Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Nat Commun ; 15(1): 7698, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227582

RESUMO

Arterial endothelial cells (AECs) are the founder cells for intraembryonic haematopoiesis. Here, we report a method for the efficient generation of human haemogenic DLL4+ AECs from pluripotent stem cells (PSC). Time-series single-cell RNA-sequencing reveals the dynamic evolution of haematopoiesis and lymphopoiesis, generating cell types with counterparts present in early human embryos, including stages marked by the pre-haematopoietic stem cell genes MECOM/EVI1, MLLT3 and SPINK2. DLL4+ AECs robustly support lymphoid differentiation, without the requirement for exogenous NOTCH ligands. Using this system, we find IL7 acts as a morphogenic factor determining the fate choice between the T and innate lymphoid lineages and also plays a role in regulating the relative expression level of RAG1. Moreover, we document a developmental pathway by which human RAG1+ lymphoid precursors give rise to the natural killer cell lineage. Our study describes an efficient method for producing lymphoid progenitors, providing insights into their endothelial and haematopoietic ontogeny, and establishing a platform to investigate the development of the human blood system.


Assuntos
Hematopoese , Linfopoese , Humanos , Hematopoese/genética , Linfopoese/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Diferenciação Celular , Linhagem da Célula/genética , Interleucina-7/metabolismo , Interleucina-7/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/citologia , Hemangioblastos/metabolismo , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Análise de Célula Única/métodos , Receptores Notch/metabolismo , Receptores Notch/genética
2.
Cancer Res Commun ; 4(9): 2359-2373, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39186002

RESUMO

Chimeric antigen receptor (CAR) T cells can effectively treat leukemias, but sustained antitumor responses can be hindered by a lack of CAR T-cell persistence. Cytotoxic effector T cells are short-lived, and establishment of CAR-T cells with memory to ensure immune surveillance is important. Memory T cells depend on cytokine support, with IL7 activation of the IL7 receptor (IL7R) being critical. However, IL7R surface expression is negatively regulated by exposure to IL7. We aimed to support CAR T-cell persistence by equipping CAR-T cells with a sustained IL7Rα signal. We engineered T cells to constitutively secrete IL7 or to express an anti-acute myeloid leukemia-targeted IL7Rα-chimeric cytokine receptor (CCR) and characterized the phenotype of these cell types. Canonical downstream signaling was activated in CCR-T cells with IL7R activation. When coexpressed with a cytotoxic CAR, functionality of both the CCR and CAR was maintained. We designed hybrid CAR-CCR and noted membrane proximity of the intracellular domains as vital for signaling. These data show cell-intrinsic cytokine support with canonical signaling, and functionality can be provided via expression of an IL7Rα domain whether independently expressed or incorporated into a cytotoxic CAR for use in anticancer therapy. SIGNIFICANCE: To improve the phenotype of tumor-directed T-cell therapy, we show that provision of cell-intrinsic IL7R-mediated signaling is preferable to activation of cells with exogenous IL7. We engineer this signaling via independent receptor engineering and incorporation into a CAR and validate maintained antigen-specific cytotoxic activity.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Transdução de Sinais , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-7/metabolismo , Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Receptores de Interleucina-7/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Subunidade alfa de Receptor de Interleucina-7
3.
Medicine (Baltimore) ; 103(32): e39036, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121248

RESUMO

The association between interleukins and osteoporosis has attracted much attention these days. However, the causal relationship between them is uncertain. Hence, this study performed a Mendelian randomization (MR) analysis to investigate the causal effects of interleukins on osteoporosis. The summary data for interleukins and osteoporosis came from 4 different genome-wide association studies. Significant and independent (P < 5 × 10-6; r2 < 0.001, 10,000 kbp) single-nucleotide polymorphisms were extracted for MR analysis. The inverse-variance weighted and other methods were used for MR analysis, while sensitivity analyses were conducted to test the reliability and stability. The positive causal effects of interleukin-7 on osteoporosis (odds ratio = 1.084; 95% confidence interval: 1.010-1.163; P = .025) were observed. No causal relationship was found between other interleukins and osteoporosis. In the sensitivity analysis, the results did not show the presence of pleiotropy and heterogeneity. Therefore, the results were robust for the MR analysis. This study revealed that interleukin-7 was positively related to osteoporosis and that other interleukins were not related to osteoporosis.


Assuntos
Estudo de Associação Genômica Ampla , Interleucinas , Análise da Randomização Mendeliana , Osteoporose , Polimorfismo de Nucleotídeo Único , Humanos , Osteoporose/genética , Interleucinas/genética , Interleucina-7/genética , Predisposição Genética para Doença
4.
Zhongguo Fei Ai Za Zhi ; 27(7): 504-513, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39147704

RESUMO

BACKGROUND: Neoantigen reactive T cell (NRT) has the ability to inhibit the growth of tumors expressing specific neoantigens. However, due to the difficult immune infiltration and the inhibition of tumor microenvironment, the therapeutic effect of NRT in solid tumors is limited. In this study, we designed NRT cells (7×19 NRT) that can express both interleukin-7 (IL-7) and chemokine C-C motif ligand 19 (CCL19) in mouse lung cancer cells, and evaluated the difference in anti-tumor effect between 7×19 NRT cells and conventional NRT cells. METHODS: We performed next-generation sequencing and neoantigen prediction for mouse Lewis lung carcinoma (LLC), prepared RNA vaccine, cultured NRT cells, constructed retroviral vectors encoding IL-7 and CCL19, transduced NRT cells and IL-7 and CCL19 were successfully expressed, and 7×19 NRT was successfully obtained. The anti-tumor effect was evaluated in vivo and in vitro in mice. RESULTS: The 7×19 NRT cells significantly enhanced the proliferation and invasion ability of T cells by secreting IL-7 and CCL19, achieved significant tumor inhibition in the mouse lung cancer and extended the survival period of mice. The T cell infiltration into tumor tissue and the necrosis of tumor tissue increased significantly after 7×19 NRT treatment. In addition, both 7×19 NRT treatment and conventional NRT treatment were safe. CONCLUSIONS: The anti-solid tumor ability of NRT cells is significantly enhanced by the arming of IL-7 and CCL19, which is a safe and effective genetic modification of NRT.


Assuntos
Quimiocina CCL19 , Interleucina-7 , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Linfócitos T , Animais , Camundongos , Interleucina-7/genética , Interleucina-7/imunologia , Quimiocina CCL19/genética , Quimiocina CCL19/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Linfócitos T/imunologia , Linhagem Celular Tumoral , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/terapia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Feminino , Proliferação de Células , Humanos
5.
J Cell Mol Med ; 28(6): e18137, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445791

RESUMO

Hepatocellular cancer is one of the most serious types of cancer in the world, with high incidence and mortality rates. Most HCC patients with long-term chemotherapy develop chemoresistance, leading to a poor prognosis. However, the underlying mechanism of circRNAs in HCC chemoresistance remains unclear. Our research found that circ_0072391(circ_HMGCS1) expression was significantly upregulated in cisplatin-resistant HCC cells. The silence of circ_HMGCS1 attenuated the cisplatin resistance in HCC. Results showed that circ_HMGCS1 regulated the expression of miR-338-5p via acting as microRNA sponges. Further study confirmed that miR-338-5p regulated the expression of IL-7. IL-7 could remodel the immune system by improving T-cell function and antagonising the immunosuppressive network. IL-7 is an ideal target used to enhance the function of the immune system. circ_HMGCS1 exerts its oncogenic function through the miR-338-5p/IL-7 pathway. Inhibition of circ_HMGCS1/miR-338-5p/IL-7 could effectively attenuate the chemoresistance of HCC. IL-7 might be a promising immunotherapy target for HCC cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Interleucina-7/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , Hidroximetilglutaril-CoA Sintase
6.
Br J Cancer ; 130(8): 1388-1401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424167

RESUMO

BACKGROUND: Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS: We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS: Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION: These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.


Assuntos
Interleucina-7 , Neoplasias , Humanos , Animais , Camundongos , Interleucina-7/genética , Interleucina-7/farmacologia , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Análise de Sequência de RNA , Microambiente Tumoral/genética , Linfócitos T CD8-Positivos
7.
Int Immunopharmacol ; 124(Pt B): 110974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757633

RESUMO

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.


Assuntos
MicroRNAs , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-7/genética , Interleucina-7/metabolismo , MicroRNAs/genética , Proliferação de Células , Antígenos CD19/genética , Antígenos CD19/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
8.
J Clin Immunol ; 43(8): 1927-1940, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581646

RESUMO

Genetic variants in cell division cycle 42 (CDC42) can manifest with dysmorphic features, autoinflammation, hemophagocytic lymphohistiocytosis, and thrombocytopenia, whereas defective thymopoiesis is a rare disease manifestation. We report a novel CDC42 missense variant (c.46A > G, p.Lys16Glu) resulting in infection and HPV-driven carcinogenesis in the mosaic mother and impaired thymopoiesis and profound T cell lymphopenia in the heterozygous daughter identified through newborn screening for SCID. We found that surface expression of IL-7Rα (CD127) was decreased, consistent with reduced IL-7-induced STAT5 phosphorylation and accelerated apoptotic T cell death. Consistent with the vital role of IL-7 in regulating thymopoiesis, both patients displayed reduced T cell receptor CDR3 repertoires. Moreover, the CDC42 variant prevented binding to the downstream effector, p21-activated kinase (PAK)1, suggesting this impaired interaction to underlie reduced IL-7Rα expression and signaling. Here, we provide the first report of severely compromised thymopoiesis and perturbed IL-7Rα signaling caused by a novel CDC42 variant and presenting with diverging clinical and immunological phenotypes in patients.


Assuntos
Interleucina-7 , Quinases Ativadas por p21 , Humanos , Recém-Nascido , Apoptose , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
9.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373104

RESUMO

Interleukin-7 (IL-7) plays a vital role in the homeostasis of CD4+ and CD8+ T cells. Although IL-7 has been implicated in T helper (Th)1- and Th17-mediated autoinflammatory diseases, its role in Th2-type allergic disorders, such as atopic dermatitis (AD), remains unclear. Thus, to elucidate the effects of IL-7 deficiency on AD development, we generated IL-7-deficient AD-prone mice by backcrossing IL-7 knockout (KO) B6 mice onto the NC/Nga (NC) mouse strain, a model for human AD. As expected, IL-7 KO NC mice displayed defective development of conventional CD4+ and CD8+ T cells compared with wild type (WT) NC mice. However, IL-7 KO NC mice presented with enhanced AD clinical scores, IgE hyperproduction, and increased epidermal thickness compared with WT NC mice. Moreover, IL-7 deficiency decreased Th1, Th17, and IFN-γ-producing CD8+ T cells but increased Th2 cells in the spleen of NC mice, indicating that a reduced Th1/Th2 ratio correlates with severity of AD pathogenesis. Furthermore, significantly more basophils and mast cells infiltrated the skin lesions of IL-7 KO NC mice. Taken together, our findings suggest that IL-7 could be a useful therapeutic target for treating Th2-mediated skin inflammations, such as AD.


Assuntos
Dermatite Atópica , Dermatopatias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/patologia , Citocinas , Dermatite Atópica/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-7/genética , Interleucina-7/metabolismo , Pele/patologia , Dermatopatias/patologia , Células Th2
10.
Blood ; 142(3): 274-289, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-36989489

RESUMO

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.


Assuntos
Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Pimozida/uso terapêutico , Camundongos Transgênicos
11.
Mol Oncol ; 17(3): 384-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748568

RESUMO

Treatment with immune checkpoint inhibitors (ICIs) is frequently associated with immune-related adverse events (irAEs). A new study identified an interleukin 7 (IL-7) allelic variant-rs16906115-as a major risk factor for the development of ICI-associated irAEs. This association is of great significance as it indicates that germline genetic variants influence the occurrence of irAEs, thus opening a new avenue for identifying high-risk patients to enable better management of ICI therapy and associated irAEs.


Assuntos
Antineoplásicos Imunológicos , Interleucina-7 , Humanos , Células Germinativas , Imunoterapia , Interleucina-7/genética , Estudos Retrospectivos , Fatores de Risco
12.
Blood ; 141(14): 1708-1717, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36599086

RESUMO

The downstream signaling of the interleukin-7 (IL-7) receptor (IL-7R) plays important physiological and pathological roles, including the differentiation of lymphoid cells and proliferation of acute lymphoblastic leukemia cells. Gain-of-function mutations in the IL-7Rα chain, the specific component of the receptor for IL-7, result in constitutive, IL-7-independent signaling and trigger acute lymphoblastic leukemia. Here, we show that the loss of the phosphoinositide 5-phosphatase INPP5K is associated with increased levels of the INPP5K substrate phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) and causes an altered dynamic structure of the IL-7 receptor. We discovered that the IL-7Rα chain contains a very conserved positively charged polybasic amino acid sequence in its cytoplasmic juxtamembrane region; this region establish stronger ionic interactions with negatively charged PtdIns(4,5)P2 in the absence of INPP5K, freezing the IL-7Rα chain structure. This dynamic structural alteration causes defects in IL-7R signaling, culminating in decreased expressions of EBF1 and PAX5 transcription factors, in microdomain formation, cytoskeletal reorganization, and bone marrow B-cell differentiation. Similar alterations after the reduced INPP5K expression also affected mutated, constitutively activated IL-7Rα chains that trigger leukemia development, leading to reduced cell proliferation. Altogether, our results indicate that the lipid 5-phosphatase INPP5K hydrolyzes PtdIns(4,5)P2, allowing the requisite conformational changes of the IL-7Rα chain for optimal signaling.


Assuntos
Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Fosfatidilinositol 4,5-Difosfato , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Transdução de Sinais/genética
13.
J Virol ; 97(1): e0125422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541802

RESUMO

Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.


Assuntos
Infecções por HIV , RNA Viral , Transcriptoma , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Interferons/genética , Interleucina-7/genética , RNA Viral/genética , Transcriptoma/imunologia , Proteína Supressora de Tumor p53/genética
14.
Oncoimmunology ; 11(1): 1965317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524211

RESUMO

Glioma is emerging as an aggressive type of glioma characterized by invasive growth pattern and dismal oncologic outcomes. microRNAs (miRNAs) have been attracting research attention in tumorigenesis. Herein, the aim of the current investigation was to explore the functional role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing miR-503 in glioma. The glioma tissues and corresponding normal brain tissues were collected from patients with glioma, followed by quantification of miR-503, kinesin family member 5A (KIF5A) and interleukin-7 (IL-7). EVs were isolated from bone marrow MSCs and identified by transmission electron microscope and nanoparticle tracking analysis. EVs from miR-503 mimic-transfected MSCs, miR-503 agomir,, oe-KIF5A, or sh-IL-7 was delivered into glioma cells to determine their effects on biological behaviors of glioma and T cells as well as the release of immunosuppressive factors. Lastly, a mouse model of glioma was developed to validate the function in vivo. miR-503 was expressed at a high level in glioma tissues while KIF5A was poorly expressed and targeted by miR-503. Furthermore, miR-503 loaded in MSC-EVs or upregulated miR-503 was demonstrated to facilitate glioma cell proliferation, migration and invasion accompanied by promoted release of immunosuppressive factors. Effects of overexpressed KIF5A on T cell behavior modulation were dependent on the IL-7 signaling pathway. Such results were reproduced in mice with glioma. Collectively, the discovery of miR-503 incorporated in MSC-EVs being a regulator that controls immune escape in glioma provides a novel molecular insight that holds promises to develop therapeutic strategies against glioma.


Assuntos
Vesículas Extracelulares , Glioma , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/imunologia , Interleucina-7/genética , Interleucina-7/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Humanos
15.
Nat Med ; 28(12): 2592-2600, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36526722

RESUMO

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Assuntos
Interleucina-7 , Melanoma , Humanos , Interleucina-7/genética , Interleucina-7/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Melanoma/tratamento farmacológico , Melanoma/genética , Linfócitos T CD8-Positivos , Variação Genética
16.
Front Immunol ; 13: 985385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341446

RESUMO

MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.


Assuntos
Infecções por HIV , HIV-1 , Células T Invariantes Associadas à Mucosa , Humanos , Polimorfismo de Nucleotídeo Único , Interleucina-7/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
17.
Hum Vaccin Immunother ; 18(6): 2133914, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36315906

RESUMO

Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients' morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3-5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients.


Assuntos
Interleucina-7 , Vaccinia virus , Humanos , Camundongos , Animais , Interleucina-7/genética , Imunoterapia , Contagem de Linfócitos , Macaca fascicularis
18.
Neuroscience ; 504: 21-32, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067950

RESUMO

BACKGROUND: Human herpes virus-6B (HHV-6B) was suggested as an important etiologic factor of mesial temporal lobe epilepsy, while the mechanism is still unknown. Here, we aimed to analyze antigens representing latent, early and late HHV-6B infection and the association with inflammatory cytokines in brain tissue and cerebral spinal fluid (CSF) from MTLE patients with HHV-6B-positivity. METHODS: Nested polymerase chain reaction (nPCR), real-time PCR, immunohistochemistry (IHC) and suspension bead array for cytokines were performed. RESULTS: Nested polymerase chain reaction (nPCR) in brain tissue revealed HHV-6B DNA in 19 of 49 MTLE patients (39%) and 1 of 19 controls (5%) (P < 0.001), but not in CSF. ICH showed HHV-6B early antigen (P41) positivity in 3 patients (6%), late antigen (gp116/54/64) positivity in 5 patients (10%), latent antigen (U94) positivity in 8 patients (16%), and multiple antigen (early and late or/and latent) positivity in 9 patients (18%). None of these HHV-6B related proteins were found positive in control brain tissue. PCR revealed significant up-regulation of IL-1a, IL-2 and IL-7 mRNA levels in the brain tissue from MTLE patients expressing early antigens compared to those expressing late, latent, multiple antigens, negative antigens and the controls. Suspension bead array of the CSF confirmed significant up-regulation of IL-1a and IL-7 protein expression from MTLE patients expressing early antigens compared to the other groups. CONCLUSIONS: Our finding suggests HHV-6B is a common etiologic agent of MTLE. Different virus life cycle may play an important modifying role in inflammatory biology that warrants further investigation. Though virus DNA is difficult detected in CSF, up-regulation of IL-1a and IL-7 in CSF indicates the two cytokines may be taken as indirect biomarker of HHV-6B infection.


Assuntos
Epilepsia do Lobo Temporal , Herpesvirus Humano 6 , Adulto , Humanos , Animais , Herpesvirus Humano 6/genética , Citocinas/genética , Interleucina-7/genética , Encéfalo , Reação em Cadeia da Polimerase em Tempo Real , Estágios do Ciclo de Vida
19.
Front Immunol ; 13: 943510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059467

RESUMO

γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.


Assuntos
Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/metabolismo
20.
Sci Rep ; 12(1): 12506, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869100

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising novel therapeutic approach. However, primary and secondary resistance to CAR-T cell therapy is commonly encountered in various clinical trials. Despite the comprehensive studies to elucidate the mechanisms of resistance, effective resolution in clinical practice is still elusive. Inadequate persistence and subsequent loss of infused CAR-T cells are proposed major resistance mechanism associated with CAR-T cell treatment failure. Thus, we generated CAR-T cells armored with IL-7 to prolong the persistence of infused T-cells, particularly CD4 + T cells, and enhanced anti-tumor response. IL-7 increased CAR-T-cell persistence in vivo and contributed to the distinct T-cell cytotoxicity profile. Using mass cytometry (CyTOF), we further assessed the phenotypic and metabolic profiles of IL-7-secreting CAR-T cells, along with conventional CAR-T cells at the single-cell level. With in-depth analysis, we found that IL-7 maintained CAR-T cells in a less differentiated T-cell state, regulated distinct metabolic activity, and prevented CAR-T-cell exhaustion, which could be essential for CAR-T cells to maintain their metabolic fitness and anti-tumor response. Our findings thus provided clinical rationale to exploit IL-7 signaling for modulation and metabolic reprogramming of T-cell function to enhance CAR-T cell persistence and induce durable remission upon CAR-T cell therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Diferenciação Celular , Humanos , Imunoterapia Adotiva , Interleucina-7/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...