RESUMO
We describe a new species of the genus Alippistrongylus (Nematoda: Trichostrongylina) in the small intestine of Delomys dorsalis (Rodentia: Sigmodontinae) found in Itatiaia National Park (Parque Nacional do Itatiaia, PNI), state of Rio de Janeiro, Brazil. The new species can be distinguished between the other two species previously described by the following morphological characteristics: pattern of the rays from the caudal bursa rays in males and the spherical-shaped appendage in the female. Additionally, we provide molecular genetic data from the new species. The discovery of Alippistrongylus itatiaiaensis sp. n. expands our understanding of nematode diversity and underscores the importance of parasite studies in biodiversity conservation. Its occurrence in a preserved area like the PNI emphasises the role of such habitats in maintaining unique ecological interactions.
Assuntos
Florestas , Sigmodontinae , Animais , Brasil , Sigmodontinae/parasitologia , Masculino , Feminino , Doenças dos Roedores/parasitologia , Intestino Delgado/parasitologia , Filogenia , Trichostrongyloidea/classificação , Trichostrongyloidea/genética , Trichostrongyloidea/anatomia & histologia , Trichostrongyloidea/isolamento & purificaçãoRESUMO
Teniarynchosis (taeniasis) is a helminthiasis with chronic course, predominant lesion of the upper gastrointestinal tract and active release of segments. The causative agent of taeniasis is Taenia saginata. This disease is widespread, although endemic countries are Africa, Australia, South America and Asia. Cases of teniarynchosis are rare in surgical practice. We present a patient who admitted with blunt abdominal injury and isolated wound of small. After laparotomy, we found alive bovine tapeworm that entered into abdominal cavity through the wound in small intestine. The parasite was removed with subsequent intestinal wall repair. The patient was discharged. Thus, teniarynchosis can cause urgent surgical diseases or their complications, especially in endemic areas.
Assuntos
Taenia saginata , Teníase , Humanos , Animais , Teníase/diagnóstico , Teníase/cirurgia , Masculino , Taenia saginata/isolamento & purificação , Resultado do Tratamento , Laparotomia/métodos , Traumatismos Abdominais/cirurgia , Traumatismos Abdominais/complicações , Intestino Delgado/cirurgia , Intestino Delgado/parasitologia , Adulto , BovinosRESUMO
Infection with the protozoan parasite Giardia duodenalis (syn. intestinalis, lamblia) has been associated with intestinal mucus disruptions and microbiota dysbiosis. The mechanisms remain incompletely understood. Mucus consists primarily of densely glycosylated mucin glycoproteins. Mucin O-glycans influence mucus barrier properties and mucin-microbe interactions and are frequently altered during disease. In this study, we observed time-dependent and regiospecific alterations to intestinal mucin glycosylation patterns and the expression of mucin-associated glycosyltransferase genes during Giardia infection. Glycosylation alterations were observed in Giardia-infected mice in the upper small intestine, the site of parasite colonization, and in the distal colon, where active trophozoites were absent. Alterations occurred as early as day 2 post-infection and persisted in mice after parasite clearance. We also observed small intestinal goblet cell hyperplasia and thinning of the distal colon mucus barrier during early infection, and microbiota alterations and altered production of cecal SCFAs. Giardia-induced alterations to mucin glycosylation were at least in part dependent on microbiota dysbiosis, as transplantation of a dysbiotic mucosal microbiota collected from Giardia-infected mice recapitulated some alterations. This study describes a novel mechanism by which Giardia alters intestinal mucin glycosylation, and implicates the small intestinal microbiota in regulation of mucin glycosylation patterns throughout the gastrointestinal tract.
Assuntos
Disbiose , Giardia lamblia , Giardíase , Mucinas , Animais , Disbiose/microbiologia , Glicosilação , Giardíase/parasitologia , Giardíase/metabolismo , Giardíase/microbiologia , Mucinas/metabolismo , Camundongos , Giardia lamblia/metabolismo , Giardia lamblia/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Feminino , Colo/microbiologia , Colo/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/parasitologiaRESUMO
Ascaris is one of the most widespread helminth infections, leading to chronic morbidity in humans and considerable economic losses in pig farming. In addition, pigs are an important reservoir for the zoonotic salmonellosis, where pigs can serve as asymptomatic carriers. Here, we investigated the impact of an ongoing Ascaris infection on the immune response to Salmonella in pigs. We observed higher bacterial burdens in experimentally coinfected pigs compared to pigs infected with Salmonella alone. The impaired control of Salmonella in the coinfected pigs was associated with repressed interferon gamma responses in the small intestine and with the alternative activation of gut macrophages evident in elevated CD206 expression. Ascaris single and coinfection were associated with a rise of CD4-CD8α+FoxP3+ Treg in the lymph nodes draining the small intestine and liver. In addition, macrophages from coinfected pigs showed enhanced susceptibility to Salmonella infection in vitro and the Salmonella-induced monocytosis and tumor necrosis factor alpha production by myeloid cells was repressed in pigs coinfected with Ascaris. Hence, our data indicate that acute Ascaris infection modulates different immune effector functions with important consequences for the control of tissue-invasive coinfecting pathogens.IMPORTANCEIn experimentally infected pigs, we show that an ongoing infection with the parasitic worm Ascaris suum modulates host immunity, and coinfected pigs have higher Salmonella burdens compared to pigs infected with Salmonella alone. Both infections are widespread in pig production and the prevalence of Salmonella is high in endemic regions of human Ascariasis, indicating that this is a clinically meaningful coinfection. We observed the type 2/regulatory immune response to be induced during an Ascaris infection correlates with increased susceptibility of pigs to the concurrent bacterial infection.
Assuntos
Ascaríase , Ascaris suum , Coinfecção , Salmonelose Animal , Doenças dos Suínos , Animais , Ascaríase/imunologia , Ascaríase/veterinária , Suínos , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/parasitologia , Ascaris suum/imunologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Linfonodos/imunologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Interferon gama/imunologia , Interferon gama/metabolismo , Fígado/imunologia , Fígado/parasitologiaRESUMO
BACKGROUND: Macracanthorhynchus hirudinaceus (Pallas, 1781) is a zoonotic acanthocephalan that parasitizes the small intestine of wild boars. It is a pathogenic that causes economic losses, and poses a public health threat due to increased emergence. PURPOSE: The aims of this study is describes histopathologically the damage caused by M. hirudinaceus in the small intestine of wild boar Sus scrofa Linnaeus, 1758, and molecularly characterize this parasite (sequences, haplotypes, phylogeny) for the first time in Elazig city, Türkiye. RESULTS: A high prevalence of infection was obtained. Upon separating the worms, it was discovered that there were ulcers resembling craters in the center, of the small intestine mucosa, surrounded by edema. The intestine wall where the parasite attached was damaged, with the villi epithelium and lamina propria in the mucosa being destroyed. The genomic DNA was isolated from all M. hirudinaceus samples, and PCR amplified the 489 bp gene fragments were sequenced and confirmed that all 21 sequences were M. hirudinaceus. The haplotype analysis of the sequences revealed the presence of a central star-shaped haplotype, in addition to four other haplotypes. CONCLUSION: After conducting sequence analysis, the genetic differences between the M. hirudinaceus sequences obtained in this study and those reported from Europe and Japan suggest that this parasite is endemic to Türkiye's local wild boar population. Also, four haplotypes were identified, distinguishing it from other haplotypes by 1-5 mutation steps. It is essential to consider the worm's sequences and the formation of haplotypes, since these intrinsic characteristics may impact in the epidemiology and pathology of the worm in the future.
Assuntos
Acantocéfalos , Filogenia , Sus scrofa , Doenças dos Suínos , Animais , Acantocéfalos/genética , Acantocéfalos/classificação , Acantocéfalos/isolamento & purificação , Doenças dos Suínos/parasitologia , Doenças dos Suínos/epidemiologia , Sus scrofa/parasitologia , Suínos , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Helmintíase Animal/parasitologia , Helmintíase Animal/epidemiologia , Haplótipos , DNA de Helmintos/genética , Análise de Sequência de DNARESUMO
Infection with the apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease. Cryptosporidiosis is of particular importance in infants and shows a strong association with malnutrition, both as a risk factor and as a consequence. Cryptosporidium invades and replicates within the small intestine epithelial cells. This is a highly dynamic tissue that is developmentally stratified along the villus axis. New cells emerge from a stem cell niche in the crypt and differentiate into mature epithelial cells while moving toward the villus tip, where they are ultimately shed. Here, we studied the impact of Cryptosporidium infection on this dynamic architecture. Tracing DNA synthesis in pulse-chase experiments in vivo, we quantified the genesis and migration of epithelial cells along the villus. We found proliferation and epithelial migration to be elevated in response to Cryptosporidium infection. Infection also resulted in significant cell loss documented by imaging and molecular assays. Consistent with these observations, single-cell RNA sequencing of infected intestines showed a gain of young and a loss of mature cells. Interestingly, enhanced epithelial cell loss was not a function of enhanced apoptosis of infected cells. To the contrary, Cryptosporidium-infected cells were less likely to be apoptotic than bystanders, and experiments in tissue culture demonstrated that infection provided enhanced resistance to chemically induced apoptosis to the host but not bystander cells. Overall, this study suggests that Cryptosporidium may modulate cell apoptosis and documents pronounced changes in tissue homeostasis due to parasite infection, which may contribute to its long-term impact on the developmental and nutritional state of children. IMPORTANCE: The intestine must balance its roles in digestion and nutrient absorption with the maintenance of an effective barrier to colonization and breach by numerous potential pathogens. An important component of this balance is its constant turnover, which is modulated by a gain of cells due to proliferation and loss due to death or extrusion. Here, we report that Cryptosporidium infection changes the dynamics of this process increasing both gain and loss of enterocytes speeding up the villus elevator. This leads to a much more immature epithelium and a reduction of the number of those cells typically found toward the villus apex best equipped to take up key nutrients including carbohydrates and lipids. These changes in the cellular architecture and physiology of the small intestine may be linked to the profound association between cryptosporidiosis and malnutrition.
Assuntos
Criptosporidiose , Cryptosporidium , Células Epiteliais , Criptosporidiose/parasitologia , Animais , Células Epiteliais/parasitologia , Cryptosporidium/genética , Cryptosporidium/fisiologia , Camundongos , Mucosa Intestinal/parasitologia , Apoptose , Humanos , Proliferação de Células , Movimento Celular , Intestino Delgado/parasitologiaRESUMO
Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.
Assuntos
Himenolepíase , Hymenolepis diminuta , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Hymenolepis diminuta/imunologia , Camundongos , Himenolepíase/imunologia , Himenolepíase/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Camundongos Knockout , Feminino , Hiperplasia/imunologia , Hiperplasia/parasitologia , Células em TufoRESUMO
Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.
Assuntos
Acetilcolina , Cloretos , Células Epiteliais , Mucosa Intestinal , Animais , Acetilcolina/metabolismo , Camundongos , Cloretos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células em TufoRESUMO
Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.
Assuntos
Mucosa Intestinal , Permeabilidade , Animais , Humanos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Doença Crônica , Nematospiroides dubius/imunologia , Camundongos , Necator americanus , Enteropatias Parasitárias/imunologia , Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Intestino Delgado/parasitologia , Intestino Delgado/imunologia , Feminino , Camundongos Endogâmicos C57BL , Masculino , Helmintíase/imunologia , Helmintíase/parasitologia , Necatoríase/imunologia , Proteína 2 com Domínio MARVEL/metabolismoRESUMO
BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.
Assuntos
Alcaloides , Galinhas , Coccidiose , Eimeria , Matrinas , Doenças das Aves Domésticas , Quinolizinas , Via de Sinalização Wnt , Animais , Quinolizinas/farmacologia , Alcaloides/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Eimeria/efeitos dos fármacos , Coccidiose/tratamento farmacológico , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia , Células-Tronco/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/parasitologiaRESUMO
The concentration of immunoglobulin (Ig) E is the lowest among serum Igs, but it can induces type I hypersensitivity and plays an important role in anti-parasitic infection. The present study aimed to explore the residence characteristics of IgE+ cells in the sheep small intestine and the impact of Moniezia benedeni infection on them. The recombinant plasmids pET-28a-IgE were constructed and induced and expressed in Escherichia coli. BL21 (DE3). The rabbit anti-sheep IgE polyclonal antibody was prepared using the obtained recombinant protein as antigen. Finally, the levels of IgE+ cells in the small intestine of healthy (Control group) and naturally M. benedeni-infected (Infected group) sheep were detected analyzed. The results showed that the rabbit anti-sheep IgE polyclonal antibody with good immunogenicity (titer = 1: 128000) could specifically bind to the heavy chain of natural sheep IgE. In the Control group, the IgE+ cells were mainly distributed in lamina propria of the small intestine, and the densities were significantly decreased from duodenum to ileum (P<0.05), with respective values of (4.28 cells / 104 µm2, 1.80 cells / 104 µm2, and 1.44 cells / 104 µm2 in duodenum, jejunum, and ileum. In the Infected group, IgE+ cells density were 6.26 cells / 104 µm2, 3.01 cells / 104 µm2, and 2.09 cells / 104 µm2 in duodenum, jejunum and ileum respectively, which were significantly higher in all segments compared to the Control group (P<0.05), increasing by 46.26%, 67.22% and 45.14%, respectively. In addition, compared with the Control group, the IgE protein levels were significantly increased in all intestinal segments of the Infected group (P<0.01), however, there was no significant differences among the different intestinal segments within the same group (P>0.05). The results demonstrated that M. benedeni infection could significantly increase the content of IgE and the distribution density of its secreting cells in sheep small intestine. The intestinal mucosal immune system of sheep presented obvious specificity against M. benedeni infection. This lays a good foundation for further exploring molecular mechanisms of the intestinal mucosal immune system monitoring and responding to M. benedeni infection.
Assuntos
Imunoglobulina E , Intestino Delgado , Doenças dos Ovinos , Animais , Imunoglobulina E/sangue , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologiaRESUMO
PURPOSE: Using molecular techniques, we have previously shown that carnivorous mammals of the family Mustelidae might be common definitive hosts for various protozoan Sarcocystis species. In the present study we aimed to unravel whether Sarcocystis species using ungulates as intermediate hosts and canids or felids as definitive hosts can be found in intestine of mustelids. METHODS: Small intestine samples of 93 individual mustelids of five different species from Lithuania were examined. Sarcocystis species were identified based on species-specific PCR and subsequent cox1 sequencing. RESULTS: Six Sarcocystis species (S. arieticanis, S. bertrami, S. capracanis, S. capreolicanis, S. linearis and S. morae) defined by ungulate-canid life cycle were detected for the first time in small intestines of mustelids. By contrast, the prevalence of Sarcocystis characterised by ungulate-felid life cycle was low (3.2%). Overall, 76% of the examined animals were positive for at least one of the studied Sarcocystis species. Four species, S. arieticanis, S. bertrami, S. capracanis and S. morae were most commonly found, with the detection rate of about 40%. CONCLUSIONS: The current finding, in addition to our previous studies, suggests that mustelids play an important role in the spread of various Sarcocystis species.
Assuntos
Intestino Delgado , Mustelidae , Sarcocystis , Sarcocistose , Animais , Sarcocistose/veterinária , Sarcocistose/parasitologia , Sarcocystis/genética , Sarcocystis/classificação , Sarcocystis/isolamento & purificação , Intestino Delgado/parasitologia , Mustelidae/parasitologia , Lituânia , Estágios do Ciclo de Vida , Reação em Cadeia da Polimerase , FilogeniaRESUMO
Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.
Assuntos
Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/citologia , Organoides/metabolismo , Infecções por Strongylida/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/parasitologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Caliciformes/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/farmacologia , Interações Hospedeiro-Parasita , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Intestino Delgado/parasitologia , Camundongos Endogâmicos C57BL , Nematospiroides dubius/metabolismo , Nematospiroides dubius/fisiologia , Nippostrongylus/metabolismo , Nippostrongylus/fisiologia , Organoides/citologia , Organoides/parasitologia , Infecções por Strongylida/parasitologia , Ácido Succínico/farmacologia , Transcriptoma/efeitos dos fármacosRESUMO
The nematophagous fungus Duddingtonia flagrans is used in integrated management of gastrointestinal nematodes in ruminants. The chlamydospores of the fungus, orally administered, pass through the segments of the ruminant digestive tract and, in the feces, capture the nematodes preventing their migration to grasslands. The drastic conditions of the gastrointestinal segments can negatively affect the fungus' biocontrol activity. The aim of this study was to assess the effect of in vitro conditions of the sheep's main gastrointestinal segments on the concentration, viability and nematode predatory ability of D. flagrans chlamydospores. The segments evaluated separately in vitro were the oral cavity, rumen, abomasum, and small intestine. The results showed that chlamydospores concentration was not affected by exposure to the different segments. The viability of the chlamydospores after exposure to the oral cavity (2.53 × 106 CFU/mL) and small intestine (1.24 × 105 CFU/mL) was significantly lower than its control treatment, with values of 6.67 × 106 CFU/mL and 2.31 × 105 CFU/mL respectively. Nematode predatory ability after rumen exposure was reduced by 7% compared to the control treatment, by 25% after abomasum exposure and by 17% after small intestine. This study revealed the individual in vitro effect of each segment of ovine gastrointestinal tract on the integrity of this strain of the fungus D. flagrans affecting its viability and nematode predatory ability under the evaluated conditions. Delivery systems could be designed to protect chlamydospores considering the impact of each gastrointestinal segment.
Assuntos
Ascomicetos/fisiologia , Gastroenteropatias/prevenção & controle , Trato Gastrointestinal/microbiologia , Infecções por Nematoides/prevenção & controle , Abomaso/microbiologia , Abomaso/parasitologia , Análise de Variância , Animais , Ascomicetos/crescimento & desenvolvimento , Fezes/parasitologia , Gastroenteropatias/microbiologia , Gastroenteropatias/parasitologia , Trato Gastrointestinal/parasitologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Boca/microbiologia , Boca/parasitologia , Infecções por Nematoides/microbiologia , Controle Biológico de Vetores/métodos , Rúmen/microbiologia , Rúmen/parasitologia , Ovinos , Esporos Fúngicos/crescimento & desenvolvimentoRESUMO
Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection, and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady-state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an TORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.
Assuntos
Morte Celular , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Celulas de Paneth/patologia , Animais , Feminino , Interferon gama/genética , Intestino Delgado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma , Toxoplasmose/patologiaRESUMO
Group 2 innate lymphoid cells (ILC2s) are early effectors of mucosal type 2 immunity, producing cytokines such as interleukin (IL)-13 to mediate responses to helminth infection and allergen-induced inflammation. ILC2s are also present in lymph nodes (LNs) and can express molecules required for antigen presentation, but to date there are limited data on their dynamic behaviour. We used a CD2/IL-13 dual fluorescent reporter mouse for in vivo imaging of ILC2s and Th2 T cells in real time following a type 2 priming helminth infection or egg injection. After helminth challenge, we found that ILC2s were the main source of IL-13 in lymphoid organs (Peyer's patches and peripheral LNs), and were located in T cell areas. Intravital imaging demonstrated an increase in IL-13+ ILC2 size and movement following helminth infection, but reduced duration of interactions with T cells compared with those in homeostasis. In contrast, in the intestinal mucosa, we observed an increase in ILC2-T cell interactions post-infection, including some of prolonged duration, as well as increased IL-13+ ILC2 movement. These data suggest that ILC2 activation enhances cell motility, with the potential to increase the area of distribution of cytokines to optimise the early generation of type 2 responses. The prolonged ILC2 interactions with T cells within the intestinal mucosa are consistent with the conclusion that contact-based T cell activation may occur within inflamed tissues rather than lymphoid organs. Our findings have important implications for our understanding of the in vivo biology of ILC2s and the way in which these cells facilitate adaptive immune responses.
Assuntos
Enteropatias Parasitárias/imunologia , Subpopulações de Linfócitos/imunologia , Nippostrongylus , Esquistossomose mansoni/imunologia , Infecções por Strongylida/imunologia , Células Th2/imunologia , Animais , Genes Reporter , Interleucina-13/análise , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Microscopia Intravital , Contagem de Linfócitos , Subpopulações de Linfócitos/química , Camundongos , Especificidade de Órgãos , Organismos Livres de Patógenos Específicos , Células Th2/químicaRESUMO
Allintoshius Chitwood, 1937 is the only genus of the family Ornithostrongylidae (Travassos, 1937) Durette-Desset and Chabaud, 1981 that parasitizes bats. Currently, there are 10 valid species in the genus, of which 3 were described from Brazil. This study describes a new species of Allintoshius and records the first occurrence of a nematode of this genus parasitizing Artibeus lituratus (Olfers). Allintoshius gomesae n. sp. is characterized by having anterior region coiled, cephalic vesicle with cuticular dilation striated transversely, and claviform esophagus. Synlophe in females consists of 16 cuticular ridges at the mid-body. Males have large caudal bursa, and conic and small spicules, and the gubernaculum is absent. Females have uterus didelphic, amphidelphic, tail tip tapered, and ovijector divided into 2 divergent branches, subequal in length. The new species differs from its congeners especially by the shape of the tail tip, vulvar opening, and size of spicules. Allintoshius gomesae is the fourth species of Allintoshius from Brazil and the first report in Ar. lituratus, increasing the number of species recognized of the genus.
Assuntos
Quirópteros/parasitologia , Heligmosomatoidea/classificação , Infecções por Strongylida/veterinária , Animais , Brasil , Quirópteros/classificação , Feminino , Heligmosomatoidea/anatomia & histologia , Heligmosomatoidea/isolamento & purificação , Intestino Delgado/parasitologia , Masculino , Infecções por Strongylida/parasitologiaRESUMO
"Taste-like" tuft cells in the intestine trigger type 2 immunity in response to worm infection. The secretion of interleukin-13 (IL-13) from type 2 innate lymphoid cells (ILC2) represents a key step in the tuft cell-ILC2 cell-intestinal epithelial cell circuit that drives the clearance of worms from the gut via type 2 immune responses. Hallmark features of type 2 responses include tissue remodeling, such as tuft and goblet cell expansion, and villus atrophy, yet it remains unclear if additional molecular changes in the gut epithelium facilitate the clearance of worms from the gut. Using gut organoids, we demonstrated that IL-4 and IL-13, two type 2 cytokines with similar functions, not only induced the classical type 2 responses (e.g., tuft cell expansion) but also drastically up-regulated the expression of gasdermin C genes (Gsdmcs). Using an in vivo worm-induced type 2 immunity model, we confirmed the up-regulation of Gsdmcs in Nippostrongylus brasiliensis-infected wild-type C57BL/6 mice. Consistent with gasdermin family members being principal effectors of pyroptosis, overexpression of Gsdmc2 in human embryonic kidney 293 (HEK293) cells triggered pyroptosis and lytic cell death. Moreover, in intestinal organoids treated with IL-4 or IL-13, or in wild-type mice infected with N. brasiliensis, lytic cell death increased, which may account for villus atrophy observed in worm-infected mice. Thus, we propose that the up-regulated Gsdmc family may be major effectors for type 2 responses in the gut and that Gsdmc-mediated pyroptosis may provide a conduit for the release of antiparasitic factors from enterocytes to facilitate the clearance of worms.
Assuntos
Morte Celular , Proteínas de Ligação a DNA/metabolismo , Enterócitos/patologia , Imunidade Inata/imunologia , Intestino Delgado/patologia , Infecções por Strongylida/complicações , Células Th2/imunologia , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Enterócitos/imunologia , Enterócitos/metabolismo , Enterócitos/parasitologia , Feminino , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nippostrongylus/fisiologia , Transdução de Sinais , Infecções por Strongylida/imunologia , Infecções por Strongylida/metabolismo , Infecções por Strongylida/parasitologiaRESUMO
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Assuntos
Giardia lamblia/isolamento & purificação , Giardíase/terapia , Probióticos/administração & dosagem , Animais , Criança , Diarreia/parasitologia , Diarreia/terapia , Microbioma Gastrointestinal , Giardíase/fisiopatologia , Humanos , Intestino Delgado/parasitologia , Lactobacillus , SaccharomycesRESUMO
The role of p53 in tumor suppression has been extensively studied and well-established. However, the role of p53 in parasitic infections and the intestinal type 2 immunity is unclear. Here, we report that p53 is crucial for intestinal type 2 immunity in response to the infection of parasites, such as Tritrichomonas muris and Nippostrongylus brasiliensis. Mechanistically, p53 plays a critical role in the activation of the tuft cell-IL-25-type 2 innate lymphoid cell circuit, partly via transcriptional regulation of Lrmp in tuft cells. Lrmp modulates Ca2+ influx and IL-25 release, which are critical triggers of type 2 innate lymphoid cell response. Our results thus reveal a previously unrecognized function of p53 in regulating intestinal type 2 immunity to protect against parasitic infections, highlighting the role of p53 as a guardian of immune integrity.