Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.212
Filtrar
1.
Front Immunol ; 15: 1385473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720890

RESUMO

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Assuntos
Vírus Chikungunya , Vírus da Dengue , Dengue , Interferons , Janus Quinases , Macrófagos , Fatores de Transcrição STAT , Transdução de Sinais , Replicação Viral , Humanos , Vírus Chikungunya/fisiologia , Vírus Chikungunya/imunologia , Vírus da Dengue/fisiologia , Vírus da Dengue/imunologia , Janus Quinases/metabolismo , Replicação Viral/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Macrófagos/metabolismo , Interferons/metabolismo , Dengue/imunologia , Dengue/virologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Interleucina-27/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacologia , Interleucinas/imunologia , Transcriptoma , Células Cultivadas
2.
New Microbiol ; 47(1): 60-67, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700885

RESUMO

Acute respiratory tract infection (ARTI) is common in all age groups, especially in children and the elderly. About 85% of children who present with bronchiolitis are infected with respiratory syncytial virus (RSV); however, nearly one-third are coinfected with another respiratory virus, such as human rhinovirus (HRV). Therefore, it is necessary to explore the immune response to coinfection to better understand the molecular and cellular pathways involving virus-virus interactions that might be modulated by innate immunity and additional host cell response mechanisms. This study aims to investigate the host innate immune response against RSV-HRV coinfection compared with monoinfection. Human primary bronchial/tracheal epithelial cells (HPECs) were infected with RSV, HRV, or coinfected with both viruses, and the infected cells were collected at 48 and 72 hours. Gene expression profiles of IL-6, CCL5, TNF-α, IFN-ß, IFN-λ1, CXCL10, IL-10, IL-13, IRF3, and IRF7 were investigated using real-time quantitative PCR, which revealed that RSV-infected cells exhibited increased expression of IL-10, whereas HRV infection increased the expression of CXCL10, IL-10, and CCL5. IFN-λ1 and CXCL10 expression was significantly different between the coinfection and monoinfection groups. In conclusion, our study revealed that two important cytokines, IFN-λ1 and CXCL10, exhibited increased expression during coinfection.


Assuntos
Brônquios , Quimiocina CXCL10 , Coinfecção , Células Epiteliais , Interferon lambda , Interferons , Interleucinas , Infecções por Picornaviridae , Infecções por Vírus Respiratório Sincicial , Rhinovirus , Humanos , Rhinovirus/fisiologia , Coinfecção/virologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Células Epiteliais/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Brônquios/virologia , Brônquios/citologia , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/imunologia , Interferons/genética , Interferons/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sincicial Respiratório Humano/genética , Células Cultivadas , Vírus Sinciciais Respiratórios/fisiologia
3.
Biotechnol J ; 19(5): e2300672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719621

RESUMO

The production of recombinant adeno-associated virus (rAAV) for gene therapy applications relies on the use of various host cell lines, with suspension-grown HEK293 cells being the preferred expression system due to their satisfactory rAAV yields in transient transfections. As the field of gene therapy continues to expand, there is a growing demand for efficient rAAV production, which has prompted efforts to optimize HEK293 cell line productivity through engineering. In contrast to other cell lines like CHO cells, the transcriptome of HEK293 cells during rAAV production has remained largely unexplored in terms of identifying molecular components that can enhance yields. In our previous research, we analyzed global regulatory pathways and mRNA expression patterns associated with increased rAAV production in HEK293 cells. Our data revealed substantial variations in the expression patterns between cell lines with low (LP) and high-production (HP) rates. Moving to a deeper layer for a more detailed analysis of inflammation-related transcriptome data, we detected an increased expression of interferon-related genes in low-producing cell lines. Following upon these results, we investigated the use of Ruxolitinib, an interferon pathway inhibitor, during the transient production of rAAV in HEK293 cells as potential media additive to boost rAAV titers. Indeed, we find a two-fold increase in rAAV titers compared to the control when the interferon pathways were inhibited. In essence, this work offers a rational design approach for optimization of HEK293 cell line productivity and potential engineering targets, ultimately paving the way for more cost-efficient and readily available gene therapies for patients.


Assuntos
Dependovirus , Interferons , Transdução de Sinais , Humanos , Células HEK293 , Dependovirus/genética , Interferons/metabolismo , Interferons/genética , Nitrilas/farmacologia , Pirimidinas/farmacologia , Transfecção , Pirazóis/farmacologia
4.
Nat Commun ; 15(1): 4177, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755196

RESUMO

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Assuntos
Anticorpos Antivirais , COVID-19 , Interferons , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Transdução de Sinais/imunologia , Interferons/metabolismo , Interferons/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Linfócitos T CD4-Positivos/imunologia , Idoso , Adulto , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
5.
Nat Commun ; 15(1): 4067, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744958

RESUMO

The complexity of the tumor microenvironment poses significant challenges in cancer therapy. Here, to comprehensively investigate the tumor-normal ecosystems, we perform an integrative analysis of 4.9 million single-cell transcriptomes from 1070 tumor and 493 normal samples in combination with pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint inhibitor-treated bulk tumors. We define a myriad of cell states constituting the tumor-normal ecosystems and also identify hallmark gene signatures across different cell types and organs. Our atlas characterizes distinctions between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of cellular interactions and spatial co-localization patterns. Co-occurrence analysis reveals interferon-enriched community states including tertiary lymphoid structure (TLS) components, which exhibit differential rewiring between tumor, adjacent normal, and healthy normal tissues. The favorable response of interferon-enriched community states to immunotherapy is validated using immunotherapy-treated cancers (n = 1261) including our lung cancer cohort (n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched from non-enriched cell types among immunotherapy-favorable components. Our systematic dissection of tumor-normal ecosystems provides a deeper understanding of inter- and intra-tumoral heterogeneity.


Assuntos
Neoplasias , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Perfilação da Expressão Gênica , Interferons/metabolismo
6.
Front Immunol ; 15: 1383358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779657

RESUMO

Introduction: Immune cells that contribute to the pathogenesis of systemic lupus erythematosus (SLE) derive from adult hematopoietic stem and progenitor cells (HSPCs) within the bone marrow (BM). For this reason, we reasoned that fundamental abnormalities in SLE can be traced to a BM-derived HSPC inflammatory signature. Methods: BM samples from four SLE patients, six healthy controls, and two umbilical cord blood (CB) samples were used. CD34+ cells were isolated from BM and CB samples, and single-cell RNA-sequencing was performed. Results: A total of 426 cells and 24,473 genes were used in the analysis. Clustering analysis resulted in seven distinct clusters of cell types. Mutually exclusive markers, which were characteristic of each cell type, were identified. We identified three HSPC subpopulations, one of which consisted of proliferating cells (MKI67 expressing cells), one T-like, one B-like, and two myeloid-like progenitor subpopulations. Differential expression analysis revealed i) cell cycle-associated signatures, in healthy BM of HSPC clusters 3 and 4 when compared with CB, and ii) interferon (IFN) signatures in SLE BM of HSPC clusters 3 and 4 and myeloid-like progenitor cluster 5 when compared with healthy controls. The IFN signature in SLE appeared to be deregulated following TF regulatory network analysis and differential alternative splicing analysis between SLE and healthy controls in HSPC subpopulations. Discussion: This study revealed both quantitative-as evidenced by decreased numbers of non-proliferating early progenitors-and qualitative differences-characterized by an IFN signature in SLE, which is known to drive loss of function and depletion of HSPCs. Chronic IFN exposure affects early hematopoietic progenitors in SLE, which may account for the immune aberrancies and the cytopenias in SLE.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas , Interferons , Lúpus Eritematoso Sistêmico , Análise de Célula Única , Transcriptoma , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interferons/metabolismo , Interferons/genética , Feminino , Adulto , Reprogramação Celular/genética , Masculino
7.
Genes (Basel) ; 15(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790257

RESUMO

BACKGROUND: Sjögren's disease (SjD) is a common systemic autoimmune disease that affects mainly women. Key pathologic features include the infiltration of exocrine glands by lymphocytes and the activation of B lymphocytes with the production of autoantibodies. We aimed to analyze the transcriptome of circulating B cells from patients with SJD and healthy controls to decipher the B-cell-specific contribution to SJD. METHODS: RNA from peripheral blood B cells of five untreated female patients with SjD and positive ANA, positive anti-SSA (both Ro-52 and Ro-60), positive anti-SSB and positive rheumatoid-factor, and five healthy controls was subjected to whole-transcriptome sequencing. A false discovery rate of < 0.1 was applied to define differentially expressed genes (DEG). RESULTS: RNA-sequencing identified 56 up and 23 down DEG. Hierarchal clustering showed a clear separation between the two groups. Ingenuity pathway analysis revealed that these genes may play a role in interferon signaling, chronic mycobacterial infection, and transformation to myeloproliferative disorders. CONCLUSIONS: We found upregulated expression of type-I and type-II interferon (IFN)-induced genes, as well as genes that may contribute to other concomitant conditions, including infections and a higher risk of myeloproliferative disorders. This adds insight into the autoimmune process and suggests potential targets for future functional and prognostic studies.


Assuntos
Linfócitos B , Perfilação da Expressão Gênica , Síndrome de Sjogren , Transcriptoma , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Feminino , Linfócitos B/imunologia , Linfócitos B/metabolismo , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Interferons/genética , Interferons/metabolismo , Adulto , Autoanticorpos/imunologia , Autoanticorpos/sangue , Autoanticorpos/genética , Idoso
8.
Eur J Med Chem ; 272: 116494, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749268

RESUMO

Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.


Assuntos
Antineoplásicos , Histona Desmetilases com o Domínio Jumonji , Neoplasias da Próstata , Humanos , Masculino , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Regulação para Cima/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proteólise/efeitos dos fármacos , Interferons/metabolismo , Proteínas Nucleares , Proteínas Repressoras
9.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711929

RESUMO

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Assuntos
Infecções por Bunyaviridae , Imunidade Inata , Orthobunyavirus , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Humanos , Animais , Orthobunyavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Interferons/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Citocinas/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Replicação Viral
10.
Mol Immunol ; 170: 156-169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692097

RESUMO

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Fatores de Transcrição , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Recidiva Local de Neoplasia/imunologia , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Linhagem Celular Tumoral , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Animais , RNA de Cadeia Dupla/imunologia , Fator de Transcrição RelA/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/imunologia , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia
11.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758698

RESUMO

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Assuntos
Resfriado Comum , Imunidade Inata , Interferons , Mucosa Nasal , SARS-CoV-2 , Transdução de Sinais , Humanos , Mucosa Nasal/virologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Interferons/metabolismo , Interferons/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Transdução de Sinais/imunologia , SARS-CoV-2/imunologia , Replicação Viral , Rhinovirus/imunologia , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavirus Humano NL63/imunologia
12.
Viruses ; 16(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793622

RESUMO

The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.


Assuntos
Vírus Delta da Hepatite , Hepatócitos , Imunidade Inata , Interferons , Receptores de Reconhecimento de Padrão , Humanos , Hepatite D/imunologia , Hepatite D/virologia , Vírus Delta da Hepatite/imunologia , Vírus Delta da Hepatite/fisiologia , Hepatócitos/virologia , Hepatócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Interferons/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia
13.
Viruses ; 16(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38793616

RESUMO

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Assuntos
Interferons , Proteínas de Membrana , Internalização do Vírus , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Interferons/imunologia , Interferons/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Evasão da Resposta Imune , Animais , Viroses/imunologia , Viroses/virologia , Vírus/imunologia , Vírus/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/imunologia
14.
Cell Rep Med ; 5(5): 101569, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744279

RESUMO

Systemic lupus erythematosus (SLE) displays a hallmark interferon (IFN) signature. Yet, clinical trials targeting type I IFN (IFN-I) have shown variable efficacy, and blocking IFN-II failed to treat SLE. Here, we show that IFN type levels in SLE vary significantly across clinical and transcriptional endotypes. Whereas skin involvement correlated with IFN-I alone, systemic features like nephritis associated with co-elevation of IFN-I, IFN-II, and IFN-III, indicating additive IFN effects in severe SLE. Notably, while high IFN-II/-III levels without IFN-I had a limited effect on disease activity, IFN-II was linked to IFN-I-independent transcriptional profiles (e.g., OXPHOS and CD8+GZMH+ cells), and IFN-III enhanced IFN-induced gene expression when co-elevated with IFN-I. Moreover, dysregulated IFNs do not explain the IFN signature in 64% of patients or clinical manifestations including cytopenia, serositis, and anti-phospholipid syndrome, implying IFN-independent endotypes in SLE. This study sheds light on mechanisms underlying SLE heterogeneity and the variable response to IFN-targeted therapies in clinical trials.


Assuntos
Interferons , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Interferons/metabolismo , Interferons/genética , Feminino , Adulto , Masculino , Transcriptoma/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Pessoa de Meia-Idade , Transcrição Gênica , Regulação da Expressão Gênica
15.
Microbiol Spectr ; 12(6): e0379623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712963

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.


Assuntos
Imunidade Inata , Nucleoproteínas , Nucleotidiltransferases , Phlebovirus , Phlebovirus/genética , Phlebovirus/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Células HEK293 , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Autofagia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética
16.
J Immunol ; 212(12): 1945-1957, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700419

RESUMO

The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.


Assuntos
Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Penaeidae/imunologia , Penaeidae/virologia , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Interferons/metabolismo , Interferons/imunologia , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/imunologia
17.
Front Immunol ; 15: 1374368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715616

RESUMO

NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.


Assuntos
Proteínas de Peixes , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transdução de Sinais , Animais , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Percas/genética , Percas/imunologia , Percas/metabolismo , Interferons/metabolismo , Interferons/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Imunidade Inata/genética , Ligação Proteica
18.
PLoS Pathog ; 20(5): e1011961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701091

RESUMO

Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical relevance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs), modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo model for the study of host regulation of NoV. A persistent strain of MNoV, CR6, establishes a reservoir in intestinal tuft cells for chronic viral shedding in stool. However, the influence of host innate immunity and permissive cell numbers on viral population dynamics is an open question. We generated a pool of 20 different barcoded viruses (CR6BC) by inserting 6-nucleotide barcodes at the 3' position of the NS4 gene and used this pool as our viral inoculum for in vivo infections of different mouse lines. We found that over the course of persistent CR6 infection, shed virus was predominantly colon-derived, and viral barcode richness decreased over time irrespective of host immune status, suggesting that persistent infection involves a series of reinfection events. In mice lacking the IFN-λ receptor, intestinal barcode richness was enhanced, correlating with increased viral intestinal replication. IL-4 treatment, which increases tuft cell numbers, also increased barcode richness, indicating the abundance of permissive tuft cells to be a bottleneck during CR6 infection. In mice lacking type I IFN signaling (Ifnar1-/-) or all IFN signaling (Stat1-/-), barcode diversity at extraintestinal sites was dramatically increased, implicating different IFNs as critical bottlenecks at specific tissue sites. Of interest, extraintestinal barcodes were overlapping but distinct from intestinal barcodes, indicating that disseminated virus represents a distinct viral population than that replicating in the intestine. Barcoded viruses are a valuable tool to explore the influence of host factors on viral diversity in the context of establishment and maintenance of infection as well as dissemination and have provided important insights into how NoV infection proceeds in immunocompetent and immunocompromised hosts.


Assuntos
Infecções por Caliciviridae , Interferons , Norovirus , Animais , Norovirus/fisiologia , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/imunologia , Camundongos , Interferons/metabolismo , Infecção Persistente/virologia , Infecção Persistente/imunologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/virologia , Mucosa Intestinal/imunologia , Gastroenterite/virologia , Replicação Viral , Camundongos Knockout , Imunidade Inata , Eliminação de Partículas Virais
19.
Cell Death Dis ; 15(5): 369, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806478

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3ß. While STAT3α is predominantly described as an oncogenic driver, STAT3ß has been suggested to act as a tumor suppressor. To elucidate the role of STAT3ß in AML, we established a mouse model of STAT3ß-deficient, MLL-AF9-driven AML. STAT3ß deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3ß. Accordingly, STAT3ß-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3ß expression. Together, our data corroborate the tumor suppressive role of STAT3ß in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3ß/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3ß/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.


Assuntos
Leucemia Mieloide Aguda , Fator de Transcrição STAT3 , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Camundongos , Transdução de Sinais , Interferons/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Linhagem Celular Tumoral , Nitrilas , Pirazóis , Pirimidinas
20.
Biomed Environ Sci ; 37(3): 303-314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582994

RESUMO

Objective: This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40, CD80, CD83, and CD86. Method: This was a cross-sectional study in which patients were divided into a natural history group (namely NH group), a long-term oral nucleoside analogs treatment group (namely NA group), and a plateau-arriving group (namely P group). The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer. Results: In total, 143 patients were enrolled (NH group, n = 49; NA group, n = 47; P group, n = 47). The results demonstrated that CD141/CD1c double negative myeloid dendritic cell (DNmDC)/lymphocytes and monocytes (%) in P group (0.041 [0.024, 0.069]) was significantly lower than that in NH group (0.270 [0.135, 0.407]) and NA group (0.273 [0.150, 0.443]), and CD86 mean fluorescence intensity of DNmDCs in P group (1832.0 [1484.0, 2793.0]) was significantly lower than that in NH group (4316.0 [2958.0, 5169.0]) and NA group (3299.0 [2534.0, 4371.0]), Adjusted P all < 0.001. Conclusion: Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.


Assuntos
Hepatite B Crônica , Humanos , Hepatite B Crônica/tratamento farmacológico , Estudos Transversais , Citometria de Fluxo , Células Dendríticas , Interferons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA