Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Br J Pharmacol ; 181(22): 4610-4627, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39118388

RESUMO

BACKGROUND AND PURPOSE: Fibrotic lung remodelling after a respiratory viral infection represents a debilitating clinical sequela. Studying or managing viral-fibrotic sequela remains challenging, due to limited therapeutic options and lack of understanding of mechanisms. This study determined whether protein disulfide isomerase A3 (PDIA3) and secreted phosphoprotein 1 (SPP1), which are associated with pulmonary fibrosis, can promote influenza-induced lung fibrotic remodelling and whether inhibition of PDIA3 or SPP1 can resolve viral-mediated fibrotic remodelling. EXPERIMENTAL APPROACH: A retrospective analysis of TriNetX data sets was conducted. Serum from healthy controls and influenza A virus (IAV)-infected patients was analysed. An inhibitor of PDIA3, punicalagin, and a neutralizing antibody for SPP1 were administered in mice. Macrophage cells treated with macrophage colony-stimulating factor (M-CSF) were used as a cell culture model. KEY RESULTS: The TriNetX data set showed an increase in lung fibrosis and decline in lung function in flu-infected acute respiratory distress syndrome (ARDS) patients compared with non-ARDS patients. Serum samples revealed a significant increase in SPP1 and PDIA3 in influenza-infected patients. Lung PDIA3 and SPP1 expression increased following viral infection in mouse models. Punicalagin administration 2 weeks after IAV infection in mice caused a significant decrease in lung fibrosis and improved oxygen saturation. Administration of neutralizing SPP1 antibody decreased lung fibrosis. Inhibition of PDIA3 decreased SPP1secretion from macrophages, in association with diminished disulfide bonds in SPP1. CONCLUSION AND IMPLICATIONS: The PDIA3-SPP1 axis promotes post-influenza lung fibrosis in mice and that pharmacological inhibition of PDIA3 or SPP1 can treat virus-induced lung fibrotic sequela.


Assuntos
Pulmão , Osteopontina , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Humanos , Camundongos , Osteopontina/metabolismo , Masculino , Pulmão/patologia , Pulmão/metabolismo , Pulmão/virologia , Feminino , Estudos Retrospectivos , Influenza Humana/tratamento farmacológico , Influenza Humana/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Taninos Hidrolisáveis/farmacologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo
2.
Blood Adv ; 8(16): 4398-4409, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38968144

RESUMO

ABSTRACT: Monoclonal antibodies (mAbs) have provided valuable information regarding the structure and function of platelet αIIbß3. Protein disulfide isomerase (PDI) has been implicated in αIIbß3 activation and binds to thrombin-activated αIIbß3. Using human platelets as the immunogen, we identified a new mAb (R21D10) that inhibits the binding of PDI to platelets activated with thrombin receptor-activating peptide (T6). R21D10 also partially inhibited T6-induced fibrinogen and PAC-1 binding to platelets, as well as T6- and adenosine 5'-diphosphate-induced platelet aggregation. Mutual competition experiments showed that R21D10 does not inhibit the binding of mAbs 10E5 (anti-αIIb cap domain) or 7E3 (anti-ß3 ß-I domain), and immunoblot studies indicated that R21D10 binds to ß3. The dissociation of αIIbß3 by EDTA had a minimal effect on R21D10 binding. Cryogenic electron microscopy of the αIIbß3-R21D10 Fab complex revealed that R21D10 binds to the ß3 integrin-epidermal growth factor 1 (I-EGF1) domain and traps an intermediate conformation of αIIbß3 with semiextended leg domains. The binding of R21D10 produces a major structural change in the ß3 I-EGF2 domain associated with a new interaction between the ß3 I-EGF2 and αIIb thigh domains, which may prevent the swing-out motion of the ß3 hybrid domain required for high-affinity ligand binding and protect αIIbß3 from EDTA-induced dissociation. R21D10 partially reversed the ligand binding priming effect of eptifibatide, suggesting that it could convert the swung-out conformation into a semiextended conformation. We concluded that R21D10 inhibits ligand binding to αIIbß3 via a unique allosteric mechanism, which may or may not be related to its inhibition of PDI binding.


Assuntos
Anticorpos Monoclonais , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Ligação Proteica , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Anticorpos Monoclonais/química , Ligantes , Plaquetas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Conformação Proteica , Regulação Alostérica , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores
3.
Eur J Med Chem ; 276: 116697, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39047610

RESUMO

Copper complexes have shown promising anticancer properties, but they are often poorly soluble in aqueous solutions, thus limiting their possible medical developments and applications. We have recently isolated some copper(II) complexes with salicylaldehyde thiosemicarbazone ligands exhibiting remarkable nanomolar cytotoxic activity, but in vivo tests evidenced several difficulties related to their poor solubility. To overcome these limitations and increase solubility in aqueous solution, herein we report the synthetic strategy that led to the introduction of the sulfonic group on the ligands, then separated as salts (NaH2L1 - NaH2L5), as well as the synthesis and characterization of the related copper(II) complexes. The characterization of the complexes is completed by the analysis of the structures obtained by X-rays diffraction on single crystals on the species [Cu(HL5)(H2O)]2.2H2O, [Cu(HL2)(H2O)2].2H2O, and [Cu(HL1)(H2O]2.2H2O. While the uncoordinated ligands do not affect cancer cell viability, copper(II) complexes exhibit low to sub-micromolar cytotoxic activity, which is maintained in 3D (HCT-15 and 2008) spheroidal models of cancer cell. Notably, copper(II) complexes were selective towards cancer cells, showing high selectivity indexes. Investigations focused on elucidating the mechanism of action evidenced the protein disulfide-isomerase as an innovative molecular target for this class of water-soluble copper(II) complexes. Finally, preliminary in vivo experiments performed with the most representative derivative in the murine Lewis Lung Carcinoma, highlight its significant antitumor efficacy and better tolerability profile with respect to the reference metallodrug, suggesting for this sulfonated Cu(II) complex a potential clinical relevance.


Assuntos
Antineoplásicos , Cobre , Ensaios de Seleção de Medicamentos Antitumorais , Isomerases de Dissulfetos de Proteínas , Solubilidade , Tiossemicarbazonas , Água , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Água/química , Animais , Cobre/química , Cobre/farmacologia , Camundongos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
4.
Bioorg Chem ; 150: 107585, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917491

RESUMO

The overexpression of PDIA1 in cancer has spurred the quest for effective inhibitors. However, existing inhibitors often bind to only one active site, limiting their efficacy. In our study, we developed a PROTAC-mimetic probe dPA by combining PACMA31 (PA) analogs with cereblon-directed pomalidomide. Through protein profiling and analysis, we confirmed dPA's specific interaction with PDIA1's active site cysteines. We further synthesized PROTAC variants with a thiophene ring and various linkers to enhance degradation efficiency. Notably, H4, featuring a PEG linker, induced significant PDIA1 degradation and inhibited cancer cell proliferation similarly to PA. The biosafety profile of H4 is comparable to that of PA, highlighting its potential for further development in cancer therapy. Our findings highlight a novel strategy for PDIA1 inhibition via targeted degradation, offering promising prospects in cancer therapeutics. This approach may overcome limitations of conventional inhibitors, presenting new avenues for advancing anti-cancer interventions.


Assuntos
Antineoplásicos , Proliferação de Células , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Sondas Moleculares/síntese química , Estrutura Molecular , Pró-Colágeno-Prolina Dioxigenase , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Relação Estrutura-Atividade , Peptídeos/química , Peptídeos/farmacologia
5.
ChemMedChem ; 19(16): e202300684, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38742480

RESUMO

Disulfide bond protein A (DsbA) is an oxidoreductase enzyme that catalyzes the formation of disulfide bonds in Gram-negative bacteria. In Escherichia coli, DsbA (EcDsbA) is essential for bacterial virulence, thus inhibitors have the potential to act as antivirulence agents. A fragment-based screen was conducted against EcDsbA and herein we describe the development of a series of compounds based on a phenylthiophene hit identified from the screen. A novel thiol reactive and "clickable" ethynylfluoromethylketone was designed for reaction with azide-functionalized fragments to enable rapid and versatile attachment to a range of fragments. The resulting fluoromethylketone conjugates showed selectivity for reaction with the active site thiol of EcDsbA, however unexpectedly, turnover of the covalent adduct was observed. A mechanism for this turnover was investigated and proposed which may have wider ramifications for covalent reactions with dithiol-disulfide oxidoreducatases.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Cetonas , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química
6.
Redox Biol ; 72: 103162, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38669864

RESUMO

Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.


Assuntos
Células Endoteliais , Fígado , Isomerases de Dissulfetos de Proteínas , Animais , Masculino , Camundongos , Adesão Celular , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Inibidores Enzimáticos/farmacologia , Fígado/metabolismo , Fígado/citologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores
7.
J Enzyme Inhib Med Chem ; 38(1): 2158187, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37070480

RESUMO

In this study, we report a series of newly synthesised sulphonamides of aziridine-2-carboxylic acid (Az-COOH) ester and amide analogues as potent protein disulphide isomerase (PDI, EC 5.3.4.1) inhibitors. The inhibitory activity on PDI was determined against recombinant human PDIA1 and PDIA3 proteins using an insulin reduction assay. These compounds in low micromolar to low nanomolar concentrations showed the effective in vitro inhibitory properties of PDIA1 with weaker effects on PDIA3. Complexes of 15N- and 15N,13C- uniformly labelled recombinant human PDIA1a with two PDIA1 inhibitors were produced and investigated by a protein nuclear magnetic resonance (NMR) spectroscopy. It was found that both C53 and C56 of the PDIA1 enzyme were involved in covalent binding. Finally, in a range of pharmacological studies, we demonstrated that investigated compounds displayed anti-cancer and anti-thrombotic activity. These findings demonstrate that sulphonamides of Az-COOH derivatives are promising candidates for the development of novel anti-cancer and anti-thrombotic agents.


Assuntos
Aziridinas , Isomerases de Dissulfetos de Proteínas , Sulfonamidas , Humanos , Aziridinas/farmacologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/química , Sulfonamidas/farmacologia
8.
Bioorg Med Chem ; 83: 117239, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940609

RESUMO

Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Camundongos , Antivirais/química , Células CACO-2 , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/fisiologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Flavinas/química , Flavinas/farmacologia
9.
Chem Res Toxicol ; 35(2): 326-336, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35084835

RESUMO

Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Saccharomyces cerevisiae/enzimologia , Compostos de Sulfidrila/metabolismo , Reagentes de Ligações Cruzadas/química , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estrutura Molecular , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/química , Proteólise/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Compostos de Sulfidrila/química , Sulfonas/farmacologia
10.
Biomed Pharmacother ; 143: 112110, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474345

RESUMO

The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.


Assuntos
Isomerases de Dissulfetos de Proteínas/metabolismo , Viroses/enzimologia , Viroses/virologia , Internalização do Vírus , Replicação Viral , Vírus/crescimento & desenvolvimento , Animais , Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Viroses/tratamento farmacológico , Vírus/patogenicidade
11.
Bioorg Med Chem ; 45: 116315, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364222

RESUMO

Bacterial thiol-disulfide oxidoreductase DsbA is essential for bacterial virulence factor assembly and has been identified as a viable antivirulence target. Herein, we report a structure-based elaboration of a benzofuran hit that bound to the active site groove of Escherichia coli DsbA. Substituted phenyl groups were installed at the 5- and 6-position of the benzofuran using Suzuki-Miyaura coupling. HSQC NMR titration experiments showed dissociation constants of this series in the high µM to low mM range and X-ray crystallography produced three co-structures, showing binding in the hydrophobic groove, comparable with that of the previously reported benzofurans. The 6-(m-methoxy)phenyl analogue (2b), which showed a promising binding pose, was chosen for elaboration from the C-2 position. The 2,6-disubstituted analogues bound to the hydrophobic region of the binding groove and the C-2 groups extended into the more polar, previously un-probed, region of the binding groove. Biochemical analysis of the 2,6-disubsituted analogues showed they inhibited DsbA oxidation activity in vitro. The results indicate the potential to develop the elaborated benzofuran series into a novel class of antivirulence compounds.


Assuntos
Benzofuranos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Benzofuranos/síntese química , Benzofuranos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Estrutura Molecular , Isomerases de Dissulfetos de Proteínas/metabolismo , Relação Estrutura-Atividade
12.
Aging (Albany NY) ; 13(14): 18718-18739, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285139

RESUMO

BACKGROUND: Endothelial microparticles (EMPs) carrying the protein disulfide isomerase (PDI) might play a key role in promoting platelet activation in diabetes. This study aimed to examine the activation of platelets, the amounts of MPs, PMPs, and EMPs, and the concentration and activity of PDI in patients with diabetic coronary heart disease (CHD) and non-diabetic CHD. METHODS: Patients with CHD (n=223) were divided as non-diabetic CHD (n=121) and diabetic CHD (n=102). Platelet activation biomarkers, circulating microparticles (MPs), the concentration of protein disulfide isomerase (PDI), and MP-PDI activity were determined. The effect of EMPs on platelet activation was investigated in vitro. Allosteric GIIb/IIIa receptors that bind to PDI were detected by a proximity ligation assay (PLA). RESULTS: Platelet activation, platelet-leukocyte aggregates, circulating MPs, EMPs, PDI, and MP-PDI activity in the diabetic CHD group were significantly higher than in the non-diabetic CHD group (P<0.05). Diabetes (P=0.006) and heart rate <60 bpm (P=0.047) were associated with elevated EMPs. EMPs from diabetes increased CD62p on the surface of the platelets compared with the controls (P<0.01), which could be inhibited by the PDI inhibitor RL90 (P<0.05). PLA detected the allosteric GIIb/IIIa receptors caused by EMP-PDI, which was also inhibited by RL90. CONCLUSIONS: In diabetic patients with CHD, platelet activation was significantly high. Diabetes and heart rate <60 bpm were associated with elevated EMPs and simultaneously increased PDI activity on EMP, activating platelets through the allosteric GPIIb/IIIa receptors.


Assuntos
Plaquetas/enzimologia , Micropartículas Derivadas de Células/enzimologia , Doença das Coronárias/sangue , Diabetes Mellitus Tipo 2/complicações , Ativação Plaquetária/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/sangue , Idoso , Biomarcadores , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Micropartículas Derivadas de Células/efeitos dos fármacos , Doença das Coronárias/fisiopatologia , Inibidores Enzimáticos/farmacologia , Feminino , Frequência Cardíaca , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores
13.
Cancer Med ; 10(8): 2812-2825, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742523

RESUMO

The protein disulphide isomerase (PDI) gene family is a large, diverse group of enzymes recognised for their roles in disulphide bond formation within the endoplasmic reticulum (ER). PDI therefore plays an important role in ER proteostasis, however, it also shows involvement in ER stress, a characteristic recognised in multiple disease states, including cancer. While the exact mechanisms by which PDI contributes to tumorigenesis are still not fully understood, PDI exhibits clear involvement in the unfolded protein response (UPR) pathway. The UPR acts to alleviate ER stress through the activation of ER chaperones, such as PDI, which act to refold misfolded proteins, promoting cell survival. PDI also acts as an upstream regulator of the UPR pathway, through redox regulation of UPR stress receptors. This demonstrates the pro-protective roles of PDI and highlights PDI as a potential therapeutic target for cancer treatment. Recent research has explored the use of PDI inhibitors with PACMA 31 in particular, demonstrating promising anti-cancer effects in ovarian cancer. This review discusses the properties and functions of PDI family members and focuses on their potential as a therapeutic target for cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/patologia
14.
J Comput Aided Mol Des ; 35(3): 297-314, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615401

RESUMO

Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.


Assuntos
Anti-Infecciosos/síntese química , Inibidores Enzimáticos/química , Hexaclorofeno/síntese química , Leishmania major/enzimologia , Leishmaniose/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Anti-Infecciosos/farmacologia , Domínio Catalítico , Desenho Assistido por Computador , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hexaclorofeno/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
15.
Phytomedicine ; 82: 153449, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387969

RESUMO

BACKGROUND/PURPOSE: Juglone, a natural compound widely found in Juglandaceae plants, has been suggested as a potential drug candidate for treating cancer, inflammation, and diabetic vascular complications. In the present study, the antiplatelet effect and underlying mechanisms of juglone were investigated for the first time. STUDY DESIGN/METHODS: Human platelet aggregation and activation were measured by turbidimetric aggregometry, flow cytometry, and Western blotting. In vitro antithrombotic activity of juglone was assessed using collagen-coated flow chambers under whole-blood flow conditions. The effect of juglone on protein disulfide isomerase (PDI) activity was determined by the dieosin glutathione disulfide assay. RESULTS: Juglone (1 - 5 µM) inhibited platelet aggregation and glycoprotein (GP) IIb/IIIa activation caused by various agonists. In a whole blood flow chamber system, juglone reduced thrombus formation on collagen-coated surfaces under arterial shear rates. Juglone abolished intracellular Ca2+ elevation and protein kinase C activation caused by collagen, but had no significant effect on that induced by G protein-coupled receptor agonists. In contrast, Akt activation caused by various agonists were inhibited in juglone-treated platelets. Additionally, juglone showed inhibitory effects on both recombinant human PDI and platelet surface PDI at concentrations similar to those needed to prevent platelet aggregation. CONCLUSION: Juglone exhibits potent in vitro antiplatelet and antithrombotic effects that are associated with inhibition of Akt activation and platelet surface PDI activity.


Assuntos
Naftoquinonas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Plaquetas/efeitos dos fármacos , Humanos , Ativação Plaquetária/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombose/metabolismo
17.
Sci Rep ; 11(1): 1569, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452354

RESUMO

Antibiotics are failing fast, and the development pipeline remains alarmingly dry. New drug research and development is being urged by world health officials, with new antibacterials against multidrug-resistant Gram-negative pathogens as the highest priority. Antivirulence drugs, which inhibit bacterial pathogenicity factors, are a class of promising antibacterials, however, their development is stifled by lack of standardised preclinical testing akin to what guides antibiotic development. The lack of established target-specific microbiological assays amenable to high-throughput, often means that cell-based testing of virulence inhibitors is absent from the discovery (hit-to-lead) phase, only to be employed at later-stages of lead optimization. Here, we address this by establishing a pipeline of bacterial cell-based assays developed for the identification and early preclinical evaluation of DsbA inhibitors, previously identified by biophysical and biochemical assays. Inhibitors of DsbA block oxidative protein folding required for virulence factor folding in pathogens. Here we use existing Escherichia coli DsbA inhibitors and uropathogenic E. coli (UPEC) as a model pathogen, to demonstrate that the combination of a cell-based sulfotransferase assay and a motility assay (both DsbA reporter assays), modified for a higher throughput format, can provide a robust and target-specific platform for the identification and evaluation of DsbA inhibitors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/análise , Antibacterianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo
18.
Eur J Pharmacol ; 892: 173749, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245896

RESUMO

Cellular stress and inflammation, establishing as disease pathology, have reached great heights in the last few decades. Stress conditions such as hyperglycemia, hyperlipidemia and lipoproteins are known to disturb proteostasis resulting in the accumulation of unfolded or misfolded proteins, alteration in calcium homeostasis culminating in unfolded protein response. Protein disulfide isomerase and endoplasmic reticulum oxidase-1 are the key players in protein folding. The protein folding process assisted by endoplasmic reticulum oxidase-1 results in the production of reactive oxygen species in the lumen of the endoplasmic reticulum. Production of reactive oxygen species beyond the quenching capacity of the antioxidant systems perturbs ER homeostasis. Endoplasmic reticulum stress also induces the production of cytokines leading to inflammatory responses. This has been proven to be the major causative factor for various pathophysiological states compared to other cellular triggers in diseases, which further manifests to increased oxidative stress, mitochondrial dysfunction, and altered inflammatory responses, deleterious to cellular physiology and homeostasis. Numerous studies have drawn correlations between the progression of several diseases in association with endoplasmic reticulum stress, redox protein folding, oxidative stress and inflammatory responses. This review aims to provide an insight into the role of protein disulfide isomerase and endoplasmic reticulum oxidase-1 in endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, and inflammatory responses, which exacerbate the progression of various diseases.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Inflamação/enzimologia , Mitocôndrias/enzimologia , Estresse Oxidativo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Oxirredutases/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Dobramento de Proteína , Transdução de Sinais , Resposta a Proteínas não Dobradas
19.
Chemotherapy ; 65(5-6): 125-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33238278

RESUMO

BACKGROUND: Protein disulfide isomerase 4 (PDIA4) has been reported to be closely associated with chemoresistance in several types of malignancies. But the pathogenic mechanisms of PDIA4 involved in docetaxel (DTX) resistance in prostate cancer (PCa) are still unknown. Hence, this study was conducted to evaluate the potential effect of PDIA4 on chemoresistance to DTX in PCa cells and to investigate the underlying mechanisms. METHODS: Two types of DTX-resistant PCa cells, that is, DTX-resistant PC-3 cells (PC-3/DTXR) and C4-2B cells (C4-2B/DTXR) were developed, as well as the parental PC-3 and C4-2B cells were obtained to investigate these issues. Short hairpin RNAs targeting human PDIA4 to knockdown the expression of PDIA4 or PDIA4-expressing adenoviral vectors to overexpress the PDIA4 were transfected into PCa cells to study the underlying mechanisms of PDIA4 involving in PCa DTX resistance. RESULTS: Results showed that PDIA4 exhibited a dramatic overexpression in PC-3/DTXR and C4-2B/DTXR cells. Down-regulation of PDIA4 by infecting PC-3/DTXR and C4-2B/DTXR cells with shPDIA4 lentivirus stimulated cell death by prompting apoptosis. Up-regulation of PDIA4 by infecting PC-3 and C4-2B cells with PDIA4-expressing adenovirus showed severer resistance to DTX. In addition, PDIA4 up-regulation induced phosphorylated protein kinase B (Akt) expression, while PDIA4 knockdown significantly inhibited the expression in PCa cells. CONCLUSIONS: Our study indicates that PDIA4 is a negative regulator of PCa cell apoptosis and plays a critical role in PCa DTX resistance by activating the Akt-signaling pathway. Thereby, it implies that targeting PDIA4 could be a potential adjuvant therapeutic approach against DTX resistance in PCa.


Assuntos
Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/patologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Theranostics ; 10(24): 11110-11126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042273

RESUMO

Rationale: Many external factors can induce the melanogenesis and inflammation of the skin. Salidroside (SAL) is the main active ingredient of Rhodiola, which is a perennial grass plant of the Family Crassulaceae. This study evaluated the effect and molecular mechanism of SAL on skin inflammation and melanin production. It then explored the molecular mechanism of melanin production under ultraviolet (UV) and inflammatory stimulation. Methods: VISIA skin analysis imaging system and DermaLab instruments were used to detect the melanin reduction and skin brightness improvement rate of the volunteers. UV-treated Kunming mice were used to detect the effect of SAL on skin inflammation and melanin production. Molecular docking and Biacore were used to verify the target of SAL. Immunofluorescence, luciferase reporter assay, CO-IP, pull-down, Western blot, proximity ligation assay (PLA), and qPCR were used to investigate the molecular mechanism by which SAL regulates skin inflammation and melanin production. Results: SAL can inhibit the inflammation and melanin production of the volunteers. SAL also exerted a protective effect on the UV-treated Kunming mice. SAL can inhibit the tyrosinase (TYR) activity and TYR mRNA expression in A375 cells. SAL can also regulate the ubiquitination degradation of interferon regulatory factor 1 (IRF1) by targeting prolyl 4-hydroxylase beta polypeptide (P4HB) to mediate inflammation and melanin production. This study also revealed that IRF1 and upstream stimulatory factor 1 (USF1) can form a transcription complex to regulate TYR mRNA expression. IRF1 also mediated inflammatory reaction and TYR expression under UV- and lipopolysaccharide-induced conditions. Moreover, SAL derivative SAL-plus (1-(3,5-dihydroxyphenyl) ethyl-ß-d-glucoside) showed better effect on inflammation and melanin production than SAL. Conclusion: SAL can inhibit the inflammation and melanogenesis of the skin by targeting P4HB and regulating the formation of the IRF1/USF1 transcription complex. In addition, SAL-plus may be a new melanin production and inflammatory inhibitor.


Assuntos
Glucosídeos/farmacologia , Hiperpigmentação/tratamento farmacológico , Melaninas/metabolismo , Fenóis/farmacologia , Preparações Clareadoras de Pele/farmacologia , Pigmentação da Pele/efeitos dos fármacos , Adulto , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucosídeos/uso terapêutico , Voluntários Saudáveis , Humanos , Hiperpigmentação/imunologia , Hiperpigmentação/patologia , Fator Regulador 1 de Interferon/metabolismo , Masculino , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Camundongos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Fenóis/uso terapêutico , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/imunologia , Envelhecimento da Pele/efeitos da radiação , Creme para a Pele/farmacologia , Creme para a Pele/uso terapêutico , Preparações Clareadoras de Pele/uso terapêutico , Pigmentação da Pele/efeitos da radiação , Ativação Transcricional/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Fatores Estimuladores Upstream/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...