Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.260
Filtrar
1.
Methods Mol Biol ; 2854: 127-141, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192125

RESUMO

Luciferase reporter systems are commonly used in scientific research to investigate a variety of biological processes, including antiviral innate immunity. These systems employ the use of luciferase enzymes derived from organisms such as fireflies or renilla reniformis, which emit light upon reaction with a substrate. In the context of antiviral innate immunity, the luciferase reporter systems offer a noninvasive and highly sensitive approach for real-time monitoring of immune responses in vitro and in vivo, enabling researchers to delve into the intricate interactions and signaling pathways involved in host-virus dynamic interactions. Here, we describe the methods of the promoter-luciferase reporter and enhancer-luciferase reporter, which provide insights into the transcriptional and post-transcriptional regulation of antiviral innate immunity. Additionally, we outline the split-luciferase complementary reporter method, which was designed to explore protein-protein interactions associated with antiviral immunity. These methodologies offer invaluable knowledge regarding the molecular mechanisms underlying antiviral immune pathways and have the potential to support the development of effective antiviral therapies.


Assuntos
Genes Reporter , Imunidade Inata , Luciferases , Humanos , Luciferases/metabolismo , Luciferases/genética , Animais , Interferons/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas , Antivirais/farmacologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética
2.
Cytokine ; 183: 156751, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39244831

RESUMO

Orthopoxviruses, a group of zoonotic viral infections, have emerged as a significant health emergency and global concern, particularly exemplified by the re-emergence of monkeypox (Mpox). Effectively addressing these viral infections necessitates a comprehensive understanding of the intricate interplay between the viruses and the host's immune response. In this review, we aim to elucidate the multifaceted aspects of innate immunity in the context of orthopoxviruses, with a specific focus on monkeypox virus (MPXV). We provide an in-depth analysis of the roles of key innate immune cells, including natural killer (NK) cells, dendritic cells (DCs), and granulocytes, in the host defense against MPXV. Furthermore, we explore the interferon (IFN) response, highlighting the involvement of toll-like receptors (TLRs) and cytosolic DNA/RNA sensors in detecting and responding to the viral presence. This review also examines the complement system's contribution to the immune response and provides a detailed analysis of the immune evasion strategies employed by MPXV to evade host defenses. Additionally, we discuss current prevention and treatment strategies for Mpox, including pre-exposure (PrEP) and post-exposure (PoEP) prophylaxis, supportive treatments, antivirals, and vaccinia immune globulin (VIG).


Assuntos
Células Dendríticas , Evasão da Resposta Imune , Imunidade Inata , Monkeypox virus , Mpox , Imunidade Inata/imunologia , Humanos , Animais , Células Dendríticas/imunologia , Evasão da Resposta Imune/imunologia , Mpox/imunologia , Monkeypox virus/imunologia , Células Matadoras Naturais/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Interferons/imunologia , Interferons/metabolismo , Granulócitos/imunologia
3.
Biomed Pharmacother ; 179: 117426, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39243429

RESUMO

Interferons are a family of cytokines that are famously known for their involvement in innate and adaptive immunity. Type I interferons (IFNs) exert pleiotropic effects on various immune cells and contribute to tumor-intrinsic and extrinsic mechanisms. Their pleiotropic effects and ubiquitous expression on nucleated cells have made them attractive candidates for cytokine engineering to deliver to largely immunosuppressive tumors. Type III interferons were believed to play overlapping roles with type I IFNs because they share a similar signaling pathway and induce similar transcriptional programs. However, type III IFNs are unique in their cell specific receptor expression and their antitumor activity is specific to a narrow range of cell types. Thus, type III IFN based therapies may show reduced toxic side effects compared with type I IFN based treatment. In this review, we focus on the development of IFN-based therapeutics used to treat different tumors. We highlight how the development in cytokine engineering has allowed for efficient delivery of type I and type III IFNs to tumor sites and look ahead to the obstacles that are still associated with IFN-based therapies before they can be fully and safely integrated into clinical settings.


Assuntos
Imunoterapia , Interferons , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Animais , Interferons/imunologia , Engenharia de Proteínas/métodos , Interferon Tipo I/imunologia
4.
Front Immunol ; 15: 1441908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224597

RESUMO

Introduction: The antiviral activity of recombinant bovine interferon lambda 3 (bovIFN-λ3) against bovine viral diarrhea virus (BVDV) has been demonstrated in vitro in Madin-Darby bovine kidney cells (MDBK) and in vivo in cattle. However, anti-BVDV activity of bovIFN-λ3 has not been studied in bovine respiratory tract epithelial cells, supposedly a primary target of BVDV infection when entering the host by the oronasal route. Methods: Here we investigated the anti-BVDV activity of bovIFN-λ3 in bovine turbinate-derived primary epithelial cells (BTu) using BVDV infection and immunoperoxidase staining, TCID50, RT-qPCR, DNA and transcriptome sequencing, and transfection with plasmids containing the two subunits, IL-28Rα and IL-10Rß that constitute the bovIFN-λ3 receptor. Results: Our immunoperoxidase staining, RT-qPCR, and TCID50 results show that while BVDV was successfully cleared in MDBK cells treated with bovIFN-λ3 and bovIFN-α, only the latter, bovIFN-α, cleared BVDV in BTu cells. Preincubation of MDBK cells with bovIFN-λ3 before BVDV infection was needed to induce optimal antiviral state. Both cell types displayed intact type I and III IFN signaling pathways and expressed similar levels of IL-10Rß subunit of the type III IFN receptor. Sequencing of PCR amplicon of the IL-28Rα subunit revealed intact transmembrane domain and lack of single nucleotide polymorphisms (SNPs) in BTu cells. However, RT-qPCR and transcriptomic analyses showed a lower expression of IL-28Rα transcripts in BTu cells as compared to MDBK cells. Interestingly, transfection of BTu cells with a plasmid encoding IL-28Rα subunit, but not IL-10Rß subunit, established the bovIFN-λ3 sensitivity showing similar anti-BVDV activity to the response in MDBK cells. Conclusion: Our results demonstrate that the sensitivity of cells to bovIFN-λ3 depends not only on the quality but also of the quantity of the IL-28Rα subunit of the heterodimeric receptor. A reduction in IL-28Rα transcript expression was detected in BTu as compared to MDBK cells, despite the absence of spliced variants or SNPs. The establishment of bovIFN-λ3 induced anti-BVDV activity in BTu cells transfected with an IL-28Rα plasmid suggests that the level of expression of this receptor subunit is crucial for the specific antiviral activity of type III IFN in these cells.


Assuntos
Interferon lambda , Interferons , Conchas Nasais , Animais , Bovinos , Interferons/metabolismo , Interferons/imunologia , Conchas Nasais/virologia , Conchas Nasais/imunologia , Conchas Nasais/metabolismo , Antivirais/farmacologia , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Interleucinas/genética , Interleucinas/farmacologia , Interleucinas/imunologia , Interleucinas/metabolismo , Linhagem Celular , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Proteínas Recombinantes/farmacologia , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Receptores de Citocinas
5.
JCI Insight ; 9(18)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163129

RESUMO

Melioidosis, a neglected tropical infection caused by Burkholderia pseudomallei, commonly presents as pneumonia or sepsis with mortality rates up to 50% despite appropriate treatment. A better understanding of the early host immune response to melioidosis may lead to new therapeutic interventions and prognostication strategies to reduce disease burden. Whole blood transcriptomic signatures in 164 patients with melioidosis and in 70 patients with other infections hospitalized in northeastern Thailand enrolled within 24 hours following hospital admission were studied. Key findings were validated in an independent melioidosis cohort. Melioidosis was characterized by upregulation of interferon (IFN) signaling responses compared with other infections. Mortality in melioidosis was associated with excessive inflammation, enrichment of type 2 immune responses, and a dramatic decrease in T cell-mediated immunity compared with survivors. We identified and independently confirmed a 5-gene predictive set classifying fatal melioidosis (validation cohort area under the receiver operating characteristic curve 0.83; 95% CI, 0.67-0.99). This study highlights the intricate balance between innate and adaptive immunity during fatal melioidosis and can inform future precision medicine strategies for targeted therapies and prognostication in this severe infection.


Assuntos
Burkholderia pseudomallei , Melioidose , Melioidose/imunologia , Melioidose/mortalidade , Melioidose/microbiologia , Humanos , Masculino , Burkholderia pseudomallei/imunologia , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Tailândia/epidemiologia , Imunidade Inata , Transcriptoma , Imunidade Adaptativa , Interferons/metabolismo , Interferons/imunologia
6.
PLoS Pathog ; 20(8): e1012498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39178311

RESUMO

Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.


Assuntos
Camundongos Knockout , Infecções por Orthomyxoviridae , Fagócitos , Superinfecção , Animais , Camundongos , Fagócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Superinfecção/imunologia , Superinfecção/microbiologia , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/imunologia , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Interferon lambda , Interferons/metabolismo , Interferons/imunologia , Vírus da Influenza A/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/microbiologia , Interleucinas
7.
Fish Shellfish Immunol ; 153: 109853, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173983

RESUMO

Inhibitors of NF-κB (IκBs) have been implicated as major components of the Rel/NF-κB signaling pathway, playing an important negative regulatory role in host antiviral immunity such as in the activation of interferon (IFN) in vertebrates. In the present study, the immunomodulatory effect of IκB (CgIκB2) on the expression of interferon-like protein (CgIFNLP) was evaluated in Pacific oyster (Crassostrea gigas). After poly (I:C) stimulation, the mRNA expression level of CgIκB2 in haemocytes was significantly down-regulated at 3-12 h while up-regulated at 48-72 h. The mRNA expression of CgIκB2 in haemocytes was significantly up-regulated at 3 h after rCgIFNLP stimulation. In the CgIκB2-RNAi oysters, the mRNA expression of CgIFNLP, interferon regulatory factor-8 (CgIRF8) and NF-κB subunit (CgRel), the abundance of CgIFNLP and CgIRF8 protein in haemocytes, as well as the abundance of CgRel protein in nucleus were significantly increased after poly (I:C) stimulation. Immunofluorescence assay showed that nuclear translocation of CgIRF8 and CgRel protein was promoted in CgIκB2-RNAi oysters compared with that in EGFP-RNAi group. In the CgRel-RNAi oysters, the mRNA and protein expression level of CgIFNLP significantly down-regulated after poly (I:C) stimulation. The collective results indicated that CgIκB2 plays an important role in regulating CgIFNLP expression through its effects on Rel/NF-κB and IRF signaling pathways.


Assuntos
Crassostrea , Regulação da Expressão Gênica , Interferons , NF-kappa B , Poli I-C , Transdução de Sinais , Animais , Crassostrea/genética , Crassostrea/imunologia , Poli I-C/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Regulação da Expressão Gênica/imunologia , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Imunidade Inata/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Hemócitos/imunologia , Hemócitos/metabolismo
8.
Dev Comp Immunol ; 161: 105252, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39173725

RESUMO

Signal Recognition Particle 54 kDa (SRP54) is a subunit of the signal recognition particle (SRP), a cytoplasmic ribonucleoprotein complex guiding the transportation of newly synthesized proteins from polyribosomes to endoplasmic reticulum. In mammals, it has been reported to regulate the RLR signaling pathway negatively by impairing the association between MAVS and MDA5/RIG-I. However, the role of SRP54 in teleost antiviral innate immune response remains obscure. In this study, the SRP54 homolog of black carp (bcSRP54) has been cloned, and its function in antiviral innate immunity has been elucidated. The CDS of bcSRP54 gene consists of 1515 nucleotides and encodes 504 amino acids. Immunofluorescence (IF) showed that bcSRP54 was mainly distributed in the cytoplasm. Overexpressed bcSRP54 significantly reduced bcMDA5-mediated transcription of interferon (IFN) promoter in reporter assay. Co-expression of bcSRP54 and bcMDA5 significantly suppressed bcMDA5-mediated IFN signaling and antiviral activity, while bcSRP54 knockdown increased the antiviral ability of host cells. In addition, the results of the immunofluorescence staining demonstrated the subcellular overlapping between bcSRP54 and bcMDA5, and the co-immunoprecipitation (co-IP) experiment identified their association. Furthermore, the over-expression of bcSRP54 did not influence the protein expression and ubiquitination modification level of bcMDA5, however, hindered the binding of bcMDA5 to bcMAVS. In summary, our results conclude that bcSRP54 targets bcMDA5 and inhibits the interaction between bcMDA5 and bcMAVS, thereby negatively regulating antiviral innate immunity, which provides insight into how teleost SRP54 regulates IFN signaling.


Assuntos
Carpas , Proteínas de Peixes , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , Transdução de Sinais , Animais , Carpas/imunologia , Carpas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Transdução de Sinais/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/imunologia , Partícula de Reconhecimento de Sinal/genética , Humanos , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Ubiquitinação , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae
9.
Curr Opin Immunol ; 89: 102456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39173414

RESUMO

The unconventional type I interferons IFNε and IFNω and type III interferon IFNλ are gradually emerging as tissue-specific cytokines in defence of mucosal tissues. This review provides an overview of the distinct features and functions that define these IFNs as protective factors in the respiratory, gastrointestinal and reproductive tracts, highlighting their immunoregulatory roles against pathogens while maintaining tolerance against commensal microbes. In particular, we discuss recent advances in our understanding of the constitutively expressed IFNε and its role in protecting against mucosal infections, inflammation and cancers. We identify an emerging theme for this unique cytokine as a key contributor to the 'first line of defence' against pathogens and maintenance of mucosal tissue homeostasis, primarily through its regulation of immune cell populations.


Assuntos
Interferons , Mucosa , Humanos , Animais , Mucosa/imunologia , Mucosa/metabolismo , Interferons/metabolismo , Interferons/imunologia , Imunidade nas Mucosas , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia
10.
Cell Mol Life Sci ; 81(1): 364, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172244

RESUMO

While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is characterized by impaired induction of interferons (IFNs) and IFN-stimulated genes (ISGs), the IFNs and ISGs in upper airway is essential to restrict the spread of respiratory virus. Here, we identified the prominent IFN and ISG upregulation in the nasopharynx (NP) of mild and even severe coronavirus disease 2019 (COVID-19) patients (CoV2+) in Omicron era and to compare their clinical outcome depending on the level of IFNs and ISGs. Whereas the induction of IFNB was minimal, transcription of IFNA, IFNG, and IFNLs was significantly increased in the NP of CoV2 + patients. IFNs and ISGs may be more upregulated in the NP of CoV2 + patients at early phases of infection according to viral RNA levels and this is observed even in severe cases. IFN-related innate immune response might be characteristic in macrophages and monocytes at the NP and the CoV2 + patients with higher transcription of IFNs and ISGs in the NP showed a correlation with good prognosis of COVID-19. This study presents that IFNs and ISGs may be upregulated in the NP, even in severe CoV2 + patients depending on viral replication during Omicron-dominant period and the unique IFN-responsiveness in the NP links with COVID-19 clinical outcomes.


Assuntos
COVID-19 , Imunidade Inata , Interferons , Nasofaringe , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , Nasofaringe/virologia , Nasofaringe/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Interferons/metabolismo , Interferons/genética , Interferons/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso
12.
mBio ; 15(9): e0210024, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39171921

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.


Assuntos
COVID-19 , Imunidade Inata , Interferons , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , Interferons/imunologia , Interferons/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Regulação da Expressão Gênica
14.
Sci Immunol ; 9(97): eadp1139, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058762

RESUMO

Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.


Assuntos
Interferons , Camundongos Endogâmicos C57BL , Timo , Animais , Timo/imunologia , Camundongos , Interferons/imunologia , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
15.
Mol Cell ; 84(15): 2870-2881.e5, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013473

RESUMO

The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.


Assuntos
Inativação Gênica , Humanos , Células HEK293 , Histonas/metabolismo , Histonas/genética , Retroelementos/genética , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos/genética , Transdução de Sinais , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Células HeLa
16.
J Immunol ; 213(5): 743-752, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39058321

RESUMO

IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.


Assuntos
DNA , Fatores Reguladores de Interferon , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , DNA/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Cristalografia por Raios X , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Ligação Proteica , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Interferons/metabolismo , Interferons/imunologia
17.
Front Cell Infect Microbiol ; 14: 1415695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035358

RESUMO

Histone deacetylates family proteins have been studied for their function in regulating viral replication by deacetylating non-histone proteins. RIG-I (Retinoic acid-inducible gene I) is a critical protein in RNA virus-induced innate antiviral signaling pathways. Our previous research showed that HDAC8 (histone deacetylase 8) involved in innate antiviral immune response, but the underlying mechanism during virus infection is still unclear. In this study, we showed that HDAC8 was involved in the regulation of vesicular stomatitis virus (VSV) replication. Over-expression of HDAC8 inhibited while knockdown promoted VSV replication. Further exploration demonstrated that HDAC8 interacted with and deacetylated RIG-I, which eventually lead to enhance innate antiviral immune response. Collectively, our data clearly demonstrated that HDAC8 inhibited VSV replication by promoting RIG-I mediated interferon production and downstream signaling pathway.


Assuntos
Proteína DEAD-box 58 , Histona Desacetilases , Imunidade Inata , Receptores Imunológicos , Transdução de Sinais , Vesiculovirus , Replicação Viral , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Humanos , Histona Desacetilases/metabolismo , Vesiculovirus/imunologia , Receptores Imunológicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Acetilação , Células HEK293 , Interferons/metabolismo , Interferons/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno/imunologia , Animais , Vírus da Estomatite Vesicular Indiana/imunologia
18.
Viruses ; 16(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39066259

RESUMO

Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.


Assuntos
Interferons , Biossíntese de Proteínas , RNA Viral , Viroses , Animais , Humanos , Interações Hospedeiro-Patógeno , Interferons/imunologia , Interferons/metabolismo , Interferons/genética , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroses/imunologia , Viroses/virologia , Viroses/genética , Replicação Viral , Vírus/imunologia , Vírus/genética , Vírus/efeitos dos fármacos
19.
Fish Shellfish Immunol ; 152: 109781, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029718

RESUMO

IkappaB kinase beta (IKKß) is a key member of IκB kinases and functions importantly in interferon (IFN) signaling. Phosphorylation and ubiquitination are involved in the activation of IKKß. A20 is a de-ubiquitin enzyme and functions as a suppressor in inflammation signaling, which has been reported to be phosphorylated and activated by IKKß. However, the role and relationship of IKKß and A20 in teleost remains unclear. In this study, IKKß (bcIKKß) and A20 (bcA20) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Overexpressed bcIKKß in EPC cells showed strong anti-viral ability by activating both NF-κB and IFN signaling. EPC cells stable expressing bcIKKß presented improved anti-viral activity as well. The interaction between bcA20 and bcIKKß was identified, and overexpression of bcA20 was able to suppress bcIKKß-mediated activation of NF-κB and IFN signaling. Meanwhile, knock-down of A20 increased host the antiviral ability of host cells. Importantly, it has been identified that bcA20 was able to remove K27-linked ubiquitination and decrease the phosphorylation of bcIKKß. Thus, our data conclude that bcA20 suppresses the anti-viral activity of bcIKKß and removes its K27-linked ubiquitination, which presents a new mechanism of IKKß regulation.


Assuntos
Carpas , Proteínas de Peixes , Quinase I-kappa B , Transdução de Sinais , Ubiquitinação , Animais , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Carpas/imunologia , Carpas/genética , Transdução de Sinais/imunologia , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Doenças dos Peixes/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária , Sequência de Aminoácidos
20.
JCI Insight ; 9(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38973611

RESUMO

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Interferon Tipo I , SARS-CoV-2 , Animais , Linfócitos T CD8-Positivos/imunologia , SARS-CoV-2/imunologia , Camundongos , COVID-19/imunologia , COVID-19/virologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Pulmão/imunologia , Pulmão/virologia , Transdução de Sinais/imunologia , Modelos Animais de Doenças , Interferon lambda , Interferons/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Dendríticas/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...