Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.493
Filtrar
1.
J Clin Invest ; 134(15)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-39087467

RESUMO

The blood-brain barrier (BBB) acquires unique properties to regulate neuronal function during development. The formation of the BBB, which occurs in tandem with angiogenesis, is directed by the Wnt/ß-catenin signaling pathway. Yet the exact molecular interplay remains elusive. Our study reveals the G protein-coupled receptor GPR126 as a critical target of canonical Wnt signaling, essential for the development of the BBB's distinctive vascular characteristics and its functional integrity. Endothelial cell-specific deletion of the Gpr126 gene in mice induced aberrant vascular morphogenesis, resulting in disrupted BBB organization. Simultaneously, heightened transcytosis in vitro compromised barrier integrity, resulting in enhanced vascular permeability. Mechanistically, GPR126 enhanced endothelial cell migration, pivotal for angiogenesis, acting through an interaction between LRP1 and ß1 integrin, thereby balancing the levels of ß1 integrin activation and recycling. Overall, we identified GPR126 as a specifier of an organotypic vascular structure, which sustained angiogenesis and guaranteed the acquisition of the BBB properties during development.


Assuntos
Barreira Hematoencefálica , Integrina beta1 , Receptores Acoplados a Proteínas G , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Movimento Celular , Células Endoteliais/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Neovascularização Fisiológica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Via de Sinalização Wnt , Masculino , Feminino
2.
Proc Natl Acad Sci U S A ; 121(34): e2401251121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136993

RESUMO

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of ß1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the ß1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide ß1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of ß1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in ß1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant ß1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.


Assuntos
Asma , Integrina beta1 , Interleucina-13 , Interleucina-17 , Músculo Liso , NF-kappa B , Quinases Associadas a rho , Humanos , Integrina beta1/metabolismo , Interleucina-17/metabolismo , Músculo Liso/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho/metabolismo , Interleucina-13/metabolismo , Asma/metabolismo , Transdução de Sinais , Adesão Celular , Miócitos de Músculo Liso/metabolismo , Animais
3.
Signal Transduct Target Ther ; 9(1): 169, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956074

RESUMO

More than 90% of hepatocellular carcinoma (HCC) cases develop in the presence of fibrosis or cirrhosis, making the tumor microenvironment (TME) of HCC distinctive due to the intricate interplay between cancer-associated fibroblasts (CAFs) and cancer stem cells (CSCs), which collectively regulate HCC progression. However, the mechanisms through which CSCs orchestrate the dynamics of the tumor stroma during HCC development remain elusive. Our study unveils a significant upregulation of Sema3C in fibrotic liver, HCC tissues, peripheral blood of HCC patients, as well as sorafenib-resistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in HCC. We further identify NRP1 and ITGB1 as pivotal functional receptors of Sema3C, activating downstream AKT/Gli1/c-Myc signaling pathways to bolster HCC self-renewal and tumor initiation. Additionally, HCC cells-derived Sema3C facilitated extracellular matrix (ECM) contraction and collagen deposition in vivo, while also promoting the proliferation and activation of hepatic stellate cells (HSCs). Mechanistically, Sema3C interacted with NRP1 and ITGB1 in HSCs, activating downstream NF-kB signaling, thereby stimulating the release of IL-6 and upregulating HMGCR expression, consequently enhancing cholesterol synthesis in HSCs. Furthermore, CAF-secreted TGF-ß1 activates AP1 signaling to augment Sema3C expression in HCC cells, establishing a positive feedback loop that accelerates HCC progression. Notably, blockade of Sema3C effectively inhibits tumor growth and sensitizes HCC cells to sorafenib in vivo. In sum, our findings spotlight Sema3C as a novel biomarker facilitating the crosstalk between CSCs and stroma during hepatocarcinogenesis, thereby offering a promising avenue for enhancing treatment efficacy and overcoming drug resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Semaforinas , Microambiente Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Microambiente Tumoral/genética , Semaforinas/genética , Semaforinas/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Transdução de Sinais/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/genética , Sorafenibe/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Progressão da Doença
4.
BMC Med ; 22(1): 314, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075531

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) causes significant mortality and morbidity worldwide. Surgical resection with adjuvant radiotherapy remains the standard treatment for locally advanced resectable OSCC. Results from landmark trials have established postoperative concurrent cisplatin-radiotherapy (Cis-RT) as the standard treatment for OSCC patients with high-risk pathologic features. However, cisplatin-related toxicity limits usage in clinical practice. Given the need for effective but less toxic alternatives, we previously conducted a single-arm trial showing favorable safety profiles and promising efficacy of concurrent docetaxel-radiotherapy (Doc-RT). METHODS: In this randomized phase 2 trial, we aimed to compare Doc-RT with the standard Cis-RT in postoperative OSCC patients. Eligible patients had AJCC stage III-IV resectable OSCC with high-risk pathologic features. Two hundred twenty-four patients were enrolled and randomly assigned to receive concurrent Doc-RT or Cis-RT. The primary endpoint was 2-year disease-free survival (DFS). Secondary endpoints included overall survival (OS), locoregional-free survival (LRFS), distant metastasis-free survival (DMFS), and adverse events (AEs). Integrin ß1 (ITGB1) expression was analyzed as a biomarker for efficacy. RESULTS: After a median 28.8-month follow-up, 2-year DFS rates were 63.7% for Doc-RT arm and 56.1% for Cis-RT arm (p = 0.55). Meanwhile, Doc-RT demonstrated comparable efficacy to Cis-RT in OS, LRFS, and DMFS. Doc-RT resulted in fewer grade 3 or 4 hematological AEs. Low ITGB1 was associated with improved Doc-RT efficacy versus Cis-RT. CONCLUSIONS: This randomized trial directly compared Doc-RT with Cis-RT for high-risk postoperative OSCC patients, with comparable efficacy and less toxicity. ITGB1 merits further validation as a predictive biomarker to identify OSCC patients most likely to benefit from Doc-RT. Findings indicate docetaxel may be considered as a concurrent chemoradiation option in this setting. TRIAL REGISTRATION: www. CLINICALTRIALS: gov . NCT02923258 (date of registration: October 4, 2016).


Assuntos
Cisplatino , Docetaxel , Integrina beta1 , Neoplasias Bucais , Humanos , Docetaxel/uso terapêutico , Docetaxel/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Cisplatino/uso terapêutico , Cisplatino/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/terapia , Idoso , Adulto , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/terapia , Biomarcadores Tumorais , Antineoplásicos/uso terapêutico , Resultado do Tratamento
5.
Sci Rep ; 14(1): 17015, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043765

RESUMO

This study investigates how dynamic fluctuations in matrix stiffness affect the behavior of cardiac fibroblasts (CFs) within a three-dimensional (3D) hydrogel environment. Using hybrid hydrogels with tunable stiffness, we created an in vitro model to mimic the varying stiffness of the cardiac microenvironment. By manipulating hydrogel stiffness, we examined CF responses, particularly the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation. Our findings reveal that increased matrix stiffness promotes the differentiation of CFs into myofibroblasts, while matrix softening reverses this process. Additionally, we identified the role of focal adhesions and integrin ß1 in mediating stiffness-induced phenotypic switching. This study provides significant insights into the mechanobiology of cardiac fibrosis and suggests that modulating matrix stiffness could be a potential therapeutic strategy for treating cardiovascular diseases.


Assuntos
Diferenciação Celular , Matriz Extracelular , Fibroblastos , Hidrogéis , Miofibroblastos , Fenótipo , Hidrogéis/química , Matriz Extracelular/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/citologia , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Integrina beta1/metabolismo , Adesões Focais/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Células Cultivadas , Ratos , Actinas/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000184

RESUMO

Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3ß activity contributed to Netrin-1-mediated microglia migration. Furthermore, Integrin α6/ß1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and ß1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/ß1 and Netrin-1. Importantly, activation of Integrin α6/ß1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases.


Assuntos
Movimento Celular , Microglia , Netrina-1 , Netrina-1/metabolismo , Netrina-1/genética , Microglia/metabolismo , Animais , Camundongos , Camundongos Knockout , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Linhagem Celular , Integrina beta1/metabolismo , Integrina beta1/genética
7.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38990714

RESUMO

Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger ß1 integrin activation and instead actuate a TGF-ß1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.


Assuntos
Apoptose , Sobrevivência Celular , Fibroblastos , Metaloproteinase 14 da Matriz , Animais , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Derme/metabolismo , Derme/citologia , Células Cultivadas , Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo
8.
Drug Resist Updat ; 76: 101116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968684

RESUMO

Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Integrina beta1 , Recidiva Local de Neoplasia , Neovascularização Patológica , Microambiente Tumoral , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Integrina beta1/metabolismo , Integrina beta1/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/genética , Microambiente Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Gencitabina , Urotélio/patologia , Urotélio/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Prognóstico , Movimento Celular/efeitos dos fármacos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Angiogênese , Colágeno Tipo IV
9.
Bone ; 187: 117199, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38992453

RESUMO

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Cemento Dentário , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Cemento Dentário/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos , Proteína C-Reativa/metabolismo , Integrina beta1/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Camundongos Endogâmicos C57BL , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Cementogênese
10.
Arkh Patol ; 86(4): 23-30, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39073538

RESUMO

Cancer cells can aberrantly express various markers, including transferrin receptor 1 (CD71) and ß1-integrin molecules. Their role in invasion, migration and metastasis has been demonstrated. Determination of their expression in breast cancer (BC) may be an important point to characterize the clinical course of the tumor and prognosis of the disease. OBJECTIVE: To study of transferrin receptor 1 (CD71) expression by primary breast cancer cells in correlation with tumor cell phenotype. MATERIAL AND METHODS: Determination of BC phenotype: immunohistochemical staining method (immunofluorescence). Antibodies to ER (estrogen receptors), KL-1 (pancytokeratin), CD71 (transferrin receptor), CD29 (ß1-integrins). CD45, CD3, CD4, CD8, CD20 infiltration was also evaluated. ZEISS microscope (AXIOSKOP; Germany), method of G.J. Hammerling et al. Statistical processing: IBM-SPSS Statistics v.21. RESULTS: 63% of BC cases had CD71+ phenotype. CD71-mosaic tumors were observed in 14.4%. ß1-integrin expression was monomorphic in 51.6% of cases and mosaic in 38.7%. 85% of ER-positive tumors were CD71-positive with a monomorphic type of reaction; p=0.014. Among ER-negative tumors, CD71-negative reactions were 2-fold more frequent and the monomorphic type was less frequent. ER-positive tumors were CD29-positive in 73%; p=0.031. 45.5% of ER+ tumors were CD29-monomorphic. Among ER-negative tumors, the frequency of CD29-monomorphic tumors was 55%. Significant infiltration by CD3+ cells was predominant in CD71-positive tumors; p=0.016. In the CD29-monomorphic phenotype, CD45+ infiltration was 31.3%, and in the mosaic phenotype, 67.1%. CONCLUSION: BC aberrantly expresses transferrin receptors, ß1-integrins. CD71 expression is associated with ER expression. ER-positive tumors are often monomorphic for CD71. Prominent CD3+ infiltration was present in CD71+ tumors. Expression of ß1-integrins correlated with ER+ status and weak immune infiltration.


Assuntos
Antígenos CD , Neoplasias da Mama , Integrina beta1 , Receptores de Estrogênio , Receptores da Transferrina , Humanos , Receptores da Transferrina/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Integrina beta1/metabolismo , Receptores de Estrogênio/metabolismo , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/imunologia
11.
Biomater Sci ; 12(13): 3446-3457, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38832531

RESUMO

In cancer metastasis, collectively migrating clusters are discriminated into leader and follower cells that move through extracellular matrices (ECMs) with different characteristics. The impact of changes in ECM protein types on leader cells and migrating clusters is unknown. To address this, we investigated the response of leader cells and migrating clusters upon moving from one ECM protein to another using a photoactivatable substrate bearing photocleavable PEG (PCP), whose surface changes from protein-repellent to protein-adhesive in response to light. We chose laminin and collagen I for our study since they are abundant in two distinct regions in living tissues, namely basement membrane and connective tissue. Using the photoactivatable substrates, the precise deposition of the first ECM protein in the irradiated areas was achieved, followed by creating well-defined cellular confinements. Secondary irradiation enabled the deposition of the second ECM protein in the new irradiated regions, resulting in region-selective heterogeneous and homogenous ECM protein-coated surfaces. Different tendencies in leader cell formation from laminin into laminin compared to those migrating from laminin into collagen were observed. The formation of focal adhesion and actin structures for cells within the same cluster in the ECM proteins responded according to the underlying ECM protein type. Finally, integrin ß1 was crucial for the appearance of leader cells for clusters migrating from laminin into collagen. However, when it came to laminin into laminin, integrin ß1 was not responsible. This highlights the correlation between leader cells in collective migration and the biochemical signals that arise from underlying extracellular matrix proteins.


Assuntos
Movimento Celular , Proteínas da Matriz Extracelular , Laminina , Laminina/química , Laminina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Animais , Integrina beta1/metabolismo , Integrina beta1/química , Camundongos , Polietilenoglicóis/química , Humanos , Fenótipo , Matriz Extracelular/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/química
12.
Int Immunopharmacol ; 136: 112368, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823175

RESUMO

Silicosis is a chronic fibroproliferative lung disease caused by long-term inhalation of crystalline silica dust, characterized by the proliferation of fibroblasts and pulmonary interstitial fibrosis. Currently, there are no effective treatments available. Recent research suggests that the Integrin ß1/ILK/PI3K signaling pathway may be associated with the pathogenesis of silicosis fibrosis. In this study, we investigated the effects of Echistatin (Integrin ß1 inhibitor) and BYL-719 (PI3K inhibitor) on silicosis rats at 28 and 56 days after silica exposure. Histopathological analysis of rat lung tissue was performed using H&E staining and Masson staining. Immunohistochemistry, Western blotting, and qRT-PCR were employed to assess the expression of markers associated with epithelial-mesenchymal transition (EMT), fibrosis, and the Integrin ß1/ILK/PI3K pathway in lung tissue. The results showed that Echistatin, BYL 719 or their combination up-regulated the expression of E-cadherin and down-regulated the expression of Vimentin and extracellular matrix (ECM) components, including type I and type III collagen. The increase of Snail, AKT and ß-catenin in the downstream Integrin ß1/ILK/PI3K pathway was inhibited. These results indicate that Echistatin and BYL 719 can inhibit EMT and pulmonary fibrosis by blocking different stages of Integrinß1 /ILK/PI3K signaling pathway. This indicates that the Integrin ß1/ILK/PI3K signaling pathway is associated with silica-induced EMT and may serve as a potential therapeutic target for silicosis.


Assuntos
Transição Epitelial-Mesenquimal , Integrina beta1 , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Silicose , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Integrina beta1/metabolismo , Integrina beta1/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Masculino , Dióxido de Silício/toxicidade , Silicose/metabolismo , Silicose/patologia , Silicose/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Ratos Sprague-Dawley
13.
BMC Biol ; 22(1): 139, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915055

RESUMO

BACKGROUND: The intermediate filament protein vimentin is widely recognized as a molecular marker of epithelial-to-mesenchymal transition. Although vimentin expression is strongly associated with cancer metastatic potential, the exact role of vimentin in cancer metastasis and the underlying mechanism of its pro-metastatic functions remain unclear. RESULTS: This study revealed that vimentin can enhance integrin ß1 surface expression and induce integrin-dependent clustering of cells, shielding them against anoikis cell death. The increased integrin ß1 surface expression in suspended cells was caused by vimentin-mediated protection of the internal integrin ß1 pool against lysosomal degradation. Additionally, cell detachment was found to induce vimentin Ser38 phosphorylation, allowing the translocation of internal integrin ß1 to the plasma membrane. Furthermore, the use of an inhibitor of p21-activated kinase PAK1, one of the kinases responsible for vimentin Ser38 phosphorylation, significantly reduced cancer metastasis in animal models. CONCLUSIONS: These findings suggest that vimentin can act as an integrin buffer, storing internalized integrin ß1 and releasing it when needed. Overall, this study provides insights regarding the strong correlation between vimentin expression and cancer metastasis and a basis for blocking metastasis using this novel therapeutic mechanism.


Assuntos
Anoikis , Integrina beta1 , Vimentina , Vimentina/metabolismo , Vimentina/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Animais , Sobrevivência Celular , Camundongos , Linhagem Celular Tumoral , Fosforilação , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética
14.
Int J Biol Macromol ; 273(Pt 1): 133074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866293

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.


Assuntos
Proliferação de Células , Colágeno Tipo X , Integrina beta1 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Animais , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética , Progressão da Doença , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes
15.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892056

RESUMO

Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds ß1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and ß1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFß signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.


Assuntos
Proteína ADAM12 , Basigina , Proteínas da Matriz Extracelular , Animais , Feminino , Humanos , Camundongos , Proteína ADAM12/metabolismo , Proteína ADAM12/genética , Basigina/metabolismo , Basigina/genética , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Integrina beta1/metabolismo
16.
Mol Nutr Food Res ; 68(14): e2300685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860356

RESUMO

SCOPE: Kaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied. METHODS AND RESULTS: This study finds that KMP (1, 10 µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p-FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation. CONCLUSION: Together, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age-related loss of muscle mass and help maintain muscle health.


Assuntos
Diferenciação Celular , Movimento Celular , Integrina beta1 , Quempferóis , Mioblastos , Paxilina , Proteínas Proto-Oncogênicas c-akt , Receptor IGF Tipo 1 , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Quempferóis/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Integrina beta1/metabolismo , Paxilina/metabolismo , Linhagem Celular , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética
17.
Vox Sang ; 119(8): 809-820, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839077

RESUMO

BACKGROUND AND OBJECTIVES: Aged red blood cell (RBC) transfusions in lung cancer patients are often related to cancer recurrence and shorter lifespans. Extracellular vesicles (EVs) accumulated in stored RBC suspensions may be one of the important influential factors. This study aims to investigate how EVs derived from RBC suspensions affect the progress of lung cancer through the most enriched microRNAs (miRNAs) previously reported in our research. STUDY DESIGN AND METHODS: EVs derived from stored RBC suspensions in Weeks 1, 3 and 5 were harvested via ultracentrifugation. Lung adenocarcinoma H1975 cells were co-cultured with EVs and transfected with miR1246 and miR150-3p mimics to evaluate alterations in their proliferation, invasion and migration abilities in vitro. Proteomics and bioinformatics were performed to predict the signalling pathway related to invasion and migration of H1975, which were verified by western blotting (WB) and flow cytometry. RESULTS: EVs derived from stored RBC suspensions in Weeks 3 and 5 could significantly enhance the invasion and migration ability of H1975 cells and also increase the expression of miR1246 and miR150-3p. After transfection with miR1246 and miR150-3p mimics, invasion, migration and proliferation of H1975 cells were obviously enhanced. Proteomics analysis demonstrated that EVs co-cultivation and miRNA transfection groups were both enriched in cell adhesion molecules. WB and cytometry indicated that integrin beta-1 (ITGB1) and Rap1b were increased. CONCLUSIONS: EVs derived from stored RBC suspensions can enhance invasion and migration ability of lung cancer cells via the most accumulated miR1246 and miR150-3p, which may increase the expression of ITGB1 through Rap1 signalling pathway.


Assuntos
Movimento Celular , Eritrócitos , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Invasividade Neoplásica , Humanos , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Eritrócitos/metabolismo , Linhagem Celular Tumoral , Preservação de Sangue/métodos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Integrina beta1/metabolismo , Transdução de Sinais
18.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767703

RESUMO

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Assuntos
Exossomos , Integrina beta1 , MicroRNAs , Telócitos , Proteínas rac1 de Ligação ao GTP , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Camundongos , Telócitos/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Proliferação de Células/genética , Movimento Celular/genética , Humanos , Remodelação Vascular/genética , Neuropeptídeos
19.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38813860

RESUMO

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Astrócitos , Diferenciação Celular , Proliferação de Células , Células-Tronco Neurais , Transdução de Sinais , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Animais , Astrócitos/metabolismo , Astrócitos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteínas Serina-Treonina Quinases
20.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775153

RESUMO

Small cell lung cancer (SCLC) is the most aggressive lung cancer entity with an extremely limited therapeutic outcome. Most patients are diagnosed at an extensive stage. However, the molecular mechanisms driving SCLC invasion and metastasis remain largely elusive. We used an autochthonous SCLC mouse model and matched samples from patients with primary and metastatic SCLC to investigate the molecular characteristics of tumor metastasis. We demonstrate that tumor cell invasion and liver metastasis in SCLC are triggered by an Angiopoietin-2 (ANG-2)/Integrin ß-1-dependent pathway in tumor cells, mediated by focal adhesion kinase/Src kinase signaling. Strikingly, CRISPR-Cas9 KO of Integrin ß-1 or blocking Integrin ß-1 signaling by an anti-ANG-2 treatment abrogates liver metastasis formation in vivo. Interestingly, analysis of a unique collection of matched samples from patients with primary and metastatic SCLC confirmed a strong increase of Integrin ß-1 in liver metastasis in comparison with the primary tumor. We further show that ANG-2 blockade combined with PD-1-targeted by anti-PD-1 treatment displays synergistic treatment effects in SCLC. Together, our data demonstrate a fundamental role of ANG-2/Integrin ß-1 signaling in SCLC cells for tumor cell invasion and liver metastasis and provide a potentially new effective treatment strategy for patients with SCLC.


Assuntos
Angiopoietina-2 , Integrina beta1 , Neoplasias Hepáticas , Neoplasias Pulmonares , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Integrina beta1/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Invasividade Neoplásica , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...