Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.409
Filtrar
1.
Adv Exp Med Biol ; 1454: 3-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008262

RESUMO

This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.


Assuntos
Interações Hospedeiro-Parasita , Trematódeos , Trematódeos/fisiologia , Animais , Interações Hospedeiro-Parasita/fisiologia , Bactérias , Infecções por Trematódeos/parasitologia , Humanos
2.
Trends Parasitol ; 40(7): 549-561, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853079

RESUMO

Helminths can adapt to environmental conditions in the host, utilising anaerobic processes like fermentation and malate dismutation to produce energy from carbohydrate. Although targeting carbohydrate metabolism is an established therapeutic strategy to combat helminth infection, questions remain over the metabolic pathways they employ as adults to survive and evade host immunity. Helminths also use amino acid, polyunsaturated fatty acid (PUFA), and cholesterol metabolism, a possible strategy favouring the production of immunomodulatory compounds that may influence survival in the host. Here, we discuss the significance of these differing metabolic pathways and whether targeting of helminth metabolic pathways may allow for the development of novel anthelmintics.


Assuntos
Helmintíase , Helmintos , Interações Hospedeiro-Parasita , Animais , Helmintos/imunologia , Helmintos/fisiologia , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Parasita/fisiologia , Helmintíase/imunologia , Helmintíase/parasitologia , Humanos , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacologia
3.
J Math Biol ; 89(1): 14, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879839

RESUMO

We consider a cell population subject to a parasite infection. Cells divide at a constant rate and, at division, share the parasites they contain between their two daughter cells. The sharing may be asymmetric, and its law may depend on the number of parasites in the mother. Cells die at a rate which may depend on the number of parasites they carry, and are also killed when this number explodes. We study the survival of the cell population as well as the mean number of parasites in the cells, and focus on the role of the parasites partitioning kernel at division.


Assuntos
Interações Hospedeiro-Parasita , Modelos Biológicos , Doenças Parasitárias , Animais , Interações Hospedeiro-Parasita/fisiologia , Doenças Parasitárias/parasitologia , Divisão Celular , Conceitos Matemáticos , Humanos , Parasitos/patogenicidade , Parasitos/fisiologia
4.
Naturwissenschaften ; 111(4): 33, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904668

RESUMO

Some parasitic fungi can increase fitness by modifying the behavior of their hosts. These behaviors are known as extended phenotypes because they favor parasitic gene propagation. Here, we studied three lineages of Ophiocordyceps, a fungus that infects ants, altering their conduct before death. According to fungal strategy, ants may die in leaf litter, with entwined legs in branches, under the moss mat, or biting plant tissue. It is critical for parasites that the corpses stay at these places because Ophiocordyceps exhibit iteroparity, possibly releasing spores in multiple life cycles. Thus, we assumed substrate cadaver permanence as a fungi reproductive proxy and corpse height as a proxy of cadaver removal. We hypothesize that biting vegetation and dying in higher places may increase the permanence of ant corpses while avoiding possible corpse predation on the forest floor. We monitored over a year more than 4000 zombie ants in approximately 15 km2 of undisturbed tropical forest in central Amazonia. Our results show a longer permanence of corpses with increasing ground height, suggesting that the parasites may have better chances of releasing spores and infecting new hosts at these places. We found that the zombie ants that last longer on the substrate die under the moss mat in tree trunks, not necessarily biting vegetation. The biting behavior appears to be the most derived and complex mechanism among Ophiocordyceps syndromes. Our results put these findings under a new perspective, proposing that seemingly less complex behavioral changes are ecologically equivalent and adaptative for other parasite lineages.


Assuntos
Formigas , Fenótipo , Formigas/fisiologia , Formigas/microbiologia , Formigas/parasitologia , Animais , Hypocreales/fisiologia , Brasil , Comportamento Animal/fisiologia , Interações Hospedeiro-Parasita/fisiologia
5.
J Theor Biol ; 590: 111855, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38789077

RESUMO

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations migrating between 2 patches to elucidate features of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches can occur alternatively (out of phase) at low migration between patches whereas host outbreaks always occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across a large range of parameters across different modelling approaches used typically to model intraspecific competition among hosts and parasitism, in the host-parasitoid literature. We give an analytical expression for the period of oscillations when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is in agreement with numerical results. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.


Assuntos
Migração Animal , Interações Hospedeiro-Parasita , Modelos Biológicos , Interações Hospedeiro-Parasita/fisiologia , Animais , Migração Animal/fisiologia , Insetos/parasitologia , Dinâmica Populacional , Ecossistema
6.
PLoS Pathog ; 20(4): e1012153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598555

RESUMO

Schistosomiasis is a fatal zoonotic parasitic disease that also threatens human health. The main pathological features of schistosomiasis are granulomatous inflammation and subsequent liver fibrosis, which is a complex, chronic, and progressive disease. Extracellular vesicles (EVs) derived from schistosome eggs are broadly involved in host-parasite communication and act as important contributors to schistosome-induced liver fibrosis. However, it remains unclear whether substances secreted by the EVs of Schistosoma japonicum, a long-term parasitic "partner" in the hepatic portal vein of the host, also participate in liver fibrosis. Here, we report that EVs derived from S. japonicum worms attenuated liver fibrosis by delivering sja-let-7 into hepatic stellate cells (HSCs). Mechanistically, activation of HSCs was reduced by targeting collagen type I alpha 2 chain (Col1α2) and downregulation of the TGF-ß/Smad signaling pathway both in vivo and in vitro. Overall, these results contribute to further understanding of the molecular mechanisms underlying host-parasite interactions and identified the sja-let-7/Col1α2/TGF-ß/Smad axis as a potential target for treatment of schistosomiasis-related liver fibrosis.


Assuntos
Vesículas Extracelulares , Cirrose Hepática , Schistosoma japonicum , Esquistossomose Japônica , Animais , Vesículas Extracelulares/metabolismo , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/patologia , Camundongos , Interações Hospedeiro-Parasita/fisiologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/parasitologia , Células Estreladas do Fígado/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais , Humanos , Proteínas de Helminto/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 15(1): 2235, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472173

RESUMO

Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.


Assuntos
Parasitos , Theileria , Theileriose , Animais , Bovinos , Theileria/genética , Theileriose/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais
8.
J Exp Zool B Mol Dev Evol ; 342(5): 398-405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369898

RESUMO

Orthonectida is a group of multicellular endoparasites of a wide range of marine invertebrates. Their parasitic stage is a multinuclear shapeless plasmodium infiltrating host tissues. The development of the following worm-like sexual generation takes place within the cytoplasm of the plasmodium. The existence of the plasmodial stage and the development of a sexual stage within the plasmodium are unique features to Bilateria. However, the molecular mechanisms that maintain this peculiar organism, and hence enable parasitism in orthonectids, are unknown. Here, we present the first-ever RNA-seq analysis of the plasmodium, aimed at the identification and characterization of the plasmodium-specific protein-coding genes and corresponding hypothetical proteins that distinguish the parasitic plasmodium stage from the sexual stage of the orthonectid Intoshia linei Giard, 1877, parasite of nemertean Lineus ruber Müller, 1774. We discovered 119 plasmodium-specific proteins, 82 of which have inferred functions based on known domains. Thirty-five of the detected proteins are orphans, at least part of which may reflect the unique evolutionary adaptations of orthonectids to parasitism. Some of the identified proteins are known effector molecules of other endoparasites suggesting convergence. Our data indicate that the plasmodium-specific proteins might be involved in the plasmodium defense against the host, host-parasite communication, feeding and nutrient uptake, growth within the host, and support of the sexual stage development. These molecular processes in orthonectids have not been described before, and the particular protein effectors remained unknown until now.


Assuntos
Interações Hospedeiro-Parasita , Plasmodium , Proteínas de Protozoários , RNA-Seq , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Plasmodium/genética , Interações Hospedeiro-Parasita/fisiologia , Comportamento Alimentar , Invertebrados/genética , Invertebrados/parasitologia
9.
Mol Plant Microbe Interact ; 37(3): 179-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870371

RESUMO

Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Feminino , Tylenchoidea/genética , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais , Produtos Agrícolas , Doenças das Plantas/parasitologia
10.
Results Probl Cell Differ ; 71: 371-403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37996687

RESUMO

Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.


Assuntos
Cistos , Tylenchoidea , Animais , Cistos/metabolismo , Células Gigantes , Interações Hospedeiro-Parasita/fisiologia , Plantas , Tylenchoidea/fisiologia
11.
Nat Commun ; 14(1): 7776, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012132

RESUMO

Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.


Assuntos
Nematospiroides dubius , Trichostrongyloidea , Camundongos , Animais , Interações Hospedeiro-Parasita/fisiologia , Nematospiroides dubius/genética
12.
Trends Parasitol ; 39(12): 1050-1059, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722935

RESUMO

With growing human populations living along freshwater shores and marine coastlines, aquatic ecosystems are experiencing rising levels of light pollution. Through its effects on hosts and parasites, anthropogenic light at night can disrupt host-parasite interactions evolved under a normal photoperiod. Yet its impact on aquatic parasites has been ignored to date. Here, I discuss the direct effects of light on the physiology and behaviour of parasite infective stages and their hosts. I argue that night-time lights can change the spatiotemporal dynamics of infection risk and drive the rapid evolution of parasites. I then highlight knowledge gaps and how impacts on parasitic diseases should be incorporated into the design of measures aimed at mitigating the impact of anthropogenic light on wildlife.


Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Humanos , Interações Hospedeiro-Parasita/fisiologia , Ecossistema , Poluição Luminosa , Parasitos/fisiologia , Animais Selvagens
13.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534841

RESUMO

The parasitic wasp Cotesia congregata suppresses feeding in its host, the caterpillar Manduca sexta, during specific periods of wasp development. We examined both feeding behaviour and the neurophysiology of the mandibular closer muscle in parasitized and unparasitized control M. sexta to determine how the wasp may accomplish this. To test whether the wasps activated a pre-existing host mechanism for feeding cessation, we examined the microstructure of feeding behaviour in caterpillars that stopped feeding due to illness-induced anorexia or an impending moult. These microstructures were compared with that shown by parasitized caterpillars. While there were overall differences between parasitized and unparasitized caterpillars, the groups showed similar progression in feeding microstructure as feeding ended, suggesting a common pattern for terminating a meal. Parasitized caterpillars also consumed less leaf area in 100 bites than control caterpillars at around the same time their feeding microstructure changed. The decline in food consumption was accompanied by fewer spikes per burst and shorter burst durations in chewing muscle electromyograms. Similar extracellular results were obtained from the motorneuron of the mandibular closer muscle. However, chewing was dramatically re-activated in non-feeding parasitized caterpillars if the connectives posterior to the suboesophageal ganglion were severed. The same result was observed in unparasitized caterpillars given the same treatment. Our results suggest that the reduced feeding in parasitized caterpillars is not due to damage to the central pattern generator (CPG) for chewing, motor nerves or chewing muscles, but is more likely to be due to a suppression of chewing CPG activity by ascending or descending inputs.


Assuntos
Manduca , Vespas , Animais , Vespas/fisiologia , Manduca/fisiologia , Mastigação , Comportamento Alimentar/fisiologia , Larva/fisiologia , Interações Hospedeiro-Parasita/fisiologia
14.
Trends Parasitol ; 39(9): 732-738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438213

RESUMO

Plant parasites take advantage of host developmental plasticity to elicit profound developmental and physiological changes. In the case of plant-parasitic nematodes (PPNs), these changes can result in the development of new plant organs. Despite the importance of the development- and physiology-altering abilities of these parasites in pathology, research has historically focused on their abilities to suppress immunity. We argue that, given the dramatic changes involved in feeding site establishment, it is entirely possible that development- and physiology-altering abilities of PPNs may, in fact, dominate effector repertoires - highlighting the need for novel high-throughput screens for development- and physiology-altering 'tools'. Uncovering this portion of the nematode 'toolbox' can enable biotechnology, enhance crop protection, and shed light on fundamental host biology itself.


Assuntos
Nematoides , Parasitos , Animais , Interações Hospedeiro-Parasita/fisiologia , Nematoides/fisiologia , Plantas/parasitologia
15.
Proc Natl Acad Sci U S A ; 120(30): e2300186120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459523

RESUMO

Parasites exert a profound effect on biological processes. In animal communication, parasite effects on signalers are well-known drivers of the evolution of communication systems. Receiver behavior is also likely to be altered when they are parasitized or at risk of parasitism, but these effects have received much less attention. Here, we present a broad framework for understanding the consequences of parasitism on receivers for behavioral, ecological, and evolutionary processes. First, we outline the different kinds of effects parasites can have on receivers, including effects on signal processing from the many parasites that inhabit, occlude, or damage the sensory periphery and the central nervous system or that affect physiological processes that support these organs, and effects on receiver response strategies. We then demonstrate how understanding parasite effects on receivers could answer important questions about the mechanistic causes and functional consequences of variation in animal communication systems. Variation in parasitism levels is a likely source of among-individual differences in response to signals, which can affect receiver fitness and, through effects on signaler fitness, impact population levels of signal variability. The prevalence of parasitic effects on specific sensory organs may be an important selective force for the evolution of elaborate and multimodal signals. Finally, host-parasite coevolution across heterogeneous landscapes will generate geographic variation in communication systems, which could ultimately lead to evolutionary divergence. We discuss applications of experimental techniques to manipulate parasitism levels and point the way forward by calling for integrative research collaborations between parasitologists, neurobiologists, and behavioral and evolutionary ecologists.


Assuntos
Parasitos , Animais , Interações Hospedeiro-Parasita/fisiologia , Comunicação Animal , Simbiose , Altruísmo , Evolução Biológica
16.
PLoS Negl Trop Dis ; 17(6): e0011249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352363

RESUMO

The neglected tropical disease schistosomiasis impacts over 700 million people globally. Schistosoma mansoni, the trematode parasite that causes the most common type of schistosomiasis, requires planorbid pond snails of the genus Biomphalaria to support its larval development and transformation to the cercarial form that can infect humans. A greater understanding of neural signaling systems that are specific to the Biomphalaria intermediate host could lead to novel strategies for parasite or snail control. This study examined a Biomphalaria glabrata neural channel that is gated by the neuropeptide FMRF-NH2. The Biomphalaria glabrata FMRF-NH2 gated sodium channel (Bgl-FaNaC) amino acid sequence was highly conserved with FaNaCs found in related gastropods, especially the planorbid Planorbella trivolvis (91% sequence identity). In common with the P. trivolvis FaNaC, the B. glabrata channel exhibited a low affinity (EC50: 3 x 10-4 M) and high specificity for the FMRF-NH2 agonist. Its expression in the central nervous system, detected with immunohistochemistry and in situ hybridization, was widespread, with the protein localized mainly to neuronal fibers and the mRNA confined to cell bodies. Colocalization of the Bgl-FaNaC message with its FMRF-NH2 agonist precursor occurred in some neurons associated with male mating behavior. At the mRNA level, Bgl-FaNaC expression was decreased at 20 and 35 days post infection (dpi) by S. mansoni. Increased expression of the transcript encoding the FMRF-NH2 agonist at 35 dpi was proposed to reflect a compensatory response to decreased receptor levels. Altered FMRF-NH2 signaling could be vital for parasite proliferation in its intermediate host and may therefore present innovative opportunities for snail control.


Assuntos
Biomphalaria , Esquistossomose mansoni , Esquistossomose , Trematódeos , Animais , Masculino , Humanos , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , FMRFamida , Esquistossomose/parasitologia , Sistema Nervoso Central , Esquistossomose mansoni/parasitologia , Interações Hospedeiro-Parasita/fisiologia
17.
Int J Parasitol ; 53(7): 381-389, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028782

RESUMO

Experimental approaches are among the most powerful tools available to biologists, yet in many disciplines their results have been questioned due to an underrepresentation of female animal subjects. In parasitology, experiments are crucial to understand host-parasite interactions, parasite development, host immune responses, as well as the efficacy of different control methods. However, distinguishing between species-wide and sex-specific effects requires the balanced inclusion of both male and female hosts in experiments and the reporting of results for each sex separately. Here, using data from over 3600 parasitological experiments on helminth-mammal interactions published in the past four decades, we investigate patterns of male versus female subject use and result reporting practices in experimental parasitology. We uncover multiple effects of the parasite taxon used, the type of host used (rats and mice for which subject selection is fully under researcher control versus farm animals), the research subject area and the year of publication, on whether host sex is even specified, whether one or both host sexes have been used (and if only one then which one), and whether the results are presented separately for each host sex. We discuss possible reasons for biases and unjustifiable selection of host subjects, and for poor experimental design and reporting of results. Finally, we make some simple recommendations for increased rigour in experimental design and to reset experimental approaches as a cornerstone of parasitological research.


Assuntos
Helmintos , Parasitos , Animais , Masculino , Feminino , Ratos , Camundongos , Sexismo , Helmintos/fisiologia , Mamíferos , Interações Hospedeiro-Parasita/fisiologia
18.
Parasit Vectors ; 16(1): 132, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069704

RESUMO

BACKGROUND: The trematode parasite Schistosoma mansoni uses an aquatic snail intermediate and a vertebrate definitive host to complete its life cycle. We previously showed that a key transmission trait-the number of cercariae larvae shed from infected Biomphalaria spp. snails-varies significantly within and between different parasite populations and is genetically controlled by five loci. We investigated the hypothesis that the success of parasite genotypes showing high propagative fitness in the intermediate snail host may be offset by lower reproductive fitness in the definitive vertebrate host. METHODS: We investigated this trade-off hypothesis by selecting parasite progeny producing high or low number of larvae in the snail and then comparing fitness parameters and virulence in the rodent host. We infected inbred BALB/c mice using two Schistosoma mansoni parasite lines [high shedder (HS) and low shedder (LS) lines] isolated from F2 progeny generated by genetic crosses between SmLE (HS parent) and SmBRE (LS parent) parasites. We used the F3 progeny to infect two populations of inbred Biomphalaria glabrata snails. We then compared life history traits and virulence of these two selected parasite lines in the rodent host to understand pleiotropic effects of genes determining cercarial shedding in parasites infecting the definitive host. RESULTS: HS parasites shed high numbers of cercariae, which had a detrimental impact on snail physiology (measured by laccase-like activity and hemoglobin rate), regardless of the snail genetic background. In contrast, selected LS parasites shed fewer cercariae and had a lower impact on snail physiology. Similarly, HS worms have a higher reproductive fitness and produced more viable F3 miracidia larvae than LS parasites. This increase in transmission is correlated with an increase in virulence toward the rodent host, characterized by stronger hepato-splenomegaly and hepatic fibrosis. CONCLUSIONS: These experiments revealed that schistosome parasite propagative and reproductive fitness was positively correlated in intermediate and definitive host (positive pleiotropy). Therefore, we rejected our trade-off hypothesis. We also showed that our selected schistosome lines exhibited low and high shedding phenotype regardless of the intermediate snail host genetic background. ​.


Assuntos
Biomphalaria , Parasitos , Trematódeos , Camundongos , Animais , Interações Hospedeiro-Parasita/fisiologia , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , Caramujos , Cercárias/genética
19.
J Helminthol ; 97: e29, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927601

RESUMO

Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.


Assuntos
Helmintos , Metagenômica , Interações Hospedeiro-Parasita/fisiologia , Helmintos/classificação , Helmintos/genética , Hibridização Genética/genética , Variação Genética , Mapeamento Cromossômico , Resistência a Medicamentos/genética , Evolução Biológica , Parasitologia/tendências
20.
Ecology ; 104(4): e4001, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799146

RESUMO

The physiological performance of organisms depends on their environmental context, resulting in performance-response curves along environmental gradients. Parasite performance-response curves are generally expected to be broader than those of their hosts due to shorter generation times and hence faster adaptation. However, certain environmental conditions may limit parasite performance more than that of the host, thereby providing an environmental refuge from disease. Thermal disease refuges have been extensively studied in response to climate warming, but other environmental factors may also provide environmental disease refuges which, in turn, respond to global change. Here, we (1) showcase laboratory and natural examples of refuges from parasites along various environmental gradients, and (2) provide hypotheses on how global environmental change may affect these refuges. We strive to synthesize knowledge on potential environmental disease refuges along different environmental gradients including salinity and nutrients, in both natural and food-production systems. Although scaling up from single host-parasite relationships along one environmental gradient to their interaction outcome in the full complexity of natural environments remains difficult, integrating host and parasite performance-response can serve to formulate testable hypotheses about the variability in parasitism outcomes and the occurrence of environmental disease refuges under current and future environmental conditions.


Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Interações Hospedeiro-Parasita/fisiologia , Temperatura , Aclimatação , Adaptação Fisiológica , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...