatomine populations and prevent their eventual regional spread.


Assuntos
Doença de Chagas , Resistência a Inseticidas , Inseticidas , Piretrinas , Triatoma , Animais , Triatoma/efeitos dos fármacos , Triatoma/fisiologia , Piretrinas/farmacologia , Argentina , Inseticidas/farmacologia , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Humanos , Estudos Longitudinais , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Habitação , Ecossistema , Controle de Insetos
15.
J Exp Biol ; 227(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989599

RESUMO

Chagas disease vectors can ingest several times their own volume in blood with each meal. This ad libitum feeding causes an intense process of diuresis, inducing the insect to eliminate a large quantity of urine and faeces. To ensure diuresis, the speed of circulation of the haemolymph is increased. The Triatominae circulatory system is quite simple, including the dorsal vessel, which pumps haemolymph in an anterograde direction. The return is caused by peristaltic contractions of the anterior midgut. Triatominae insects can spend several weeks without feeding, meaning that most of the time, the insect is in a resting condition. Although the mechanisms controlling the circulation of the haemolymph during post-prandial diuresis have been largely analysed, the mechanisms controlling it during resting conditions are poorly understood. In this study, we analysed several canonical pathways (i.e. L-type VGCC, GPCR, RyR, IP3R) and a novel system represented by the recently characterized Piezo proteins. Our results show that during the resting condition, haemolymph circulation depends on a cross-talk between myogenic activity, inhibitory and stimulatory cellular messengers, and Piezo proteins. This report also unveils for the first time the existence of a putative Piezo protein in Hemiptera.


Assuntos
Hemolinfa , Rhodnius , Animais , Rhodnius/fisiologia , Proteínas de Insetos/metabolismo , Insetos Vetores/fisiologia , Doença de Chagas/transmissão , Descanso/fisiologia
16.
J Med Entomol ; 61(5): 1115-1125, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941237

RESUMO

Predicting the potential distribution and coexistence of suitable geographic areas for Chagas disease vectors in the Americas is a crucial task for understanding the eco-epidemiological dynamics of this disease. The potential distribution and coexistence of 3 species-Rhodnius prolixus (Hemiptera: Reduviidae), Cavernicola pilosa (Hemiptera: Reduviidae), and Rhodnius pictipes (Hemiptera: Reduviidae) were modeled. Presence records were obtained and environmental variables were selected based on correlation analysis, Jackknife analysis and knowledge of the biology and natural history of the species. The MaxEnt algorithm included in the kuenm package of R software was used for modeling the potential distribution, and various scenarios of the BAM diagram (Biotic, Abiotic, and Movement variables) were evaluated. The variables contributing to the final models were different for each species. Rhodnius pictipes showed a potential distribution in South America, particularly in Brazil, Bolivia, Peru, Colombia, Venezuela, Guyana, and Suriname. Areas with environmentally suitable conditions for R. prolixus were located in southern Brazil, Peru, Colombia, southern Mexico, Guatemala, El Salvador, and Honduras, whereas for C. pilosa they were in southeastern Brazil, southeastern Central America, Peru, Ecuador, Colombia, Venezuela, Guyana, Suriname, and French Guiana. Co-occurrence analysis revealed distinct patterns in the neotropical region, with some areas indicating the potential distribution of 1 or more species. In Brazil, occurrence and co-occurrence areas were concentrated in the northwest and southeast regions. Overall, this study provides valuable information on the potential distribution and coexistence of vectors, which can inform targeted vector control strategies and contribute to global efforts in combating Chagas disease.


Assuntos
Doença de Chagas , Insetos Vetores , Rhodnius , Animais , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Rhodnius/fisiologia , Insetos Vetores/fisiologia , Distribuição Animal , América do Sul/epidemiologia , Modelos Biológicos , América Central/epidemiologia , América/epidemiologia
17.
Acta Trop ; 257: 107287, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901523

RESUMO

Phlebotomine sand flies are the sole confirmed vector of leishmaniosis, a group of endemic and re-emerging diseases in southern European countries such as Spain. Light traps are the major surveillance method currently being employed. Nevertheless, color light attraction by sand flies remains mostly unknown. Following prior research, the effect of UV-LED light sources, and its synergic effect with different color lights has been evaluated employing a modified Flebocollect (FC) light trap model. Results suggest that female Phlebotomus perniciosus sand flies are more attracted to a FC trap lured with the combination of blue and UV LED light sources than commercial CDC (Center for Disease Control and prevention) traps (Bonferroni post-hoc test; p < 0.08; blue/UV mean = 0.50; CDC mean = 0.13), while the combination of red and UV modified-traps excel in capturing Sergentomyia minuta sand flies (Bonferroni post-hoc test; p < 0.04; blue/UV mean = 1.19; CDC mean = 0.66). However, based on our prior studies, incorporating UV light sources into sand fly traps does not seem to enhance their attractiveness, as it has not resulted in higher capture rates. These findings contribute to understanding how sand flies' vision and light color detection is. Further research is recommended to standardize trap construction procedures and explore variations in different endemic regions according to different sand fly species.


Assuntos
Controle de Insetos , Phlebotomus , Raios Ultravioleta , Animais , Feminino , Phlebotomus/efeitos da radiação , Controle de Insetos/métodos , Psychodidae/efeitos da radiação , Psychodidae/fisiologia , Espanha , Insetos Vetores/efeitos da radiação , Insetos Vetores/fisiologia , Cor , Masculino
18.
PLoS Negl Trop Dis ; 18(6): e0012237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885272

RESUMO

BACKGROUND: Leishmaniasis, a neglected disease and public health concern, is associated with various factors such as biological, social, economical conditions and climate, increasing the risk of human infection. Understanding the population dynamics of the vectors, like Pintomyia longiflocosa, and its relationship with ecological variables is crucial for developing effective strategies to control sand fly populations and combat cutaneous leishmaniasis in a tropical country like Colombia. METHODOLOGY: Adult sand flies were collected in three different sample locations: outdoor, indoor, and peri-domestic areas in three houses located in the rural settlement of Campoalegre (Huila) between February 2020 and February 2021, using the CDC light traps. The sand fly density was quantified and associated with the sample locations and the sampling months using Analysis of Variance and Pearson correlations. PRINCIPAL FINDINGS: In the period of the sample, 98.86% of sand fly collected was identified as Pi. longiflocosa. The density of this species was significantly different between males and females, the latter contributing more to density in all sample locations (P<0.0001). The outdoor was the sample location with the highest and most significative density in this study (70%, P = 0.04). The density of these sand flies is related to the seasonality of Campoalegre, revealing a density peak from February and June to October (P < 0.05). Finally, precipitation is the environmental variable prominently linked to the density pattern, showing a negative correlation with it. Months with the highest precipitations show the lowest values of Pi. longiflocosa abundance. CONCLUSIONS/SIGNICANCE: Our investigation reveals a inverse correlation between precipitation levels and the abundance of Pi. longiflocosa in Campoalegre (Huila), particularly in outdoor areas. This suggests that vector control strategies to periods of reduced precipitation in outdoor settings could offer an effective approach to minimizing cases of cutaneous leishmaniasis in the region.


Assuntos
Insetos Vetores , Leishmaniose Cutânea , Psychodidae , Animais , Leishmaniose Cutânea/transmissão , Leishmaniose Cutânea/epidemiologia , Colômbia/epidemiologia , Psychodidae/parasitologia , Psychodidae/fisiologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Feminino , Masculino , Humanos , Estações do Ano , Dinâmica Populacional , Análise Espaço-Temporal
19.
J Vector Borne Dis ; 61(2): 236-242, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922658

RESUMO

BACKGROUND OBJECTIVES: Sandflies are vector insects associated with terrestrial forest ecosystems; in the Ecuadorian Andes, they participate in the transmission of human cutaneous leishmaniasis. This geographical area represents an opportunity to evaluate the role of sandflies as bioindicators of the degree of intervention of tropical humid forest ecosystems (THF) associated with changes in the ecology of the local landscape. METHODS: CDC-light traps were used for collecting adult sandflies in February 2020 in a humid tropical forest within the Chocó Biosphere Reserve. All species were identified using morphological keys. Analysis data about abundance, richness, species accumulation, diversity index, species composition communities, species sex proportion, spatial sandflies environmental, Renyi's Diversity Profile were performed to compare six spatial habitats in Mashpi locality, Ecuador. RESULTS: Sandflies were collected (n-1435); the main species are represented by Trichophoromyia reburra, Nyssomyia trapidoi, Psathyromyia aclydifera, Psychodopygus panamensis and Lutzomyia hartmanni. Only Th. reburra is associated with not intervened forest, while the other three species are associated with intervened forest within Mashpi in the Choco Biosphere Reserve. The secondary forest has major sandflies' richness, while the primary forest exhibits major abundance. INTERPRETATION CONCLUSION: Th. reburra is a sandfly restricted to the Andean Forest and is a bioindicator of the high environmental health quality of the forest, while Ny. trapidoi and Pa. aclydifera are bioindicators of environmental disturbances in the forest. Additionally, Ps. panamensis, Lu. hartmanni and Ny. trapidoi are bioindicators of human impact and the risk of leishmaniasis.


Assuntos
Ecossistema , Florestas , Insetos Vetores , Psychodidae , Animais , Psychodidae/fisiologia , Psychodidae/classificação , Insetos Vetores/fisiologia , Insetos Vetores/classificação , Equador , Masculino , Feminino , Leishmaniose Cutânea/transmissão , Biodiversidade , Humanos
20.
Parasit Vectors ; 17(1): 246, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831449

RESUMO

BACKGROUND: Arthropods vector a multitude of human disease-causing organisms, and their geographic ranges are shifting rapidly in response to changing climatic conditions. This is, in turn, altering the landscape of disease risk for human populations that are brought into novel contact with the vectors and the diseases they carry. Sand flies in the genera Lutzomyia and Pintomyia are vectors of serious disease-causing agents such as Leishmania (the etiological agent of leishmaniasis) and may be expanding their range in the face of climate change. Understanding the climatic conditions that vector species both tolerate physiologically and prefer behaviorally is critical to predicting the direction and magnitude of range expansions and the resulting impacts on human health. Temperature and humidity are key factors that determine the geographic extent of many arthropods, including vector species. METHODS: We characterized the habitat of two species of sand flies, Lutzomyia longipalpis and Pintomyia evansi. Additionally, we studied two behavioral factors of thermal fitness-thermal and humidity preference in two species of sand flies alongside a key aspect of physiological tolerance-desiccation resistance. RESULTS: We found that Lu. longipalpis is found at cooler and drier conditions than Pi. evansi. Our results also show significant interspecific differences in both behavioral traits, with Pi. evansi preferring warmer, more humid conditions than Lu. longipalpis. Finally, we found that Lu. longipalpis shows greater tolerance to extreme low humidity, and that this is especially pronounced in males of the species. CONCLUSIONS: Taken together, our results suggest that temperature and humidity conditions are key aspects of the climatic niche of Lutzomyia and Pintomyia sand flies and underscore the value of integrative studies of climatic tolerance and preference in vector biology.


Assuntos
Ecossistema , Umidade , Psychodidae , Temperatura , Animais , Psychodidae/fisiologia , Psychodidae/classificação , Feminino , Masculino , Insetos Vetores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...